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Abstract

In this short note, we derive an expression for the asymptotic covariance matrix of the
univariate partial least squares (PLS) estimator. In contrast to M.C. Denham [J. Chemometrics
11 (1997) 39], who provided a locally linear approximation based on a recursive definition of
the estimator, we derive a more compact expression for the asymptotic covariance matrix by
combining a standard convergence result with matrix differential calculus, in particular the
approach of J.R. Magnus and H. Neudecker [Matrix Differential Calculus with Applications
in Statistics and Econometrics, revised ed., Wiley, Chichester, UK, 1991]. We also describe
some theoretical and practical aspects of calculating the asymptotic covariance matrix, and
illustrate its use on spectroscopic data.
© 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Univariate partial least squares regression (PLS) is a biased estimation procedure
that is widely used in the field of chemometrics [2,9,19,21]. It is closely related
to principal component regression in the sense that the basic idea is to regress onto
a subspace of the predictor variables rather than onto the range space of all the
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predictors, as in ordinary least squares. It is different, however, in that the subspace
is chosen with respect to the response variable, and hence the estimator of the vector
of coefficients β in the usual linear model is a non-linear function of the vector of
observations y. As a consequence, it is difficult, if not impossible, to derive the exact
distribution of the estimator. Approximate distributional results would be useful for
constructing, for example, confidence intervals for the parameter estimates or for
predictions from PLS.

In some earlier work, Denham [5] provided a locally linear approximation to the
covariance matrix based on the first derivative of the PLS vector of coefficients. His
expression stems from a recursive definition of the estimator first derived by Hel-
land [10]. The principal objective of this note is to derive a more compact expression
for the asymptotic covariance matrix by combining a standard result in convergence
with matrix differential calculus, in particular, the approach of Magnus and Neudec-
ker [14]. Similar expressions were given in [17] without proof. Section 2 outlines
the mechanics of PLS regression and the principal result is derived in Section 3.
Section 4 briefly discusses some theoretical and practical aspects of its use and then
goes on to outline its application to real data.

2. Univariate PLS regression

We begin with the usual linear model of the form

y = 1nβ0 + Xβ + ε, (1)

where y is an n × 1 vector of observations on a response variable, the vector 1n
is of length n and consists of ones; X is an n × p matrix consisting of values of
p explanatory variables whose columns have been centered about their means, so
that X′1n = 0; ε is an n-vector of errors which are independently and identically
distributed with zero expectation and variance σ 2; β0 is an unknown constant; and
β represents a p × 1 vector of coefficients. For the purposes of the derivation below,
we shall assume that n > p and that X is of full rank. Furthermore, we limit the
discussion to the estimation of β.

The ordinary least squares estimator of β is given by β̂ = (X′X)−1X′y and its
variance by (X′X)−1σ 2. When the columns of X are highly collinear, however, the
variances of some of the estimated regression coefficients can be very large. Con-
sequently, the mean squared error, defined as MSE(β̂) = E[(β̂ − β)′(β̂ − β)], can
become inflated. To overcome this problem, biased methods such as ridge regres-
sion [9], principal component regression [11], and partial least squares are often
used. In using biased estimation, we hope that the bias of the estimator will be offset
by a corresponding reduction in variance, and hence that the overall MSE will be
reduced.

A brief description of the origins of PLS may be found in [4], along with its
statistical properties and its connections to Rayleigh–Ritz/Lanczos methods for find-
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ing the extremal eigenvalues of a symmetric matrix. Simulation studies show that
PLS performs at least as well as, and sometimes outperforms, ridge and principal
component regression [1,9].

The PLS estimate of β in (1) is given by

b̂m = Km(K
′
mX

′XKm)
−1K ′

mX
′y = Km(K

′
mSKm)

−1K ′
ms, (2)

where m = 1, 2, . . . , p specifies the ‘dimensionality’ of the estimator and the col-
umns of Km(p × m) are given by the Krylov sequence {s, Ss, . . . , Sm−1s} ≡
K(S, s,m), with s = X′y and S = X′X. The value of m is not known a priori, and
hence it is usually determined by cross-validation.

