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a b s t r a c t

We establish a bijective correspondence involving a class of unital involutive quantales
and a class of groupoids whose space of units is a sober space. This class includes
equivalence relations that arise from group actions. The resulting axiomatization of the
class of quantales, as well as the correspondence defined here, extend the theory of étale
groupoids and their quantales (Resende (2007) [10]) to a point-set, non-étale setting.
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1. Introduction

Important examples of groupoids that are non-étale abound. Typical examples are given by equivalence relations induced
from group actions with fixed points. It is then natural to seek algebraic descriptions of these groupoids, analogously to
what is done for instance in [9,11,13] in the context of groupoids that are étale. In this paper, we establish a bijective
correspondence involving a class of unital involutive quantales and a class of groupoids whose set of units is a sober
topological space. This correspondence extends, in a spatial setting, the correspondence between localic étale groupoids
and inverse quantal frames defined in [13].

The correspondence in [13] has also been extended beyond the étale setting in [10], to a correspondence between open
groupoids and open quantal frames. As their name suggests, these quantales satisfy the frame distributivity condition, but
are not required to be unital (the inverse quantal frames in [13] are exactly the unital open quantal frames in [10]). The
correspondence defined in this paper covers an alternative extension: the quantales considered here are unital, but do not
need to be frames.

As already observed in [10], the essential difference between the groupoid-quantale correspondence in the étale and in
the non-étale setting lays in the role played by the inverse semigroup of G-sets of a groupoid. Indeed, all the information
needed to reconstruct any étale groupoid is encoded in the inverse semigroup formed by the germs of its local bisections. The
quantales associated with both étale groupoids and inverse semigroups, i.e. the inverse quantal frames, being characterized
as the free join completions of the inverse semigroups, contain no extra information than the inverse semigroups themselves.
However, in the non-étale setting, the inverse semigroup of G-sets is not enough to reconstruct the groupoid: the missing
information governs the various possible ways in which any two G-sets of the groupoid intersect one another (notice
that this is exactly the information content that becomes trivial in étale groupoids, because G-sets are closed under finite
intersection). This extra information is stored in the quantale, which is why quantales are essential to this setting. In this
paper, the role of germs in the reconstruction process is played by the classes of an equivalence relation that we refer to as
the incidence relation, which encodes information on the incidence of any two G-sets at a point, in the language of quantales.
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As mentioned earlier, the quantales considered here are not in general frames. Correspondingly, their associated
groupoids do not have a topological (or localic) structure on their spaces of arrows G1. In place of topologies, designated
collections of G-sets are used, which we refer to as selection bases (cf. Definition 3.5). Indeed, rather than being purely be-
tween quantales and groupoids, our correspondence is between quantales and pairs (G, S) of groupoids and selection bases.
In fact, these pairs can be regarded as categories on the topology of the space of units G0 (cf. Remark 3.7). This observation
paves the way to a pointfree generalization of this correspondence, which we develop in the companion paper [8].

The results we present in this paper find theirmainmotivation in amuchwider research program that seeks noncommu-
tative extensions of the Gelfand–Naimark duality [1]. Interestingly, these results have alsomany points in commonwith and
are potentially relevant to another area of research (which as far as our knowledge goes is disconnected from the first). This
area belongs to order theory, algebra and logic, seeks representability results for classes of relation algebras, and its research
program is well exemplified by [3], where a certain class of relation algebras is concretely represented via groupoids. We
believe that presenting our results in the spatial setting andmaking use of purely order-theoretic and topological techniques
is useful in making the connections with this area more transparent and in making these results more easily accessible to
its community of researchers.

The paper is organized as follows: in Section 2 we give the basic definitions and properties of groupoids and quantales;
in Section 3 we introduce our main groupoid setting of pairs (G, S) and their associated groupoid quantales Q(G, S); in
Section 4 we introduce the SGF-quantales: these quantales are to groupoid quantales what locales are to topologies. In the
same section, a procedure is defined to associate a set groupoidG(Q)with every SGF-quantaleQ. This procedure is based on
the incidence relation and its properties,which are detailed in Section 4.1. In Section 5we introduce the spatial SGF-quantales,
prove that this class includes the groupoid quantales Q(G, S), and that if Q is spatial, then the set of units of G(Q) can be
made into a sober space. In Section 6 we prove that the back-and-forth correspondence between spatial SGF-quantales and
the pairs (G, S) is bijective. In Section 7 we explain in detail why, although it is not so by definition, this correspondence is
compatible with the étale setting of [13]. In Section 8 we conclude with two concrete examples.

2. Preliminaries

2.1. Strongly Gelfand quantales

A quantale Q [5,14] is a complete join-semilattice endowed with an associative binary operation · that is completely
distributive in each coordinate, i.e.

D1: c ·


I =


{c · q : q ∈ I}
D2:


I · c =


{q · c : q ∈ I}

for every c ∈ Q, I ⊆ Q. Since it is a complete join-semilattice, Q is also a complete, hence bounded, lattice. Let 0, 1 be the
lattice bottom and top of Q, respectively. Conditions D1 and D2 readily imply that · is order-preserving in both coordinates
and, as


∅ = 0, that c · 0 = 0 = 0 · c for every c ∈ Q. Q is unital if there exists an element e ∈ Q for which

U: e · c = c = c · e for every c ∈ Q,

and is involutive if it is endowed with a unary operation ∗ such that, for every c, q ∈ Q and every I ⊆ Q,

I1: c∗∗
= c.

I2: (c · q)∗ = q∗
· c∗.

I3: (


I)∗ =


{q∗
: q ∈ I}.

Relevant examples of unital involutive quantales are:

1. The quantale P (R) of subrelations of a given equivalence relation R ⊆ X × X .
2. The quantale P (G), for every group G.
3. Any frame Q, setting · := ∧, ∗ := id and e := 1Q .

A homomorphism of (involutive) quantales is amapϕ : Q → Q′ that preserves


, · (and∗). IfQ, Q′ are unital quantales, then
ϕ is unital if e′

≤ ϕ(e) and is strictly unital ifϕ(e) = e′. Notice that since every homomorphism is completely join-preserving,
then ϕ(0) = ϕ(


∅) =


∅ = 0. However, a homomorphism of quantales does not need to preserve the lattice top. For

example, if R ⊂ S are equivalence relations on X , then the inclusion P (R) → P (S) is a strictly unital homomorphism of
quantales that does not. If ϕ(1Q) = 1Q′ then ϕ is strong.
Let Q be a unital involutive quantale. An element f ∈ Q is functional if f ∗

· f ≤ e and is a partial unit if both f and f ∗ are
functional2. The set of functional elements (resp. partial units) will be denoted by F (Q) (resp. I(Q)). It is easy to verify that
e ∈ I(Q) and I(Q) is closed under composition and involution of Q. Moreover, if f ≤ g ∈ I(Q) then f ∈ I(Q).

Let Qe = {c ∈ Q : c ≤ e}. Qe ⊆ I(Q), moreover, Qe is a unital involutive subquantale of Q.

2 If Q = P (R) for some equivalence relation R ⊆ X × X , then functional elements (partial units) are exactly the graphs of (invertible) partial maps f on
X .
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Definition 2.1. A unital involutive quantale Q is strongly Gelfand (or an SG-quantale) if

SG. a ≤ a · a∗
· a for every a ∈ Q.

Recall that Q is a Gelfand quantale (see also [14]) if a = a · a∗
· a for every right-sided element of Q (a ∈ Q being right-sided

if a = a · 1). It is immediate to see that every SG-quantale is Gelfand, and that f = f · f ∗
· f for every SG-quantale Q and

every f ∈ F (Q). We will simplify notation and write a · b as ab.
A quantale Q is supported if it is endowed with a support, which is a completely join-preserving map ς : Q → Qe s.t.
ς(a) ≤ aa∗ and a ≤ ς(a)a for every a ∈ Q. For every supported quantale Q, Qe coincides with ςQ and it is a locale with
ab = a ∧ b and trivial involution (cf. [12, Lemma II.3.3]). It is immediate to see that every supported quantale is an SG-
quantale. Therefore the item 1 of the following proposition shows that the fundamental property of supported quantales
mentioned above generalizes to SG-quantales. Even more importantly, the items 3 and 4 of the following proposition show
that the crucial connection between supported quantales and inverse monoids [12, Theorem II.3.17.1] generalizes to SG-
quantales3:

Proposition 2.2. For every SG-quantale Q,

1. the subquantale Qe is a frame: in particular, involution ∗ coincides with the identity, and composition · with ∧.
2. For every f , g ∈ F (Q) such that f ≤ g, f = g iff ff ∗

= gg∗.
3. I(Q) is an inverse monoid4 whose set of idempotents coincides with Qe, and whose natural order coincides with the order

inherited from Q.
4. The assignment Q → I(Q) extends to a functor I from the category of SG-quantales to the category of inverse monoids.

