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Abstract

Entire matrix-valued functions of a complex argument (entire matrix pencils) are con-
sidered. Upper bounds for sums of characteristic values and a lower bound for the smallest
characteristic value are derived in the terms of the coefficients of the Taylor series. These
results are new even for polynomial pencils.
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1. Introduction and statement of the main result

Entire matrix-valued functions of a complex argument (entire matrix pencils)
arise in various applications, see for instance [1,10,14] and references therein. The
spectrum of matrix pencils was investigated in many works. Mainly the spectrum
perturbations of polynomial matrix pencils were investigated, cf. [5,7,12,13]. In the
very interesting paper [8], upper and lower bounds are derived for the absolute values
of characteristic values of polynomial matrix pencils.

�This research was supported by the Kamea Fund of the Israel No. 8567901.
E-mail address: gilmi@cs.bgu.ac.il

0024-3795/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2004.04.029

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82458711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:gilmi@cs.bgu.ac.il


312 M.I. Gil’ / Linear Algebra and its Applications 390 (2004) 311–320

On the other hand, estimates for sums of the roots of entire functions are very
important for the theory of these functions and its applications. An essential role
here is played by the Hadamard theorem [11, p. 18]. In the present paper we derive
upper bounds for sums of characteristic values of entire matrix pencils. In addition,
we suggest a lower bound for the smallest characteristic value.

Besides, we generalize the main result from the paper [2] (see also [3, Chapter 19])
on inequalities for sums of zeros of entire scalar functions of finite order. These inequal-
ities supplement the Hadamard theorem. Namely they not only assert the convergence
of the series of the zeros, but also give us the estimate for the sums of the zeros. It should
be noted that the generalization requires additional mathematical tools.

Let Cn be a Euclidean space with the Euclidean norm ‖ · ‖ and the unit matrix In.
For an n × n-matrix Q, λk(Q) (k = 1, . . . , n) are the eigenvalues with multiplicities
taken into account and ordered in the following way: |λk+1(Q)| � |λk(Q)|.

Let ak , k = 1, 2, . . . be n × n-matrices. Our main object in this paper is the entire
matrix pencil

f (λ) =
∞∑
k=0

λk

(k!)γ ak (a0 = In, λ ∈ C) (1.1)

with a finite γ > 0. Put Mf (r) := max|z|=r ‖f (z)‖ (r > 0). The limit

ρ(f ) := lim
r→∞

ln lnMf (r)

ln r

is the order of f . A zero zk(f ) of det f (z) is called a characteristic value of f .
Everywhere in the present paper it is assumed that the set {zk(f )} of all the charac-
teristic values of f is infinite. Note that if f has a finite number l of the characteristic
values, we can put z−1

k (f ) = 0 for k = l, l + 1, . . . and apply our arguments below,
where z−1

k (f ) means 1
zk(f )

. The characteristic values of f are enumerated in the
non-decreasing way:

|zk(f )| � |zk+1(f )| (k = 1, 2, . . .).

Assume that the series

θf :=
∞∑
k=1

aka
∗
k (1.2)

converges. Here and below the asterisk denotes the adjointness. So θf is an n ×
n-matrix and by (1.1), and (1.2) we have ρ(f ) � 1/γ . Put

ωk(f ) =
√
λk(θf ) for k = 1, . . . , n and ωk(f ) = 0 for k � n + 1.

Theorem 1.1. Let condition (1.2) hold. Then the characteristic values of the pencil
f defined by (1.1) satisfy the inequalities

j∑
k=1

1

|zk(f )| �
j∑

k=1

[
ωk(f ) + nγ

(k + 1)γ

]
(j = 1, 2, . . .).
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The proof of this theorem is presented in the next section.
Let us assume that under (1.1), there is a constant d0 ∈ (0, 1), such that

lim
k→∞

k
√‖ak‖ < 1/d0 (1.3)

and consider the function

f̃ (λ) =
∞∑
k=0

(d0λ)
k

(k!)γ ak.

That is, f̃ (λ) ≡ f (d0λ) and zk(f̃ ) = zk(f )/d0. Clearly, the series

θ
f̃

:=
∞∑
k=1

d2k
0 aka

∗
k

converges. Moreover,

ωk(f̃ ) =
√
λk(θf̃ ) for k = 1, . . . , n and ωk(f̃ ) = 0 for k � n + 1.

Theorem 1.1 implies

Corollary 1.2. Under (1.1), let condition (1.3) hold. Then

j∑
k=1

1

d−1
0 |zk(f )| �

j∑
k=1

ωk(f̃ ) + nγ

(k + 1)γ
(j = 1, 2, . . .).