In (2), any matrix Vm = KmM can be used as long as its columns span the same
space as K(S, s,m), that is, as long as M(m × m) is non-singular. In particular, two
alternative bases, which we denote by Wm and Rm, are often used, and their columns
wi and ri arise out of algorithms commonly used to calculate b̂m. The wi stem from
the Gram–Schmidt orthogonalization of K(S, s,m) in its natural order; as a result,
W ′X′XW is tridiagonal [15]. Alternatively, we can calculate Vm = Rm such that
V ′
mX

′XVm is a diagonal matrix.
There is currently a lively debate going on about the nature of PLS regression. On

the one hand, most statisticians think of it much as we have outlined it above, as a
biased estimator of the parameters of the linear model in (1) [2,9,19]. On the other
hand, others, especially in the chemometric literature, sometimes prefer to think of
it as arising out of a latent variable model [3]. It is not clear, however, that this
philosophical difference makes any practical difference to how PLS is used. The in-
terested reader is referred to the papers by Frank and Friedman [9] and Sundberg [19]
and the discussions contained therein for an exposition and analysis of both points
of view.

3. Asymptotic variance of PLS estimator

The basic result which allows us to calculate the asymptotic covariance matrix
of b̂m is given in the following theorem; it forms the basis for the approximation
method known as the ‘delta’ method.

Theorem 1 ([18, p. 388] and [12]). Let {y(n)} be a sequence of random vectors

y(n) and µ a compatible fixed vector. Assume that
√
n[y(n) − µ] D−→N(0,�), or

equivalently that
√
ny(n) is asymptotically normally distributed with mean

√
nµ and

variance �.
Furthermore, let g(z) be a vector function of a vector z with first and second

derivatives existing in a neighbourhood of z = µ. Then
√
n[g(y(n)) − g(µ)] D−→N(0, T�T ′),
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where the matrix T is given by

T = �g(z)
�z′

∣∣∣∣
z=µ

and consists of the derivatives of the elements of g(z) with respect to the elements
of z.

Hence, what we require now to obtain the asymptotic variance of b̂m is the Jaco-
bian matrix J = �b̂m(y)/�y′. The result is set out below.

Theorem 2. Let b̂m be defined as in (2). Then

J ≡ �b̂m(y)
�y′ =(s′ ⊗ Ip)(Ip2 + Cp)

[
Km(K

′
mSKm)

−1 ⊗ (Ip − HmS)
]
U ′
m

+HmX
′, (3)

where Ip denotes the identity matrix of order p, Cp denotes the p2 × p2 commuta-
tion matrix, Hm = Km(K

′
mSKm)

−1K ′
m, and Um = {X,XS, . . . , XSm−1}.

Proof. In the derivation that follows, we drop the subscript m in intermediate steps
for the sake of clarity and compactness. Taking differentials of (2) yields

db̂m=(dK)(K ′SK)−1K ′s + K
[
−(K ′SK)−1(dK ′)SK(K ′SK)−1

−(K ′SK)−1K ′S(dK)(K ′SK)−1
]
K ′s + K(K ′SK)−1(dK ′)s

+HX′dy, (4)

where the expression inside the square brackets [·] represents d(K ′SK)−1. Expand-
ing (4) and using the definition of H gives

db̂m=(dK)(K ′SK)−1K ′s − K(K ′SK)−1(dK ′)SHs

−HS(dK)(K ′SK)−1K ′s + K(K ′SK)−1(dK ′)s
+HX′dy, (5)

Taking vecs and using the result that vec(ABC) = (C′ ⊗ A) vec B for conformable
matrices A, B, and C leads to

db̂m=
[
s′K(K ′SK)−1 ⊗ Ip

]
vec dK −

[
s′K(K ′SK)−1 ⊗ HS

]
vec dK

+
[
s′ ⊗ K(K ′SK)−1

]
vec dK ′ −

[
s′HS ⊗ K(K ′SK)−1

]
vec dK ′

+HX′dy
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=
[
s′K(K ′SK)−1 ⊗ (Ip − HS)

]
vec dK

+
[
s′(Ip − HS) ⊗ K(K ′SK)−1

]
vec dK ′ + HX′dy. (6)

To combine the terms in dK and dK ′ we need to use the following result. For
c(p × 1), B(p × m), and A(p × m) say,