Proof. 1. Let d ≤ e. By SG, d ≤ dd∗d ≤ ed∗e = d∗, and likewise, d∗
≤ d, hence involution is identity on Qe. If c ≤ e, then

cc = c: indeed, cc ≤ ce = c , and by SG and the fact that involution is identity on Qe, c = cc∗c = (cc)c ≤ (cc)e = cc .
Let d1, d2 ≤ e. Then d1d2 ≤ d1e = d1 and d1d2 ≤ ed2 = d2, so d1d2 ≤ d1 ∧ d2. Conversely, if c ≤ d1 and c ≤ d2, then
c = cc ≤ d1d2, hence d1 ∧ d2 ≤ d1d2.

2. By SG and since f ≤ g implies f ∗
≤ g∗, g = gg∗g ≤ ff ∗g ≤ fg∗g ≤ fe = f .

3. By SG, ff ∗f = f and f ∗ff ∗
= f ∗ for every f ∈ I(Q). Hence, it is enough to show that the restriction of the product to the

idempotent elements of I(Q) is commutative. This follows from item 1 above and from the fact that for every f ∈ I(Q),
ff = f iff f ≤ e: Indeed, if f ≤ e, then by (1), ff = f ∧ f = f . Conversely, if ff = f , then f ∗

= (ff )∗ = f ∗f ∗, hence
ff ∗

= ff ∗f ∗
≤ ef ∗

= f ∗, and so f = ff ∗f ≤ f ∗f ≤ e. Since Qe ⊆ I(Q), this also shows that the set of idempotent
elements of I(Q) coincides with Qe. Hence, the natural order of the inverse monoid I(Q) is defined as follows: f ≤ g iff
f = gh for some h ∈ Qe, and therefore it coincides with the order inherited from Q.

4. Every strict homomorphism of unital involutive quantales maps partial units to partial units, hence it restricts to a
homomorphism of inverse monoids. �

2.1.1. A natural action
For every SG-quantaleQ, a natural action5 canbedefinedof the inverse semigroupI(Q)onQe: indeed, for every f ∈ I(Q)

and every h ∈ Qe let hf
= f ∗hf . This is indeed an action of I(Q) because of the identity (hf )g = hfg .

Lemma 2.3. For every h ∈ Qe and f ∈ I(Q),

1. hf = fhf and f ∗h = hf f ∗.
2. If h ≤ ff ∗ then h = fhf f ∗.

Proof. 1. Since f = ff ∗f and because the product is commutative in Qe, we get hf = h · (ff ∗)f = (ff ∗) ·hf = fhf . The second
equality goes analogously 2. Immediate. �

2.2. Groupoids

Definition 2.4. A set groupoid is a tuple G = (G0,G1,m, d, r, u, i), s.t.:

G1. G0 and G1 are sets;
G2. d, r : G1 → G0 and u : G0 → G1 s.t. d(u(p)) = p = r(u(p)) for every p ∈ G0;
G3. m : (x, y) → xy is an associativemap defined onG1×0G1 = {(x, y) | r(x) = d(y)} and s.t. d(xy) = d(x) and r(xy) = r(y);
G4. xu(r(x))) = x = u(d(x))x for every x ∈ G1.;

3 We thank Pedro Resende for pointing to our attention this interpretation of items 1 and 3 of Proposition 2.2.
4 An inverse semigroup (cf. [9]) is a semigroup such that for every element x there exists a unique inverse, i.e. an element y such that x = xyx and y = yxy.

Equivalently, an inverse semigroup is a semigroup such that every element has some inverse and any two idempotent elements commute. An inverse
monoid is an inverse semigroup with a multiplicative unit.
5 In [13] (discussion before Lemma 4.5) a similar action is defined on the whole of a stable quantale frame Q on Qe = ςQ by the assignment

(a, h) → ς(ah), which makes Q into a ςQ-module. So the action introduced here is a slight generalization of the action defined there.
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G5. the map i : G1 → G1 denoted as i(x) = x−1 is s.t. xx−1
= u(d(x)), x−1x = u(r(x)), d(x−1) = r(x) and r(x−1) = d(x) for

every x ∈ G1.

Example 2.5. 1. For any equivalence relation R ⊆ X×X , the tuple (X, R, ◦, π1, π2, ∆, ()−1) defines a groupoid. Of particular
interest are versions of this examples where X is a topological space: for instance, the space of Penrose tilings [1,6,7] is
such an example and its associated groupoid is étale.

2. For any group (G, ·, e, ()−1), the tuple ({e},G, ·, d, r, u, ()−1) is a groupoid, and the equalities G4 and G5 just restate the
group axioms.

3. The following example is a special but important case of the first one: every topological space X can be seen as a groupoid
by setting G1 = G0 = X and identity structure maps. In this case, G1 ×0 G1 = {(x, x) | x ∈ X} and xx = x for every x ∈ X .

4. A groupoid can be associated with any action6 G × X → X of a group G on a set X , by setting G1 = G × X , G0 = X ,
and for all g, h ∈ G and x, y ∈ X , d(g, x) = x, r(g, x) = gx, u(x) = (e, x) (e ∈ G being the identity element), and
(g, x) · (h, y) = (hg, x) whenever y = gx.

5. To a group action as above, another groupoid can be associated, which is given by the equivalence relation R ⊆ X × X
defined by xRy iff there exists some g ∈ G such that y = gx.

Some useful facts about groupoids are reported in the following:

Lemma 2.6. For all p ∈ G0, x, y ∈ G1,

1. u(p)−1
= u(p),

2. x = xx−1x and x−1
= x−1xx−1,

3. if xy−1, x−1y ∈ u[G0] then x = y,
4. if x = xyx and yxy = y, then y = x−1,
5. (x−1)−1

= x,
6. (xy)−1

= y−1x−1.

For every groupoid G, P (G1) can be given the structure of a unital involutive quantale (see also [12] and [13] 1.1 for a more
detailed discussion): indeed, the product and involution on G1 can be lifted to P (G1) as follows:

S · T = {x · y | x ∈ S, y ∈ T and r(x) = d(y)} S∗
= {x−1

| x ∈ S}.

Denoting by E the image of the structure map u : G0 → G1, we get:

Fact 2.7. ⟨P (G1),


, ·, ()∗, E⟩ is a strongly Gelfand quantale.

Proof. SG follows from Lemma 2.6.2. �

3. SP-groupoids and their quantales

In what follows, a groupoid is a set groupoid G = (G0,G1) s.t. G0 additionally carries a topology which makes it a sober
space.7 For every p ∈ G0, let p denote the topological closure of {p}. The topology on G0 will be denoted by Ω(G0). We do
not fix any a priori topology on G1.

Definition 3.1. A local bisection of a groupoid G is a map s : U → G1 such that d◦ s = idU and t = r ◦ s is a homeomorphism
t : U → V between open sets of G0. A bisection image8 of G is the image of some local bisection of G. Let S(G) be the
collection of the bisection images of G.

