
Comput. Math. Applic. Vol. 13, No. 4, pp. 351-362, 1987 0097-4943/87 $3.00+0.00 
Printed in Great Britain. All rights reserved Copyright © 1987 Pergamon Journals Ltd 

A CLASS OF ROSENBROCK-TYPE SCHEMES FOR 
SECOND-ORDER NONLINEAR SYSTEMS OF 

ORDINARY DIFFERENTIAL EQUATIONS 

S. GOYAL 
Department of Mathematics, Tuskegee Institute, Tuskegee, AL 36088, U.S.A. 

S. M. SERBIN 
Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, U.S.A. 

(Received October 1985) 

Communicated by E. Y. Rodin 

Abstract--We develop a class of generalized Rosenbrock-type schemes for second-order nonlinear systems 
of ordinary differential equations. We convert the second-order systems to equivalent first-order form, and 
then employ the square of the Jacobian. These methods when applied to a linear time-invariant system 
U, + A U = 0, reproduce a class of schemes given by Baker and Bramble that are derived from a particular 
class of rational approximations to the exponential with denominators of the form (1 -~,2z2)S for an 
s-stage method. For our problem, then, an s-stage scheme requires the solution of 2s linear algebraic 
systems at each time step, with the same real matrix. We employ the theory of Butcher [1--4] series to 
develop order conditions and then present specific examples of fourth-order methods which are 
unconditionally stable by appropriate choice of parameter 72 . Numerical results, confirming the rate of 
convergence, are presented. 

1. I N T R O D U C T I O N  

In Ref. [5], Baker and Bramble constructed a class of  single-step schemes for approxmating the 
solution of  certain second-order linear evolution equations with time-independent coefficients. 
These schemes are based upon a class of  rational approximations to the exponential which are 
analytic in a neighborhood of  the imaginary axis and which possess desirable accuracy and stability 
properties on the imaginary axis, and thus are particularly suited to this class of  problems when 
they are t ransformed into equivalent first-order systems. 

The goal o f  this investigation is to propose and analyze a class of  Rosenbrock-type schemes for 
the special second-order system 

U , = G ( U , t )  t ~[0, T] 

U(O) = Uo, Ut(O)= Vo, (1) 

where U: [0, 2f'] ~ R n (or, more generally, we could replace R n with a Banach space X). These 
schemes are such that when G(U, t ) =  - AU, for A ~ L ( R  ~, R n) positive definite and symmetric, 
the Baker-Bramble  methods are reproduced, and thus are distinguished from other Rosenbrock 
methods which have previously appeared. 

These include, for example, the original works of  Rosenbrock [6], Calahan [7], Wanner  [8], Kaps  
and Rentrop [9] and Kaps  and Wanner  [10] and many  others. A recent analysis o f  Rosenbrock 
methods for stiff problems has been given by Verwer [1 l]. These methods, though, have been 
proposed for first-order problems. On the other hand, there are many  methods which have been 
proposed recently to deal explicitly with second-order systems [cf. 12-15]. Properties of  some of  
these methods have been analyzed by Thomas  [16]. These methods have the property that the stages 
are implicitly coupled; in contrast,  in our method, the stages are determined successively by solving 
only linear systems. 

In order to propose and analyze our schemes, we shall perform the usual conversion of  the 
second-order problem (1) into first-order form by defining y = [U, V, t] ~, where V = Ut, and thus 
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obtain the autonomous system 

[ ,] y ' - - f ( y ) =  G , t  , y (0) = [U0 V0 01 x = Y0- (2) 

We then pose, in Section 2, a Rosenbrock-type method for expression (2), using the square of 
the Jacobian to generate the linear systems which must be solved at each time step. It is this 
approach which distinguishes the scheme from other Rosenbrock methods previously developed. 
In Section 3, we employ the concept of Butcher series to develop order conditions for our general 
scheme, then fix specifically upon a set of fourth-order schemes, explicitly stating the order 
conditions and listing several sets of parameters which satisfy these conditions. In Section 4, we 
justify our contention that our schemes reproduce the Baker-Bramble methods when applied to 
a linear homogeneous test problem, and having thus established this relation, we use a result of 
Ngrsett and Wanner [17] to obtain conditions on a parameter of the scheme which gives 
unconditional stability. We conclude in Section 5 with the specific implementation of the two-stage 
scheme for the original problem (1), showing that for fourth-order, we must solve four n x n linear 
systems with the same matrix per time step. We provide several examples of the application of our 
scheme, confirming empirically the expected fourth-order error reduction. 