2. Proof of Theorem 1.1

Consider the polynomial matrix pencil

F(λ) =
m∑

k=0

λm−k

(k!)γ ak (a0 = In) (2.1)

with the characteristic values ordered in the non-increasing way:

|zk(F )| � |zk+1(F )| (k = 1, . . . , mn − 1).

Introduce the block matrix

Am =




−a1 −a2 · · · −am−1 −am
1

2γ In 0 · · · 0 0
0 1

3γ In · · · 0 0
· · · · · · ·
0 0 · · · 1

mγ In 0


 .

Lemma 2.1. The relation detF(λ) = det(λImn − Am) is true.
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Proof. Let z0 be a characteristic value of F . Then
m∑

k=0

zm−k
0

(k!)γ akh = 0,

where h ∈ Cn is the eigenvector of F(z0). Put

xk = zm−k
0

(k!)γ h (k = 1, . . . , m).

Then z0xk = xk−1/k
γ (k = 2, . . . , m) and

m∑
k=0

zm−k
0

(k!)γ akh =
m∑

k=1

akxk + z0x1 = 0.

So x = (x1, . . . , xm) satisfies the equation Amx = z0x. If the spectrum of F(·) is
simple, the lemma is proved. If detF(·) has non-simple roots, then the required result
can be proved by a small perturbation. �

Set

θF :=
m∑

k=1

aka
∗
k

and

ωk(F )=√λk(θF ) for k=1, . . . , n and ωk(F )=0 for k=n + 1, . . . , mn.

Lemma 2.2. The characteristic values of F satisfy the inequalities

j∑
k=1

|zk(F )| �
j∑

k=1

[
ωk(F ) + nγ

(k + 1)γ

]
(j = 1, . . . , mn).

Proof. By Lemma 2.1,

λk(Am) = zk(F ) (k = 1, 2, . . . , nm). (2.2)

Take into account that
j∑

k=1

|λk(Am)| �
j∑

k=1

sk(Am) (j = 1, . . . , nm), (2.3)

where sk(Am) are the singular numbers of Am ordered in the non-increasing way
(see, for instance, [4, Section 2.2]). But Am = M + C, where

M =




−a1 −a2 · · · −am−1 −am
0 0 · · · 0 0
· · · · · · ·
0 0 · · · 0 0


 and
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C =




0 0 · · · 0 0
1

2γ In 0 · · · 0 0
0 1

3γ In · · · 0 0
· · · · · · ·
0 0 · · · 1

mγ In 0


 .

We have

MM∗ =



θF 0 · · · 0 0
0 0 · · · 0 0
· · · · · · ·
0 0 · · · 0 0


 and

CC∗ =




0 0 · · · 0 0
0 In/22γ · · · 0 0
0 0 · · · 0 0
· · · · · · ·
0 0 · · · 0 In/m

2γ


 .

We can show that sk(M) = ωk(F ). In addition,

sk(C) = 1

(j + 2)γ
(k = jn + l; j = 0, . . . , m − 2; l = 1, . . . , n)

and

sk(C) = 0 (k = (m − 1)n + l; l = 1, . . . , n).

Since j = (k − l)/n and (k − l)/n + 2 � (k + 1)/n, it follows that,

sk(C) � nγ

(k + 1)γ
(k = 1, . . . , nm).

Take into account that
j∑

k=1

sk(Am) =
j∑

k=1

sk(M + C) �
j∑

k=1

sk(M) +
j∑

k=1

sk(C),

cf. [4, Lemma II.4.2]. So

j∑
k=1

sk(Am) �
j∑

k=1

[
ωk(F ) + nγ (k + 1)−γ

]
(j = 1, 2, . . . , mn).

Now (2.2) and (2.3) yield the required result. �

Proof of Theorem 1.1. Consider the polynomial pencil

fm(λ) =
m∑

k=0

λk

(k!)γ ak.
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Clearly, λmfm(1/λ) = F(λ). So zk(F ) = z−1
k (fm). Now Lemma 2.2 yields the

inequalities

j∑
k=1

|zk(fm)|−1 � ωk(f ) + nγ

j∑
k=1

(k + 1)−γ (j = 1, . . . , nm). (2.4)

But the characteristic values of entire matrix functions continuously depend on their
coefficients. So for any j = 1, 2, . . . ,

j∑
k=1

|zk(fm)|−1 →
j∑

k=1

|zk(f )|−1

as m → ∞. Now (2.4) implies the required result. �

3. Applications of Theorem 1.1

Put

τk = ωk(f ) + nγ

(k + 1)γ
(k = 1, 2, . . .).

The following result is a consequence of the well-known Lemma II.3.4 from [4] and
Theorem 1.1.