6 For any group G, a (left) action of G on a set X is a function · : G × X → X s.t. for all g, h ∈ G and x ∈ X , (gh)x = g(hx) and ex = x (e being the identity
of G). For any topological group G and any topological space X , a continuous action of G on X is a continuous map G × X → X which is an action of G as a
discrete group G on the underlying set of X .
7 For every topological space X , a closed set C is irreducible iff C ≠ ∅ and for all closed sets K1, K2 , C ⊆ K1 ∪ K2 implies that C ⊆ K1 or C ⊆ K2 . A sober

space is a topological space s.t. its irreducible closed sets are exactly the topological closures of singletons.
8 Images of local bisections are sometimes referred to as G-sets (cf. [11]). However, since ‘‘G-sets’’ usually refers to sets equipped with a group action, we

propose an alternative name here.
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Notice that since d ◦ s = idU , local bisections are completely determined by their corresponding bisection images. We will
denote bisection images by S, T , possibly indexed, and their corresponding local bisections will be s, t , possibly indexed.
Since G1 is not endowed with any topology, the local bisections according to the definition above are not required to be
continuous, as is the case e.g. in [10,13]. This design choice can be motivated as follows. First, there exists at least a topology
on G1 w.r.t. which the local bisections of Definition 3.1 are always continuous, and it is defined as follows: Let R ⊆ G0 × G0
be the equivalence relation induced by G1 and let π : G1 → R be the map defined as π(x) = (d(x), r(x)); the open
subsets of G1 are those of the form π−1

[A], for any open subset A ⊆ R in the product topology inherited from G0 × G0. This
topology is in general not even T0. However, even if S is defined as the family of local bisections that are continuous w.r.t.
some given topologies on G0 and on G1, if the resulting topological groupoid G is not étale, then the quantale Q(G, S) in
Definition 3.8 below will contain the topology of G1 as a subquantale but will not coincide with it, nor will this topology
be uniquely identifiable inside Q(G, S). So the topology on G1 is a piece of information that cannot be retained along the
back-and-forth correspondence defined in this paper. On the other hand, the absence of topology on G1 allows for a greater
generality: for instance, G1 can be taken as a set endowed with a measure (typically a Haar measure) and, correspondingly,
the local bisections can be taken asmeasurablemaps defined on open sets of G0. This could be interesting in view of possible
applications of this setting to the theory ofC∗-algebras. Also, not assuming any topology onG1 allows in principle for a greater
choice of selection bases (cf. Example 3.6).

Finally, the groupoids as we understand them in this paper can always be made into étale topological groupoids, by
endowing G1 with the topology generated by taking the intersections of bisection images as a subbase. However, their
associated inverse quantal frames turn out to be in general much larger than the quantales we associate with these (non-
topological) groupoids. The comparison with [13], which we will discuss more in detail in Section 7, is based on a special
case of this observation.

The statements in the following proposition are well known for other settings and readily follow from the definition of
bisection image:

Proposition 3.2. For every groupoid G,

1. S(G) ⊆ I(P (G1)).
2. (S(G), ·, ()∗, E) is an inverse monoid.

The following examples of groupoids and canonical families of local bisections are relevant for the theory developed in
this article.

Example 3.3. 1. Let X be a topological space and G be a group endowed with the discrete topology. Let G × X → X be
a continuous group action, and let us consider the groupoid (X,G × X) as in Example 2.5.4. A canonical family of local
bisections of this groupoid is given by those of the form sg : U → G × X defined by sg(x) = (g, x), for some g ∈ G. If
G1 = G × X is endowed with the product topology, then d : G1 = G × X → X is obviously étale.

2. Consider the groupoid G = (X, R), where R ⊆ X × X is the equivalence relation induced by a group action of G× X → X
as in Example 2.5.5. A distinguished subfamily of S(G) is the family of local bisections of the form tg : U → R given by
tg(x) = (x, gx), for some g ∈ G. If R is endowed with the quotient topology induced by the map π : G × X → R, defined
by (g, x) → (x, gx), then the first projection map d : R → X is not necessarily étale.

For example, let X = C and G = {z ∈ C | zn = 1} be the group of the nth roots of the unity, for n ≥ 2. Consider the action
of G on X given by the product (z, x) → zx. Its induced equivalence relation is R = {(x, y) | y = zx, z ∈ G}. Any open
neighborhood W of (0, 0) ∈ R is of the form W =


z∈G{(x, zx) | x ∈ U, z ∈ G}, for some open neighborhood U of 0 ∈ C.

Indeed,W is open iff π−1(W ) is open in G× X . Since (z, 0) ∈ π−1(W ) for all z ∈ G, π−1(W ) must contain some open set of
the form {z} × U for any z ∈ G. If n > 1, then, for any such open set W ⊆ R, the restriction d : W → d(W ) is not injective,
hence d : R → X is not a local homeomorphism, i.e. it is not étale.

Definition 3.4. A groupoidG = (G0,G1) as above has the selection property, or is an SP-groupoid, if G1 is covered by bisection
images.

Given a groupoid G, we can associate a unital involutive quantale with every inverse monoid S ⊆ P (G1): namely, the
quantale defined as the sub-join-semilattice of ⟨P (G1),


⟩ generated by S. However, in our non-étale setting, we may

not be able to reconstruct back the inverse semigroup from the quantale. For this, we need the following new, stronger
definition:

Definition 3.5. A selection base for an SP-groupoid G is a family S ⊆ S(G) verifying the following conditions:

SB1. S is a sub-inverse monoid of S(G);
SB2. u[U] ∈ S for every open set U ∈ Ω(G0);
SB3. if {Si}i∈I ⊆ S and Si · S∗

j ⊆ E and S∗

i · Sj ⊆ E for every i, j ∈ I , then


i∈I Si ∈ S.
SB4. For every S, T ∈ S, {p ∈ G0 | s(p) = t(p)} is the union of locally closed9 subsets of G0.

9 For every topological space X , a subset Y ⊆ X is locally closed if Y = U ∩ C for some open set U and some closed set C .
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SB5. S covers G1.

Selection bases are not in general topological bases, cf. Section 8.2 for an example.

Example 3.6. 1. A continuous group actionG×X → X as in Example 2.5.4 gives rise to a canonical selection base consisting
of the bisection images corresponding to local bisections sg : U → G1 defined by the assignment x → g · x for any g ∈ G.

2. If G0 is a T1 space, then the family S(G) of the local bisections is the greatest selection base. Notice that in this case the
condition SB5 is trivially verified, since any subset of G0 is the union of its singleton subsets, which are all closed.

3. Let X be a T1-space with a continuous group action as above, and let R be the equivalence relation induced by the group
action, as in Example 3.3.2. Then the groupoid G = (X, R) has the following, in general distinct, selection bases: the
family S(G), and the one consisting of the local bisections of the form x → (x, gx) = (x, g(x)x) for some constant
map g(x) = g ∈ G. The latter family is in general strictly contained in the former: indeed, local bisections can be
given by assignments of the form x → (x, g(x)x), for some non-constant g(x) s.t. the assignment x → g(x)x defines a
homeomorphism.

Remark 3.7. The pairs (G, S) can be regarded as categories on the topology ofG0, in the followingway. LetSG be the category
having the elements of Ω(G0) as objects, and such that for every U, V ∈ Ω(G0), HomSG(U, V ) is the set of those s ∈ S
(identified with their associated local bisections) such that r[s[U]] ⊆ V . This category includes the frame Ω(G0) as a sub-
category, and axiom SB3 says that the functor HomSG(−,U) is a sheaf on Ω(G0).
This observation paves the way to a generalization of the present results to a setting of quantales associated with sheaves
on locales, which will be developed in [8]. Axiom SB4, which is needed in the present setting (see proof of Proposition 5.3),
will be always true in the localic setting. Indeed the subspace where two elements of S ‘‘intersect’’ each other can still be
defined, but any subspace of a locale is a join of locally closed subspaces, (cf. [4], chapter IX pp. 504, 505 for a discussion on
the canonical subspace associated with a given local operator).

3.1. Groupoid quantales

Definition 3.8. For every SP-groupoid G and every selection base S for G, the groupoid quantale (GQ for short) Q(G, S)
associated with the pair (G, S) is the sub-


-semilattice of P (G1) generated by S.