2. F O R M U L A T I O N  OF THE METHOD 

Having written the system in first-order form (2), we propose an s-stage method (s e 77+) as 
follows. Define, for V 2>i 0 a real parameter, 

E=I-v2h2f~(yo)  for i = l  . . . . .  s. (3) 

(Note: we use the notation V2 for the parameter to conform with notation established in Ref. [17] 
which we shall invoke in the stability discussion.) Then, for certain coefficients {ao}, {bij}, {cij}, {du}, 
{%}, j < i, and {~i}, {0~} and {m,} obtain vectors k~ via 

i--1 i - - I  

Ek, =f(Y0 + h ~ a~jk/) + dp~h~(yo)f(yo + h ~ euk ) 
j = l  j = l  

i - I  i - 1  i - I  

+ O,hfy(yo + h ~, bokj)f(yo + h ~ d~k~) + ~, cok j. (4) 
j = l  j = l  j ~ l  

Then, determine Yl, the approximate solution at the next time station, by 

Y] = Yo + h ~ miki. (5) 
i = 1  

Due to the specific form of the system (2), we will later see that each step (4) requires that we solve 
two linear systems, and so in total each time step requires solution of 2s linear systems with the 
same n x n matrix. The connection with the Baker-Bramble method comes from the use of the 
square of the Jacobian fy in the definition of the operator E. This identification, though, as well 
as the desire to produce in particular a fourth-order scheme with s = 2, seems to dictate the 
inclusion of the terms shown on the r.h.s, of expression (4). 

Following Ref. [10], we first pose the method (3)-(5) in an equivalent form for the purpose of 
derivation of the order conditions. 

Lemma 1 

The algorithm (3)--(5) is equivalent to the scheme 

i - - I  

u, = Yo + ~'. ~ugJ, (6) 
j = l  

i - I  

v, = Yo + ~ [3ugj, (7) 
/ = l  
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and 

i - - l  

w, = Yo + ~ Aug:, (8) 
j = l  

i - I  

zi = Yo + ~ e#gj, (9) 
j = l  

i 

g, = hf(u,) + ekih2fy(yo)f(z,) + O,h2fy(v,)f(w,) + h2f~(yo) ~. ?qgj (I0) 
j=l 

Yl = Yo + ~ [~igi, (11) 
i=1  

where the coefficients ~o, flu, Ao, Eo, 7u, and/~i are determined implicitly by 

i - l  

a U = ~'. ~zik (6kj -- Ckj), (12) 
k = l  

i - I  

bo= ~ flik(6kj-- Ckj), (13) 
k = l  

i - I  

c/j= ~, )'~(6kj--Ckj)/? 2, (14) 
k = l  

i - I  

do= 2 A~(6~:-cO, (15) 
k=l 

i-I 

eo= ~ e~(6~j-Ckj) (16) 
k = l  

and 

mj= ~ I~k(6kj- Ckj), (17) 
k = l  

where Yu = y2 and 6kj is the Kronecker index. A detailed proof of this lemma, patterned after the 
argument in Ref. [10], may be found in Ref. [18]. 

3. ORDER CONDITIONS 

We shall use the technique of  Butcher series, especially as found in Hairer and Wanner [19] and 
N~rsett and Wolfbrandt [20], to determine order conditions for the method (3)-(5). To begin, we 
recall briefly certain definitions, notations and properties of rooted trees. We indicate only those 
ideas which are specifically required in our analysis; for a broader picture, the interested reader 
may consult Refs [19-21]. 

Let T denote the set of  all rooted trees. The notation t = [tl, • • •, tm] expresses the notion that 
the trees fi . . . . .  t~ remain after the root of  t and the adjacent arcs have been removed (Note: in 
this section, t stands for a tree, not the independent time variable; there should be no difficulty 
in distinguishing the meaning of t from the context.) We denote by p(t) the number of  nodes 
in t; ~ and z denote the trees with zero and one nodes, respectively. L T  denotes the set of 
monotonically labeled trees. 