(c′ ⊗ B)vec A′ = (B ⊗ c′)vec A (7)

since both are equal to the vector BA′c. Using (7) in (6) and rearranging further
yields

db̂m = (
s′ ⊗ Ip + Ip ⊗ s′) [

K(K ′SK)−1 ⊗ (Ip − HS)
]

d vec K

+HX′dy. (8)

Now from the definition of Km, we can write vecKm = U ′
my, where Um is the

n × pm matrix {X,XS, . . . , XSm−1}. Inserting this into (8) and then simplifying
and rearranging leads to

db̂m = (s′ ⊗ Ip)(Ip2 + Cp)
[
K(K ′SK)−1 ⊗ (Ip − HS)

]
U ′dy

+HX′dy, (9)

where, for A(p × p), Cp is the p2 × p2 commutation matrix [14] that transforms
vec A into vec A′, i.e., Cp vec A = vec A′. Hence, the Jacobian matrix is given by

J = (s′ ⊗ Ip)(Ip2 + Cp)
[
Km(K

′
mSKm)

−1 ⊗ (Ip − HmS)
]
U ′
m

+HmX
′, (10)

where the subscript m has been restored to emphasize that it is the Jacobian of the
m-dimensional estimator, b̂m. �

For large n, therefore, and under the assumptions of the linear model in (1), the
variance of the PLS estimator b̂m is JJ ′σ 2 evaluated about some point y0. Note
also that any matrix Vm = KmM can be used in the expression above as long as
M(m × m) is non-singular. In the resulting expression, Vm is inserted in place of
Km and U ′

m replaced by (M ′ ⊗ Ip)U
′
m.

A slightly more economical representation of (10) is possible if we recognize
that Ip − HmS is an oblique projector. HmS projects onto Km along the direction
orthogonal to SKm, and we write it as HKm|SK⊥

m
. Consequently, Ip − HmS projects

onto SK⊥
m along Km and can be written as HSK⊥

m |Km
. Hence, an alternative to (10)

is

J = (s′ ⊗ Ip)(Ip2 + Cp)
[
Km(K

′
mSKm)

−1 ⊗ HSK⊥
m |Km

]
U ′
m + HmX

′. (11)
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Because both (10) and (11) involve Kronecker products, large, sparse matrices will
be generated. An alternative form that avoids such large matrices can be derived using
(8) as a starting point, and it can be written as follows. If we let Dm = Km(K

′
m ×

SKm)
−1, then

J =
{

m∑
i=1

[
(s′D′

m)i · HSK⊥
m |Km

+ (Dm)is
′HSK⊥

m |Km

]
Si−1

}
X′

+HmX
′, (12)

where the notation (·)i indicates the ith element of a vector or the ith column of a
matrix.

4. Practical issues

In practice, the locally linear approximation JJ ′σ 2 must be evaluated about some
point y0 and a suitable estimate of σ 2 must be obtained. Denham [5,6] and Pha-
tak [16] consider these issues in greater detail, and the interested reader is referred to
those works for a more comprehensive discussion. The meta-parameter m must also
be estimated.

Two natural points about which to linearize the PLS estimator b̂m are y0 = E(y)

and the observed data y. In the former instance, some plug-in estimate of E(y) will be
required; Denham [6] suggests some alternatives, but linearizing about the observed
data has been found to work well in practice [6,16].

A reasonable estimate of the error variance σ 2 can be obtained by calculating the
residual sum of squares (RSS) divided by some appropriate number of degrees of
freedom. If ŷ = 1nȳ + Xb̂m represents the fitted values from PLS, the residuals are
r = y − ŷ. Hence RSS = r ′r and σ̂ 2 = RSS/(d − 1). But what should the value of
d be? Following on from ordinary regression, d = n − m has been suggested, but
it has been pointed out [9,20] that PLS uses up more than m degrees of freedom
because it is a non-linear function of y. Hence, both Denham [5] and Phatak [16]
suggest using

d = tr(In − J ′X′)(In − XJ), (13)

where In is the identity matrix of order n and J must be evaluated at y0. The ma-
trix (In − J ′X′)(In − XJ) can be thought of as analogous to the ‘hat’ matrix In −
X(X′X)−1X′ in ordinary regression, but although the former is symmetric it is not
idempotent. We should note in passing that PLS is often used in instances where
n − 1 < p. In such circumstances, no estimate of σ 2 can be obtained, and the local
linearization procedure must be replaced by, for example, bootstrapping [5].