In particular, the elements of Q(G, S) are arbitrary joins of elements of S.
Condition SB3 crucially guarantees that S can be traced back from Q(G, S):

Proposition 3.9. For every SP-groupoid G,

1. S = I(Q(G, S)).
2. Q(G, S)e = {u[U] | U ∈ Ω(G0)}.
3. P ∈ Q(G, S)e is prime iff P = u[G0 \ p] for some p ∈ G0.

Proof. 1. S ⊆ I(Q(S, G)) immediately follows from S ⊆ S(G) ⊆ I(P (G1)) (cf. Proposition 3.2.1). Let T ∈ I(Q(S, G)), so
T =


{Si}i∈I for some collection {Si}i∈I ⊆ S. Then for every i, j ∈ I , Si · S∗

j ⊆ T · T ∗
⊆ E and S∗

i · Sj ⊆ T ∗
· T ⊆ E, hence

by SB3, T =


i∈I Si ∈ S.
2. By SB2, if U ∈ Ω(G0), then u[U] ∈ S and clearly u[U] ⊆ u[G0] so u[U] ∈ Q(G, S)e. Conversely, let H ∈ Q(G, S)e; then

H ⊆ u[G0] and H =


i∈I Si for some {Si | i ∈ I} ⊆ S. Let si : Ui → G1 be the corresponding local bisections. Then
Si ⊆ u[G0] implies that si(p) = u(p) for every p ∈ Ui, therefore H = u[U] for U =


{Ui | i ∈ I}.

3. The prime elements of Ω(G0) are exactly the complements of irreducible closed sets, and by assumption G0 is sober. �

Example 3.10. 1. Let G = (X, X × G) be as in Example 3.3.1, and let S be the selection base associated with all local
bisections (the locally constant maps U → G s.t. U ⊆ X is an open set). Q(G, S) coincides with the product topology on
G1 = G × X and the resulting topological groupoid is étale.

2. On the other hand, let R ⊆ X×X be as in Example 3.3.2, and let S be the selection base associatedwith all local bisections.
The observations in 3.3.2 imply, by the results in [13] and the discussion in Section 7, that the groupoid quantale Q(R, S)
is not an inverse quantal frame.

4. SGF-quantales and their set groupoids

Definition 4.1. An SGF-quantale is a unital involutive quantale Q satisfying the following extra axioms:

SGF1. Q is


-generated by I(Q).
SGF2. f = ff ∗f for every f ∈ I(Q).
SGF3. For any f , g ∈ I(Q) and h ∈ Qe if f ≤ h · 1 ∨ g then f ≤ h · f ∨ g .

Clearly, the first two axioms imply that every SGF-quantale is SG. Let usmotivate the axioms by showing that every groupoid
quantale is SGF:

Proposition 4.2. For every SP-groupoid G and every selection base S of G, Q(G, S) is an SGF-quantale.
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Proof. SGF1 readily follows from S ⊆ I(Q(S, G)). SGF2 follows from Fact 2.7. For SGF3, let F ,G ∈ I(Q(G, S)) and
H ∈ Q(G, S)e. Proposition 3.9 implies that F ,G are bisection images: let them correspond respectively to the local bisections
f and g . From the same proposition it follows that H can be identified, via the structure map u, with some open subset
h ∈ Ω(G0). Assume that F ⊆ H · 1 ∪ G. This implies that for every x ∈ dom(f ), either x ∈ h, hence f (x) ∈ H · F , or
x ∈ dom(g), which implies, since d ◦ f = id = d ◦ g , that f (x) = g(x). �

The remainder of this section is aimed at constructing the set groupoid associated with any SGF-quantale. This construction
is based on the incidence relation, whose definition (Definition 4.5) and properties are given in the following subsection.

4.1. The incidence relation on SGF-quantales

Let Q be an SGF-quantale. For every f ∈ I(Q) let d(f ) = ff ∗ and r(f ) = f ∗f . The following lemma lists some
straightforward but useful formal properties of these abbreviations:

Lemma 4.3. Let Q be an SGF-quantale, f , f ′, g ∈ I(Q) and h, k ∈ Qe. Then:

1. d(hf ) = hd(f ) and r(fk) = r(f )k.
2. If f ≤ g, then d(f ) ≤ d(g) and r(f ) ≤ r(g).
3. d(ff ′) = d(f ′)f

∗

and r(ff ′) = r(f )f
′

.
4. r(f ) = d(f )f and d(f ) = r(f )f

∗

.

Let Pe be the set of the prime elements of Qe (cf. [2]) i.e. those non-top elements p ∈ Qe s.t. for every h, k ∈ Qe, if h∧ k ≤ p,
then h ≤ p or k ≤ p. Let

I = {(p, f ) ∈ Pe × I(Q) | p ∈ Pe, d(f ) ≰ p}.

For every p ∈ Pe, p ≤ e and p ≠ e imply that d(e) = e � p, hence (p, e) ∈ I. Moreover, if f ≤ g then d(f ) ≤ d(g) so
(p, f ) ∈ I implies that (p, g) ∈ I. For every h ∈ Qe, Qh = {k ∈ Q | k ≤ h} is a subframe of Qe.

Lemma 4.4. For every f ∈ I(Q),

1. the assignment h → hf
= f ∗hf defines a frame isomorphism ()f : Qd(f ) → Qr(f ), the inverse of which is defined by

k → kf
∗

= fkf ∗.
2. The prime elements of Qd(f ) correspond bijectively to the prime elements of Qr(f ) via ()f .

Definition 4.5. The incidence relation ∼ on I is defined by setting

(p, f ) ∼ (q, g) iff p = q and h ≰ p and hf ≤ pf ∨ g for some h ≤ d(f ) ∧ d(g).

We will also alternatively write f ∼p g (read: f and g are incident in p) in place of (p, f ) ∼ (q, g).

Remark. Let us interpret the incidence relation if Q = Q(G, S) for some SP-groupoid G and some selection base S: in this
case, by Proposition 3.9, Qe can be identified via u with Ω(G0), Pe can be identified with the collection {pc | p ∈ G0} of
the complements of the closures p of points p ∈ G0 and I(Q) = S. For all F ,G ∈ I(Q), let f , g be their associated local
bisections: then F ∼pc G iff there exists an open subsetH of G0 s.t.H∩p ≠ ∅ (i.e., since p is dense in p, p ∈ H), s.t. f and g are
both defined over H and coincide over H ∩p. Moreover, if G0 is T1, then Pe corresponds to the collection of the complements
of points of G0 and F ∼{p}c G iff f (p) = g(p).
Notice also that the relation f ∼p g may be defined by saying that there exist some f ′

≤ f and g ′
≤ g s.t. d(f ′) = d(g ′) ≰ p

and f ′
≤ pf ′

∨ g ′.

Proposition 4.6. 1. The relation ∼ is an equivalence relation.
2. If f ∼p g and g ≤ g ′ then f ∼p g ′.

Proof. 1. Reflexivity is obvious. Symmetry: hf ≤ pf ∨ g implies h = h ∧ d(f ) = hd(f ) ≤ pd(f ) ∨ gf ∗ hence h ≤ p ∨ fg∗

and so hg ≤ pg ∨ fg∗g ≤ pg ∨ f . Transitivity: If h1f ≤ pf ∨ g and h2g ≤ pg ∨ l then setting h = h2h1 we get h ≰ p,
because p is prime, h ≤ d(f ) ∧ d(l) and

hf = h2h1f ≤ h2pf ∨ h2g ≤ h2pf ∨ pg ∨ l ≤ p(f ∨ g) ∨ l ≤ p · 1 ∨ l.

Hence, by SGF3, hf ≤ phf ∨ l ≤ pf ∨ l.
2. Straightforward. �

Lemma 4.7. For every SGF-quantale Q, let (p, f ) ∈ I. Then:

1. there exists a unique q ∈ Pe, denoted q = f [p], s.t. r(f ) ≰ q and pf = fq.
2. For every h ∈ Qe, if h ≰ p, then hf � f [p].
3. For every h ∈ Qe, if h ≰ p, then d(hf ) ≰ p and r(hf ) � f [p].
4. If f ∼p g then f [p] = g[p].
5. (f [p], f ∗) ∈ I and f ∗

[f [p]] = p.
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6. If (f [p], g) ∈ I, then (p, fg) ∈ I and fg[p] = g[f [p]].
7. ff ∗

∼p e and f ∗f ∼f [p] e.

Proof. 1. From the basic theory of locales, we recall that for every 0 ≠ h ∈ Qe p′ is a prime element of Qh iff p′
= hp for

a unique p ∈ Pe s.t. h � p. By Lemma 4.4.2, p′f is a prime of Qr(f ), hence p′f
= r(f )q for a unique q ∈ Pe s.t. r(f ) � q.

Therefore, by Lemma 2.3.1, pf = fpf = f p′f
= fr(f )q = fq.