Corollary 3.1. Let φ(t)(0 � t < ∞) be a convex scalar-valued function, such that
φ(0) = 0. Then under conditions (1.1) and (1.2), the inequalities

j∑
k=1

φ(|zk(f )|−1) �
j∑

k=1

φ(τk) (j = 1, 2, . . .)

are valid. In particular, for any r � 1,

j∑
k=1

|zk(f )|−r �
j∑

k=1

τ r
k (j = 2, 3, . . .)

and thus
 j∑

k=1

|zk(f )|−r




1/r

�


 j∑

k=1

ωr
k(f )




1/r

+ nγ


 j∑

k=1

1

(k + 1)rγ




1/r

(j = 2, 3, . . .). (3.1)
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Furthermore, assume that

rγ > 1, r � 1. (3.2)

Then
∞∑
k=1

(k + 1)−rγ = ζ(γ r) − 1,

where ζ(·) is the Riemann Zeta function. With the notation

Nr(f ) =
[

n∑
k=1

λ
r/2
k (θf )

]1/r

relation (3.1) yields

Corollary 3.2. Under conditions (1.1), (1.2) and (3.2), the inequality( ∞∑
k=1

|zk(f )|−r

)1/r

� Nr(f ) + nγ (ζ(γ r) − 1)1/r (3.3)

is valid. Moreover, if γ > 1, then

∞∑
k=1

|zk(f )|−1 � N1(f ) + nγ (ζ(γ ) − 1). (3.4)

Consider now a positive scalar-valued function �(t1, t2, . . . , tj ) with an integer
j , defined on the domain

0 � tj � tj−1 � t2 � t1 < ∞
and satisfying

��

�t1
>

��

�t2
> · · · > ��

�tj
> 0 for t1 > t2 > · · · > tj . (3.5)

Corollary 3.3. Under conditions (1.1), (1.2) and (3.5),

�(|z1(f )|−1, |z2(f )|−1, . . . , |zj (f )|−1) � �(τ1, τ2, . . . , τj ).

Indeed, this result follows from Theorem 1.1 and the well-known Lemma II.3.5
from [4].

In particular, let {dk}∞k=1 be a decreasing sequence of non-negative numbers. Take

�(t1, t2, . . . , tj ) =
j∑

k=1

dktk.
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Then Corollary 3.3 yields
j∑

k=1

dk|zk(f )|−1 �
j∑

k=1

τkdk =
j∑

k=1

dk[ωk(f ) + (k + 1)−γ ].

4. Lower bounds for characteristic values

Consider the polynomial F defined by (2.1). If m < ∞, we can take γ = 0. Let
h be a normalized eigenvector corresponding to a characteristic value z(F ). Then

zm(F )h = −
m−1∑
k=0

z(F )m−1−k

[(k + 1)!]γ ak+1h.

Hence,

|z(F )|m �
m−1∑
k=0

‖ak+1‖|z(F )|m−1−k

[(k + 1)!]γ
or

1 �
m−1∑
k=0

‖ak+1‖
[(k + 1)!]γ |z(F )|1+k

.

Hence it follows that |z(F )| � x0 where x0 is the unique positive root of the equation

1 =
m−1∑
k=0

‖ak+1‖
[(k + 1)!]γ x1+k

.

Put

p(F) =
m−1∑
k=0

‖ak+1‖
[(k + 1)!]γ

and

δ0(F ) :=
{

m−1
√
p(F) if p(F) � 1,

p(F ) if p(F) > 1.

Due to Lemma 1.6.1 from [3], x0 � δ0(F ). Moreover, thanks to Corollary 1.6.2 from
[3]

x0 � 2 sup
k=1,...,m

k

√
‖ak‖
(k!)γ .

We thus get

Lemma 4.1. Any characteristic value z(F ) of the pencil F defined by (2.1) satisfies
the inequalities |z(F )| � δ0(F ) and
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|z(F )| � 2 sup
k=1,...,m

k

√
‖ak‖
(k!)γ .

Again consider the polynomial pencil

fm(λ) =
m∑

k=0

λk

(k!)γ ak.

Since zk(F ) = z−1
k (fm), due to the previous lemma we can write

2|z(fm)| � inf
k=1,...,m

k

√
(k!)γ
‖ak‖ .

Letting m → ∞, we arrive at

Corollary 4.2. Any characteristic value z(f ) of the pencil f defined by (1.1) satis-
fies the inequality

2|z(f )| � inf
k=1,2,...

k

√
[k!]γ
‖ak‖ .

It is well-known that the polynomials of the type (2.1) play an essential role in the
theory of discrete-time systems, cf. [6,9]. If any characteristic value of F satisfies the
inequality |z(F )| < 1, then the corresponding discrete-time system is stable. Thus
Lemma 4.1 gives us a stability criterion.
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