For confidence intervals constructed from the linear approximation to have good
coverage properties, it is important to choose the correct value of the meta-parameter
m [5]. As with ridge-regression, where the ridge parameter must also be estimated
from the data [9], cross-validation is commonly used to determine m (see, for
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example, [13]). Fortunately, in many of the applications for which PLS is used,
the minimum cross-validation sum of squares occurs over a range of values of m.
Also, extensive simulations [7,8,16] show that at or near the correct value of m, bias
is negligible. Alternatively, Denham [5,6] provides expressions for bias based on
different plug-in estimates of E(y).

An example. The example we consider—calibration of an infrared spectrometer—
illustrates a common application of PLS. The observed response y consists of con-
centrations between 0.5% and 5% of a particular constituent of n = 229 samples of
oil-bearing shales. The explanatory variables consist of near-infrared spectra mea-
sured at p = 82 equally spaced wavelengths in the range (w1, wp) nanometres.1

Thus, each explanatory variable corresponds to the reflectance of the sample when
the incident radiation has wavelength wi , i = 1, 2, . . . , p. The columns of X are
highly collinear and thus the eigenvalue spectrum of the cross-product matrix λ(X′X)

is broad and consists of a few large eigenvalues and many small ones:

(λ1, . . . , λ82) = (101.1, 37.5, 18.8, 2.3, 1.2, . . . , 2.5 × 10−8, 2.4 × 10−8).

Here, the ordinary least squares estimator, though unbiased, will have large variance
((X′X)−1σ 2) because of the presence of very small eigenvalues. In circumstances
such as these, however, the use of biased estimation procedures generally leads to
a substantial reduction in variance at the cost of a comparatively small bias; hence,
mean squared error will be reduced [11, Chapter 8].

Cross-validation was used to estimate the dimensionality m of the PLS estimator.
Fig. 1 shows the cross-validation sum-of-squares as a function of m, and we can see
that there is a broad trough between m = 6 and m = 8. To illustrate the calculations,
we shall use m = 6 and evaluate the Jacobian at the observed data.

The elements of the parameter estimate b̂m=6 are plotted in Fig. 2. It has the
appearance of a smooth curve because the estimates have been joined. The residual
sum-of-squares is RSS = 7.33, and the value of d calculated using (13) is d =
219.9. Hence, PLS uses up approximately n − d = 229 − 219.9 = 9.1(> m = 6)
degrees of freedom, and the corresponding estimate of σ 2 is σ̂ 2 = 7.33/(219.9 −
1) = 0.034.

From (10)–(12), we can see that the first term of the Jacobian provides the basis
of a correction to the zeroth order approximation HmX

′XHmσ̂
2 = Hmσ̂

2 of the
covariance matrix of b̂m. To compare the two estimates of variance, we have used
the diagonal elements of Hmσ̂

2 and JJ ′σ̂ 2 to construct approximate pointwise 95%
confidence bounds for the elements of b̂m. The results are shown in Fig. 2, where
we see that the zeroth order approximation underestimates variability and produc-
es smaller intervals. Regression coefficients from spectroscopic data such as these
are sometimes used by analysts to provide qualitative information about regions of
the spectrum that have greater predictive utility. Hence, by underestimating the

1 To protect the confidentiality of the data, the wavelengths have not been specified.
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Fig. 1. Cross-validation plot for spectroscopic data.

Fig. 2. Estimated regression coefficient b̂m=6 (———) plotted along with approximate pointwise 95% confi-
dence intervals derived from (a) zeroth order approximation Hmσ̂ 2 (— — —) and (b) linear approxima-
tion JJ ′σ̂ 2 (- - - - - -).

variability, as the zeroth order approximation does, regions can be incorrectly iden-
tified as being useful. In Fig. 2, for example, both approximations lead to the same
conclusions about the region between w1 and w40. By contrast, using the zeroth order
approximation may lead to the conclusion that the region between w42 and w50 is
useful for prediction, whereas the linear approximation shows that it is likely not
useful. In a prediction context, the fact that Hmσ

2 underestimates variability leads to
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optimistic coverage rates of prediction intervals, whereas the linear approximation
provides better coverage rates [5].
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