2. Let q = f [p]. Then pf = fq, so hf
≤ q implies, by Lemma 2.3.1, that hf = fhf

≤ fq = pf , hence hd(f ) ≤ pd(f ) ≤ p, and
since p is prime and d(f ) � p, then h ≤ p.

3. Recall that d(hf ) = hd(f ). Since p is prime and d(f ) � p, then h ≰ p implies that d(hf ) = hd(f ) ≰ p. Let k = hf

(so, by Lemma 2.3.1, hf = fk); by item 2 we get that k � f [p], and since f [p] is prime and r(f ) � f [p], then
r(hf ) = r(fk) = r(f )k ≰ f [p].

4. Assume that f ∼p g . Then there exists some h ∈ Qe s.t. h � p, h ≤ d(f ) ∧ d(g) and hg ≤ pg ∨ f . Let q = f [p] and
q′

= g[p], so pf = fq and pg = gq′, and let us show that q = q′. Our assumption implies that there exists some h ∈ Qe
s.t. h � p and hgq ≤ pgq∨ fq = pgq∨ pf ≤ p · 1∨ pgq, hence by SGF3, hgq ≤ p · hgq∨ pgq ≤ pg = gq′. This implies that
r(hg)q = r(hgq) ≤ r(gq′) = r(g)q′

≤ q′. Since q′
= g[p] and h � p, by item 3 we get that r(hg) � q′. Hence, since q′ is

prime, r(hg)q ≤ q′ implies that q ≤ q′. The proof that q′
≤ q is obtained symmetrically, from g ∼p f .

5. By item 2, d(f ) � p implies that d(f ∗) = r(f ) = d(f )f � f [p], which proves that (f [p], f ∗) ∈ I. Let q = f [p]. In order to
show that f ∗

[q] = p, by the uniqueness of f ∗
[q] it is enough to show that qf ∗

= f ∗p, which readily follows from pf = fq.
6. Let q = f [p]. Then by item 5, p = f ∗

[q], hence d(g) � q implies by item 2 that d(fg) = d(g)f
∗

� p, which proves that
(p, fg) ∈ I. Let q′

= g[q], so qg = gq′; to finish the proof it is enough to show that pfg = fgq′: since pf = fq, then
pfg = fqg = fgq′.

7. By assumption d(f ) � p, so take h = d(f ): clearly h ≤ d(ff ∗) ∧ d(e) and hff ∗
≤ e = pff ∗

∨ e. The second relation follows
from item 5 and the first relation in this item. �

Proposition 4.8. For every SGF-quantale Q, let f , f ′g, g ′
∈ I(Q) and p ∈ Pe.

1. If f ∼p g and f ′
∼f [p] g ′ then ff ′

∼p gg ′.
2. f ∼p g iff f ∗

∼f [p] g∗.

Proof. 1. Let q = f [p] = g[p] and q′
= f ′

[q] = g ′
[q]. Hence pf = fq, pg = gq, qf ′

= f ′q′ and qg ′
= g ′q′. By assumptions

there exist some h, h′
∈ Qe s.t. h � p, h′ � q, h ≤ d(f ) ∧ d(g), h′

≤ d(f ′) ∧ d(g ′), hf ≤ pf ∨ g and h′f ′
≤ qf ′

∨ g ′. By
Lemma 4.7.5, p = f ∗

[q] = g∗
[q], hence h′ � q implies, by Lemma 4.7.2, that h′f ∗ � p and h′g∗

� p, and so hh′f ∗h′g∗

� p.
Let k = hh′f ∗h′g∗

: to finish the proof it is enough to show that k ≤ d(ff ′)∧ d(gg ′) and kff ′
≤ pff ′

∨ gg ′. h′
≤ d(f ′) implies

that k ≤ h′f ∗
≤ d(f ′)f

∗

= d(ff ′), and analogously k ≤ d(gg ′), from which the first inequality follows. For the second
inequality,

kff ′
≤ hh′f ∗ ff ′

= hfh′f ′
≤ pfqf ′

∨ pfg ′
∨ gqf ′

∨ gg ′.

Since gqf ′
= pgf ′, then kff ′

≤ p(fqf ′
∨ fg ′

∨ gf ′) ∨ gg ′
≤ p · 1 ∨ gg ′. By SGF3, we get that kff ′

≤ pkff ′
∨ gg ′

≤ pff ′
∨ gg ′.

2. Since p = f ∗
[f [p]] it is enough to show the left-to-right direction. So let q = f [p]. By Lemma 4.7.5, qf ∗

= f ∗p.
By assumption, there exists some h ∈ Qe s.t. h � p, h ≤ d(f ) ∧ d(g) and hf ≤ pf ∨ g . Let k = hf : then, by
Lemma 4.7.2, k � q; moreover, h ≤ d(f ) implies that hf

≤ d(f )f = r(f ) = d(f ∗) and likewise k ≤ d(g∗). Finally,
kf ∗

= f ∗h ≤ f ∗p ∨ g∗
= qf ∗

∨ g∗. �

4.2. The set groupoid of an SGF-quantale

Definition 4.9. For every SGF-quantale Q, its associated set groupoid G(Q) is defined as follows: G0 = Pe and G1 = I/ ∼,
moreover, denoting the elements of G1 by [p, f ], the structure maps of G(Q) are given by the following assignments:

d([p, f ]) = p, r([p, f ]) = f [p], u(p) = [p, e],
[p, f ][q, g] = [p, fg] only if q = f [p]
[p, f ]−1

= [f [p], f ∗
].

Lemma 4.10. The structure maps above are indeed well defined.

Proof. If (p, f ) ∼ (p′f ′) then p = p′, so d is well defined. Moreover, by Lemma 4.7.4, f [p] = f ′
[p′

], so r is well defined.
Also by Lemma 4.7.4, it is straightforward to see that if (p, f ) ∼ (p′, f ′) and (q, g) ∼ (q′, g ′) then [p, f ][q, g] is defined iff
q = f [p] iff q′

= f [p′
] iff [p′, f ′

][q′, g ′
] is defined; Proposition 4.8.1 exactly says that the product is well defined. Likewise,

Proposition 4.8.2 exactly says that the inverse is well defined. �

Proposition 4.11. For every SGF-quantale Q, G(Q) is a set groupoid.

Proof. G2: Recall that for every p ∈ Pe, (p, e) ∈ I; then e[p] = p hence d(u(p)) = d([p, e]) = p = e[p] = r([p, e]) =

r(u(p)).
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G3: The associativity of the product readily follows from thedefinitions using Lemma4.7.6. If q = f [p], then, by Lemma4.7.6,
r([p, f ][q, g]) = r([p, fg]) = fg[p] = g[f [p]] = g[q] = r([q, g]).

G4: immediate from the definitions.
G5: d([p, f ]−1) = d([f [p], f ∗

]) = f [p] = r([p, f ]); by Lemma 4.7.5, r([p, f ]−1) = r([f [p], f ∗
]) = f ∗

[f [p]] = p =

d([p, f ]). By Lemma 4.7.7, [p, f ][p, f ]−1
= [p, f ][f [p], f ∗

] = [p, ff ∗
] = [p, e] = u(p) = u(d([p, f ])). Likewise,

p = f ∗
[f [p]] implies that the product [p, f ]−1

[p, f ] is well defined and by 4.7.7 [p, f ]−1
[p, f ] = [f [p], f ∗f ] = [f [p], e] =

u(r([p, f ])). �

5. Spatial SGF-quantales and SP-groupoids

The last ingredient needed in G(Q) is a topology on G0. For this, we need a condition on Q which guarantees Qe to be a
spatial frame. The notion of spatial SGF-quantales that we are going to introduce in this section generalizes spatial locales,
i.e. the locales that are meet-generated by their prime elements.

Definition 5.1. For every SGF-quantale Q and every [p, f ] ∈ I/ ∼, let

I[p,f ] = {g ∈ I(Q) | d(g) ≤ p or (p, g) ≁ (p, f )} and I[p,f ] =


I[p,f ].

Q is spatial if:

SPQ1. for every (p, f ) ∈ I, f � I[p,f ].
SPQ2. For every a ∈ Q, a =


{I[p,f ] | a ≤ I[p,f ]}.