Now, for t = [h . . . . .  t~] ~ T, the elementary differentials F(t) are defined recursively by 

F(dp)(y)=y;  F ( x ) ( y ) = f ( y )  

and 

F(t ) (y) = ftm). [F(t, ) (y) . . . . .  F(tm) (y )1. (18) 

C.A.M,W.A. 13/4---B 
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Then, for a map a: T ~ R, the Butcher series B(a, Yo) E R" about Y0 ~ R" is defined by 

hr 

B(a, Yo) = ~, a(t)F(t)(yo) r~' r = p(t).  (19) 
t~LT 

We also require the notion of  the derivative of the map a(t): if t = t  k, a ' ( t ) = 0 ;  if 
t = ~, a ' (z)  = a(~b) = 1, and if t = [tl . . . . .  tr,], a'(t) = p( t )a( tO. . ,  a(tm). 

The following two theorems, which may be found in Ref. [20] or Ref. [21], are instrumental in 
the development of  the order conditions for our scheme. 

Theorem 1 [20] 
If  y = B(¢,yo), with ~b(¢)= 1, then h f ( y ) =  B(~' ,  Yo). 

Theorem 2 [20] 
Let B(a, yo) and B(b, yo) be two Butcher series, with b(q~)=0 and a (~b)= l .  Then 

hf'(B(a, yo))B(b, yo) is a Butcher series B(aob, yo), where the composition is defined, for 
t ---- [tl • •. tin], by 

~ p(t)b(fi) for m = l  

m m (20) 
(aob)(t)= ~ p(t) ~, ( VI a(t/))b(t,), for m > 1. 

( . .  i=1  \ j = l , j ~ i  

Further, (aob )(dp ) = (aob )(z ) = O. 
We now use the above machinery to develop the order conditions specific to our method via 

the following theorem. We shall assume that the numerical solution y~ given by expression (5) has 
a Butcher series representation. 

Theorem 3 
The terms u~, v~, w~, z~, g~ and y~ defined by expressions (6)-(11), which are functions of  the stepsize 

h, are Butcher series given by 

and 

u,(h) = B(a,,  Yo), v,(h) = B(v,, Yo), w,(h) = B(¢z,,, Yo) 

z,(h) = B(x,, Yo), g,(h) = B(g,, Yo), Y~ (h) = B(/¢l, Yo), (21) 

where the coefficients al(t), v,(t), ~o,(t), xe(t), ~( t )  and ~l( t )  are determined recursively by: 

and 

i - I  

~i(t~) = 1, a,( t)  = ~ ~tOgj(t ), t • ~b; 
j ~ l  

i - I  

v,(t~) = 1, v,(t) = ~" flOg/(t), t • d~; 
j - I  

i - I  

~o,(dp) = 1, ~o,(t) = ~, Aijg/(t), t • ~; 
j = l  

i - - I  

xi((~) = 1, xi(t ) = E £iJgJ( t)' t • dp; 
j=l 

t¢,(4') = Z, t t , ( t )=  ~ V,S~,(t); 
i=1  

(22) 

(23) 

(24) 

(25) 

(26) 
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where, for t -- [ t l . . .  t~, gi(~b) = 0, gi(z) = 1 and 

~p(t)x:(h), m = 1 
~,(t) = , [ ( t ) +  ~, ( 0 , m > 1 

f p(t)~oj(fi), m = 1 

OI m t + i P ( t )  ~. ( l l  ~.Li(O~i(tl) , 
L ) 

m > l  
f i 

p(t )[p( t ) - -  1]~  Y,~gj(t'l), t =[[t'J] 
+ j - I  

0 , otherwise 

(27) 

(Note: we interpret any vacuous sum to be zero.) 
Proof. By assumption, yl(h) is a Butcher series, so g~ = B(g~,yo) is a Butcher series. Then, from 

expression (6), 

i-I 
u,(h) = yo + F,  ogj(h ) j=l 

i - 1  

= Y 0 +  ~ ~oB(gj, Yo) j=l 
i- I ha(O 

= Yo + ~ co ,~ r  O-~.v gj(t)F(t)(yo) 

ha(t) r i- I 1 
= Yo + E ~ 1 ~  ~togJ(t)F(t)(Yo)l 

t c L T  P ~, 1" [..j = 1 ..J 

ha(t) 
= t ~ff-£r plt),~ ~,(t) F(t) (Yo) = B (~i, Yo). 