It immediately follows from the definition that p ∈ I[p,f ], hence p ≤ I[p,f ] for every (p, f ) ∈ I. It is also immediate to see
that (p, f ) ∼ (p′, f ′) implies that I[p,f ] = I[p′,f ′], and that if g � I[p,f ] then g ∼p f .

Lemma 5.2. For every SGF-quantale Q s.t. SPQ1 holds and every g ∈ I(Q), g ≤ I[p,f ] iff g ∈ I[p,f ].

Proof. The right-to-left direction is clear. Conversely, if g ≤ I[p,f ] and g ∼p f , then I[p,f ] = I[p,g] so g ≤ I[p,g], i.e. g∧ I[p,g] = g ,
contradicting SPQ1. �

An immediate consequence of this lemma is that if g ∼p f then g � I[p,f ] (so indeed these two conditions are equivalent).
Let us verify that the axioms for spatial quantales are sound:

Proposition 5.3. For every SP-groupoid G and every selection base S of G, the SGF-quantale Q(G, S) is spatial.

Proof. Recall that I(Q(G, S)) = S and the prime elements of Q(G, S)e are exactly those P = u[G0 \ p] for p ∈ G0 (cf.
Proposition 3.9). For every F ∈ S, let f : Uf → G1 be its corresponding local bisection; in particular for every H ∈ Q(G, S)e,
its corresponding local bisection is the restriction of the structuremap u to some open subset of G0 that we denoteH as well.
Then HF is the image of f|H , wherever defined. Moreover, I[P,F ] (resp. I[P,F ]) is (the union of) the collection of all the G ∈ S
corresponding to local bisections g : Ug → G1 s.t. either Ug ∩ p = ∅ (i.e. p /∈ Ug ) or HG ⊈ PG ∪ F for every open set H s.t.
p ∈ H ⊆ Uf ∩ Ug .

SPQ1: Let P = u[G0 \ p]; it is enough to show that f (p) ∉ I[P,F ]. Suppose that f (p) ∈ I[P,F ]; then there exists some g such
that G ≁P F and g(p) = f (p). By SB4, p ∈ H ∩ C ⊆ {q ∈ G0 | f (q) = g(q)} for some H open and C closed subsets of
G0. Then H ∩ p ⊆ H ∩ C ⊆ {q ∈ G0 | f (q) = g(q)}. This means that g|H coincides with f outside of P . In other words,
HG ⊆ PG ∪ F , contradicting the hypothesis that G ≁P F .

SPQ2: Let A ∈ Q(G, S) and let G ∈ S s.t. G ⊈ A. Then g(p) ∉ A for some p ∈ Ug . Let P = u[G0 \ p], and let us show that
if F ∈ S and F ⊆ A, then F ∈ I[P,G]: indeed, if F ⊆ A and p ∈ Uf then f (p) ≠ G(p), since by assumption g(p) ∉ A,
therefore F ≁P G. By SGF1, this shows that A ⊆ I[P,G]. Since by Lemma 5.2,G ⊈ I[P,G], thenG ⊈


{I[Q ,G′] | A ≤ I[Q ,G′]},

which concludes the proof of the non-trivial inclusion. �

Lemma 5.4. If Q is spatial then for every g ∈ I(Q),

g =


{I[p,f ] | d(g) ≤ p or (p, g) ≁ (p, f )}.

Proof. Let g ∈ I(Q). By SPQ2 and Lemma 5.2, g =


{I[p,f ] | g ≤ I[p,f ]} =


{I[p,f ] | g ∈ I[p,f ]} =


{I[p,f ] | d(g) ≤

p or (p, g) ≁ (p, f )}. �

Proposition 5.5. If Q is spatial then Qe is a spatial frame.

Proof. Let h ∈ Qe and let us show that h =


{p ∈ Pe | h ≤ p}. Since Q is spatial, then by Lemma 5.4 h =


{I[q,g] | h ≤

q or (q, g) ≁ (q, h)}.
Claim. If h � q, then for every g ∈ I(Q) s.t. (q, g) ∈ I, if (q, g) ≁ (q, h) then (q, g) ≁ (q, e).
From the claim it follows that e ≤ I[q,g] for every (q, g) ∈ I s.t. h � q and (q, g) ≁ (q, h). Hence,

h = h ∧ e =


{I[q,g] ∧ e | h ≤ q or (q, g) ≁ (q, h)} =


{I[q,g] ∧ e | h ≤ q}.
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Since for every (q, g) ∈ I s.t. h ≤ q there exists some p = q s.t. h ≤ p and p ≤ I[q,g], we can conclude that

h ≤


{p ∈ Pe | h ≤ p} ≤


{I[q,g] ∧ e | h ≤ q} = h.

To finish the proof, we need to prove the claim: if h � q and g ∼q e then there exists some k ∈ Qe s.t. k � q,
k ≤ d(g) ∧ e = d(g) and kg ≤ qg ∨ e. Let h′

= hk: then h′ � q, h′
≤ d(g) ∧ h and h′g ≤ hqg ∨ h ≤ qg ∨ h; this

shows that g ∼q h. �

Proposition 5.6. For every spatial SGF-quantale Q,

1. every element f ∈ I(Q) corresponds to a local bisection of G(Q).
2. G(Q) is an SP-groupoid.

Proof. 1. By Proposition 5.5, every h ∈ Qe can be identified with the open set Uh = {p′
∈ Pe | h � p′

} (cf. [2]). Then for
every f ∈ I(Q), the map sf : Ud(f ) → I/ ∼ defined by sf (p′) = [p′, f ] is a local bisection of G(Q): indeed, d ◦ sf = id and
it readily follows from Lemmas 4.7.2 and 4.7.5 that r ◦ sf is open and its inverse is r ◦ sf ∗ which is also open.

2. If [p, f ] ∈ I, then [p, f ] belongs to the bisection image corresponding to the local bisection sf defined above. �

6. Spatial SGF-quantales are GQs

6.1. The canonical map

Definition 6.1. For every SGF-quantale Q, α : Q → P (I/ ∼) is defined by

α(a) = {[p, f ] | a ≰ I[p,f ]}.

Theorem 6.2. For every SGF-quantale Q,

1. α(


i ai) =


i α(ai) for any family {ai|i ∈ I} of elements of Q.
2. if Q is spatial, then α is an embedding.
3. α(ab) = α(a)α(b) for any a, b ∈ Q.
4. α(a∗) = α(a)∗ for any a ∈ Q.
5. α(1) = G1 and α(e) = u(G0).

So α is a strong and strictly unital morphism of unital involutive quantales.

Proof. 1. [p, f ] ∈


i∈I α(ai) iff ai � I[p,f ] for some i ∈ I iff


i∈I ai � I[p,f ] iff [p, f ] ∈ α(


i∈I ai).
2. If a � b, by SGF1 and SPQ2, f � I[q,g] for some f ∈ I(Q) s.t. f ≤ a and some (q, g) ∈ I s.t. b ≤ I[q,g]. Then a � I[q,g], i.e.

[q, g] ∈ α(a), and [q, g] /∈ α(b).
3. If a ≰ I[p,f ] and b ≰ I[q,g] then by SGF1, g1 ≰ I[p,f ] and g2 ≰ I[q,g] for some g1, g2 ∈ I(Q) s.t. g1 ≤ a and g2 ≤ b.

Hence g1 ∼p f and g2 ∼q g and so if q = f [p] then by Proposition 4.8.1, g1g2 ∼p fg which implies by Lemma 5.2 that
g1g2 � I[p,fg], i.e. [p, fg] ∈ α(g1g2) ⊆ α(ab). Conversely, if ab /∈ I[p,f ], then by SGF1 g1g2 � I[p,f ] for some g1, g2 ∈ I(Q)
s.t. g1 ≤ a and g2 ≤ b. Hence g1g2 ∼p f . In particular, d(g1g2) � p, which implies, since d(g1g2) ≤ d(g1), that d(g1) � p.
So by Lemma 4.7.1, let q = f [p]: then pg1 = g1q. Let us show that d(g2) � q: if not, then qd(g2) = d(g2) and so
pg1g2 = g1qg2 = g1qd(g2)g2 = g1d(g2)g2 = g1g2, hence d(g1g2) ≤ p. From d(g1) � p and d(g2) � q we get
[p, g1] ∈ α(g1) ⊆ α(a) and [q, g2] ∈ α(b).

4. If a∗
≰ I[p,f ] then by SGF1, g∗

≰ I[p,f ] for some g ∈ I(Q) s.t. g ≤ a. Hence g∗
∼p f , and so, by Proposition 4.8.2, g ∼f [p] f ∗

which implies by Lemma 5.2 that g � I[f [p],f ∗], i.e. [p, f ]−1
∈ α(g) ⊆ α(a). Hence, [p, f ] = ([p, f ]−1)−1

∈ α(a)∗.
Conversely, if [p, f ] ∈ α(a)∗ then a � I[f [p],f ∗], then by SGF1 g � I[f [p],f ∗] for some g ∈ I(Q) s.t. g ≤ a. Hence g∗

≤ a∗ and
g ∼f [p] f ∗, and so, by Proposition 4.8.2, g∗

∼p f which implies by Lemma 5.2 that g∗ � I[p,f ], i.e. [p, f ] ∈ α(g∗) ⊆ α(a∗).
5. Since f � I[p,f ] for every (p, f ) ∈ I, then α(1) = {[p, f ] |


I(Q) � I[p,f ]} = G1. For the second equality, u(G0) ⊆ α(e)

follows from e � I[p,e] for every p. The converse inclusion follows from the fact that e � I[p,f ] by definition implies that
[p, f ] = [p, e]. �

Proposition 6.3. For every spatial SGF-quantale Q, α[I(Q)] is a selection base of G(Q).

Proof. We already showed (see proof of Proposition 5.6) that for every f ∈ I(Q), sf : Ud(f ) → P (I/ ∼) defined by
sf (p′) = [p′, f ] is a local bisection of G(Q). Let us show that sf [Ud(f )] = α(f ): [p, g] ∈ sf [Ud(f )] iff [p, g] = sf (p′) = [p′, f ] for
some p′

∈ Ud(f ) iff g ∼p f iff f � I[p,g] iff [p, g] ∈ α(f ). This shows that α[I(Q)] is a collection of bisection images of G(Q).

SB2: In particular, for every h ∈ Qe, sh[Ud(h)] = α(h). Moreover, notice that h � p implies that [p, h] = [p, e], from which
it easily follows that sh[Ud(h)] = u[Uh].

SB1: it readily follows from Theorem 6.2 and Proposition 2.2.3.
SB3: it readily follows from Theorem 6.2.3 and .4, and the fact that if {fi | i ∈ I} ⊆ I(Q) s.t. fif ∗

j ≤ e and f ∗

i fj ≤ e then
i∈I fi ∈ I(Q).
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SB4: Let f , g ∈ I(Q) and let p ∈ Pe be s.t. sf (p) = sg(p). So [p, f ] = [p, g], i.e. hg ≤ pg ∨ f for some h ∈ Qe s.t. h � p. Then,
for every q ∈ Pe s.t. p ≤ q and h � q, we get that hg ≤ pg ∨ f ≤ qg ∨ f , i.e. sf (q) = [q, f ] = [q, g] = sg(q). Since h can
be identified with an open set of G0 and p can be identified with the topological closure p of its corresponding point
of G0 (which we also denote by p), this is enough to show that {p ∈ G0 | sf (p) = sg(p)} is the union of locally closed
subsets of G0.

SB5: Lemma 5.2 readily implies that for every (p, f ) ∈ I, [p, f ] ∈ α(f ). �

6.2. The correspondence

Proposition 6.4. For every spatial SGF-quantale,

Q(G(Q), α[I(Q)]) ∼= Q.

For every SP-groupoid G and every selection base S,

G(Q(G, S)) ∼= G.

Proof. Let Q be a spatial SGF-quantale. Then by Proposition 5.6, G(Q) is an SP-groupoid, and by Proposition 6.3, α[I(Q)] is
a selection base of G(Q). Then by definition Q(G(Q), α[I(Q)]) is the sub


-semilattice of P (G1) = P (I/ ∼) generated by

α[I(Q)]. Theorem 6.1 guarantees that Q is isomorphic as a unital involutive quantale to its α-image α[Q] and hence that
α[Q] is


-generated by α[I(Q)]. Hence by definition Q(G(Q), α[I(Q)]) = α[Q].

Let G be an SP-groupoid and S be a selection base for G. Then by Propositions 4.2 and 5.3 Q(G, S) is a spatial SGF-quantale.
Moreover, by Proposition 3.9, I(Q(G, S)) = S, Q(G, S))e can be identified with the topology Ω(G0), and since G0 is sober,
the prime elements ofQ(G, S))e bijectively correspond to the points of G0 via the assignment p → u[G0 \p]. Since the prime
elements of Q(G, S))e form the space of units of G(Q(G, S)), then the assignment defines the map ϕ0. Since S is a selection
base, for every x ∈ G1 x = g(p) for some local bisection g : Ug → G1 s.t. its corresponding G ∈ S and some p ∈ Ug . Hence
(P,G) ∈ I. Clearly, [P,G] = [P ′,G′

] for any local bisection g ′
: Ug → G1 s.t. x = g ′(p′) for some p′

∈ Ug ′ , so the assignment
x → [P,G] defines a map ϕ1 : G1 → I/ ∼. The map ϕ1 is bijective: indeed, if (P,G) ∈ I, then p ∈ Ug , so [P,G] = ϕ1(g(p));
moreover, if ϕ1(x) = [P, F ] = ϕ1(y), then x = f (p) = y. The fact that (ϕ0, ϕ1) is indeed a morphism of groupoids is a
standard if tedious verification. �

7. Comparison with the étale localic setting

The aim of this section is showing informally that our bijective correspondence extends, in the spatial setting, the non-
functorial duality defined in [13] between localic étale groupoids and inverse quantal frames. In [13] inverse quantal frames
are defined as unital involutive quantalesQ which are also frames for the lattice operations, are generated by I(Q) and have
a support, i.e. a completely join-preserving map ς : Q → Qe s.t. ς(a) ≤ aa∗ and a ≤ ς(a)a for every a ∈ Q.10 Any such
quantale is shown to be isomorphic to one of the form O(G), for some localic étale groupoid11 G = (G1,G0). In particular,
for any such G, its associated quantale is based on the frame O(G), on which the noncommutative product is defined by
using the product of G in the natural way. When G is spatial (i.e. isomorphic to a topological groupoid), the back-and-forth
correspondence in [13] can be equivalently described in the following way. Recall that a G-set of a topological groupoid is a
subset S ⊆ G1 such that the maps d : S → G0 and r : S → G0 are both homeomorphisms onto open subsets of G0. A G-set12
S is therefore the image of a continuous local bisection s : U → G1, for some open setU of G0. Then the inverse quantal frame
associated with any étale topological groupoid (G1,G0) can be equivalently described as the sub-


-semilattice of P (G1)

generated by the G-sets of G1. Conversely, if Q is an inverse quantal frame corresponding to some spatial étale groupoid
(G1,G0), then G0 can be equivalently recovered as the topological space dual to the locale Qe, and G1 as the set of germs of
elements of I(Q), i.e. as the set of the equivalence classes of the relation ∼ on I(Q) defined as f ∼ g if and only if hf = hg
on some neighborhood h of a point p ∈ G0.

To show that the spatial version of the correspondence in [13] is a special case of our construction, wemake the following
remarks. As we remarked early on, the notion of local bisection introduced in Definition 3.1 does not refer to any topology
on G1. However, if for some selection base S (Definition 3.5), the quantale Q(G, S) as in Definition 3.8 happens to be an
inverse quantal frame, then this quantale defines a topology on G1. To continue the discussion, the following lemma will be
useful:

Lemma 7.1. If Q is an inverse quantal frame, then for all f , g ∈ I(Q) and every p ∈ Pe, if f ∼p g then there exists some
k ≤ d(f )d(g) such that k ≰ p and kf = kg.

10 It readily follows that for every f ∈ I(Q), ς(f ) = f ∗f , hence f = ff ∗f .
11 A localic groupoid is a groupoid in the category of locales. Such a groupoid is étale if d is a partial homeomorphism.
12 For the sake of highlighting the difference between the bisection images as defined in Definition 3.1 and those of topological groupoids, in this section
we will refer to the latter ones as G-sets.
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Proof. By assumption, there exists some h ∈ Qe s.t. h ≰ p, h ≤ d(f )d(g) and hf ≤ pf ∨ g . Since Q is distributive,
hf = phf ∨ (hf ∧ g). Let kf = hf ∧ g . Since h = ph ∨ k ≰ p, we get also k ≰ p. �

Since I(Q(G, S)) = S (cf. Proposition 3.9), the Lemma above implies that S is a base for the topology Q(G, S). Then, notice
that the elements of S are images of local bisections that are continuous with respect to the given topology of G0 and the
topologyQ(G, S) on G1: indeed, let F ∈ S and let f be its associated local bisection. To show that f is continuous it is enough
to check that for every basic open G ∈ S, f −1

[G] ∈ Ω(G0), i.e. that every p ∈ f −1
[G] has an open neighborhood that is

contained in f −1
[G]. But this is again guaranteed by the Lemma. Therefore, bisection images defined as in Definition 3.1 are

G-sets according to the standard definition. Analogously, it can be shown that the structure maps of the groupoid (G0,G1)
are continuous, i.e. (G0,G1) is a topological groupoid. Bywell known results in groupoid theory (cf. [11], chapter I, Definition
2.6, Lemma 2.7 and Proposition 2.8) this topological groupoid is étale.

Conversely, if Q is an inverse quantal frame, then it not difficult to see that Q is also an SGF-quantale. If Q is also a spatial
quantale as in Definition 5.1, then its associated groupoid quantale G(Q) (cf. Definition 4.9) is defined by taking G1 as the
set of equivalence classes [p, f ] with respect to the incidence relation as in Definition 4.5.

Lemma 7.1 shows that the equivalence classes [p, f ] coincide with the germs of local bisections, as in Definition 3.1,
(at p), Also in this case, Q can be identified with a topology on G1, via the canonical embedding α (cf. Theorem 6.2), and by
Proposition 6.3, α[I(Q)] is a selection base; then axiom SB3 readily implies that α[I(Q)] is collection of all G-sets, according
to the standard definition, i.e. every S ∈ α[I(Q)] is associated with a continuous local bisection. Hence the construction of
G1 from Q in [13] and in this paper coincide. As before, from the same results in [11], the groupoid (G1,G0) is étale.

8. Examples

In this section, we present two examples of groupoids arising as the equivalence relations induced by group actions on
topological spaces, as described in Example 3.3.2.

8.1. Finite, not T1 and étale

Consider the finite topological space X = (G0, Ω(G0)), defined as follows:

G0 = {p0, p1, p2},
Ω(G0) = {P0 = ∅,H = {p0}, P1 = {p0, p2}, P2 = {p0, p1},G0}.

So the opens are the down-sets of the partial order on the left, and the lattice of the topology is represented on the right:

X is clearly not T1. The prime elements of Ω(G0) are exactly P0, P1 and P2, hence X is sober. The group acting on X is
G = {ϕ, idX }, where (ϕ(p0) = p0, ϕ(p1) = p2, ϕ(p2) = p1). The equivalence relation induced by the action of G is then

R = {(p0, p0), (p1, p1), (p2, p2), (p1, p2), (p2, p1)}.

The collection of partial homeomorphisms X → X consists of the restrictions to the open sets in Ω(G0) of the maps ϕ and
idX . For every H ′

∈ Ω(G0), H ′ϕ will denote the graph of the restriction of ϕ to H ′. The collection of the graphs of partial
homeomorphisms X → X is

S = {H ′
= idH ′ | H ′

∈ Ω(G0)} ∪ {Hϕ, P1ϕ, P2ϕ, ϕ}.

X can be represented as the groupoid G = (X, R); then S is the collection of the bisection images of G and G is SP. Then
Q(G, S) is the sub-


-semilattice ofP (R) generated by S. Notice that for any two partial homeomorphisms of X the set over

which they coincide is an open set of G0; this implies that the intersection of the graphs of any two partial homeomorphisms
is again a graph of a partial homeomorphism, hence S is the base of a topology on G1. So (cf. [9,13], and the discussion in
Section 7) G is étale and Q(G, S) is an inverse quantal frame.

8.2. Finite, not T1 and not étale

Consider the finite topological space X = (G0, Ω(G0)), defined as follows:

G0 = {p0, p1, p2}, Ω(G0) = {∅, P1 = {p2}, P2 = {p1}, P0 = {p1, p2},G0},

So the opens are the down-sets of the partial order on the left, and the lattice of the topology is represented on the right:
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X is clearly not T1. The prime elements of Ω(G0) are exactly P0, P1 and P2, hence X is sober. The group acting on X is
G = {ϕ, idX }, where (ϕ(p0) = p0, ϕ(p1) = p2, ϕ(p2) = p1), and the equivalence relation induced by the action of G
is

R = {(p0, p0), (p1, p1), (p2, p2), (p1, p2), (p2, p1)}.

The collection of partial homeomorphisms X → X consists of the restrictions to the open sets in Ω(G0) of the maps ϕ
and idX . For every H ∈ Ω(G0), Hϕ will denote the graph of the restriction of ϕ to H . The collection of the graphs of partial
homeomorphisms X → X is

S = {H = idH | H ∈ Ω(G0)} ∪ {P0ϕ, P1ϕ, P2ϕ, ϕ}.

X can be represented as the groupoid G = (X, R); then S is the collection of the bisection images of G and G is SP. Notice that
the set over which the graphs of ϕ and idX coincide is {(p0, p0)}, which cannot be (nor contain) the graph of any (nonempty)
partial homeomorphism since {p0} is closed but not open. Hence, S is not a topological base. Therefore, (cf. [9,13] and the
discussion in Section 7) G is not étale and Q(G, S) is not a distributive lattice.

References

[1] A. Connes, Noncommutative Geometry, Academic Press, 1994.
[2] P.T. Johnstone, Stone spaces, in: Cambridge Studies in Adv. Math., vol. 3, Cambridge Univ. Press, 1982.
[3] B. Jónsson, A. Tarski, Boolean algebras with operators, Part II, Amer. J. Math. 74 (2) (1952) 127–162.
[4] S. Mac Lane, I. Moerdijk, Sheaves in Geometry and Logic, Springer-Verlag, New York, 1992.
[5] C.J. Mulvey, Rend. Circ. Mat. Palermo 12 (1986) 99–104.
[6] C.J. Mulvey, P. Resende, A noncommutative theory of Penrose tilings, Internat. J. Theoret. Phys. 44 (2005) 655–689.
[7] A. Palmigiano, R. Re, Topological groupoid quantales, in: D. Aerts, S. Smets, J.P. van Bendegem (Eds.), Special Issue: the Contributions of Logic to the

Foundations of Physics, Studia Logica 95 (2010), 121–133.
[8] A. Palmigiano, R. Re, Non-étale groupoid quantales: a pointfree setting, in preparation, 2010.
[9] A.L.T. Paterson, Groupoids, Inverse Semigroups, and their Operator Algebras, in: Progress in Mathematics, vol. 170, Birkhäuser, Boston, 1999.

[10] M.C. Protin, P. Resende, Quantales of open groupoids, arXiv:0811.4539v2.
[11] J. Renault, A Groupoid Approach to C∗-Algebras, in: Lecture Notes in Mathematics, vol. 793, Springer, 1980.
[12] P. Resende, Lectures on étale groupoids, inverse semigroups and quantales, in: Lecture Notes for the GAMAP IP Meeting, Antwerp, 2006.
[13] P. Resende, ‘Étale groupoids and their quantales’, Adv. Math. 208 (2007) 147–209.
[14] K. Rosenthal, Quantales and Their Applications, in: Pitman Research Notes in Math., vol. 234, Longman, 1990.

http://arxiv.org/0811.4539v2

	Groupoid quantales: A non-étale setting
	Introduction
	Preliminaries
	Strongly Gelfand quantales
	A natural action

	Groupoids

	SP-groupoids and their quantales
	Groupoid quantales

	SGF-quantales and their set groupoids
	The incidence relation on SGF-quantales
	The set groupoid of an SGF-quantale

	Spatial SGF-quantales and SP-groupoids
	Spatial SGF-quantales are GQs
	The canonical map
	The correspondence

	Comparison with the étale localic setting
	Examples
	Finite, not T1 and étale
	Finite, not T1 and not étale

	References