Similarly, expressions (23)--(26) follow from expressions (7)--(9) and (11), respectively. 
Now, to prove expression (27), we consider each term in expression (10). First, by Theorem 1, 

hf(ut)=B(u't,yo). Next, since Y0 is the Butcher series B(a, yo), where o(~b)= 1 and o ( t ) = 0 ,  
p( t )  i> 1, by Theorem 1, hf(z~) = B(x~, Yo), and then identifying b = ~ and a = a in Theorem 2, we 
have h2fy(yo)f(z~)= hf'(B(o, yo))B(x;,yo) is a Butcher series B(aox~,yo), with 

(¢rox~)(t) = ~p(t)x~(tO, m = 1 
[ 0 , m > l .  

For the third term in expression (27), we apply Theorem 2, with B(b, Yo)= B(~: ,  Yo)= hf(to) 
and B(a, Yo)= B(v~, Yo), so that 

h2fy(v,)f(w,) = hf'(B(v,, yo))S(u.,;, Yo) = B(vfeo;, Yo), 

where 

f p(t)eo~(h) , m = 1 

 Ffi p(t) v~ to~(tt), m > 1. 
" '  _1 

Lastly, the final term of  expression (10) can be treated by two successive applications of  Theorem 
2. Alternatively, as motivated by Ref. [10], note that 

[fy(Yo)]2FGl) (Yo) = F[[/',]] (Yo). 

Then, expressing 
ha(i,) . . 

g~h ) = ~ -77~, ~v gj(tl)F(t,)(yo), 
I t ~ L T  Y ~31]; 
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h~(/t)+ 2 
h2f2(yo)g/(h)= ~ g~ (/'0 F([[/',]]) (Yo)- ~,~  p(?,)! 

Letting t = [[i~]] and noting that p ( t , )+  2 = p(t), it follows that 

(28) 

h2f2y(Yo) ~ ~ J -  ~J E P(t)L ° ( t ) -  1]~.gJ( tOF(t ) (yo)  , 
j=  1 j =  1 ~ t¢LT 

k t  = [[/d] 

which establishes the last term of expression (10). • 
(Note: expression (28) is a Butcher series whose nonzero terms belong to trees with a 

single-branched root whose first node above the root is also singly branched, e.g. ~ :~=  [[z]].) 
Now, the order conditions are easily established in the usual way by noting that the exact 

solution at the next time station, say to + h, is by Taylor series a Butcher series B(Tr, Y0), where 
7t(t) = 1 Yt e T. We then have that the method (3)-(5) has order at least v if ~¢l(t), as given by 
expression (26), satisfies ~ ( t )  = 1 Vt such that p(t) ~ v. We thus must establish recursively {Lq,(t)], 
p(t) <~ v}. 

In Table 1, we show for the case s = 2, v = 4 these computations. We use the facts that [by 
expressions (12)-(17)] 0h~ = a:~,/32~ = b2~, y~] = y2c2] A:~ = d2~, E21 = e2~, and setting q~ = ~b~ + 0~, we 
employ expression (22)-(27) to establish g~(t) and ~2(t). 

In turn, then, since from expression (17), #~ = m~ + c2~m2, #2 = ms, the conditions for order 4, 
from equations (26), are then determined as listed in Table 2. 

Of  course, it is possible to consider other cases than s = 2, v = 4; for the sake of brevity here, 
we shall not present any further order conditions, but rather refer the reader to Ref. [18]. We will 
remark, though, that it is not possible to achieve order v = 2s for s > 2, as the number of 
structurally different trees of order up to v increases much more rapidly than the number of 
parameters. 

We have approached the question of solving the order equations of Table 2 from two different 
points of view. First, since there are 10 parameters and only 8 equations, we have the freedom to 

Table 1. Values of gl(t) and p2(t) for trees of order ~< 4 

Number t ~j (t) g2(t) 

1 • "r 1 1 

2 / ['r] 2111 2(a2, + ~2 + e2) 

3 V [~' ~] 0 3(a~j + 202b21) 

4 ~ [[T]] 672 6[a2Fh + ~b2e21 + 02d2, + 72(1 + c2,)] 

6 y [[z, "~l] 0 12(~b2e~l + 02d21) 

7 e N ~  [~, [z]) 0 8[a~ql + 02b21(ql + d21)] 

8 [[HI] 24y2rh 24[~ 2()-,a21 + ~hc21 + ~2 + 02) + ql(~2e21 + 02d20] 
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Table 2. Order conditions for s = 2, v = 4 

Number Condition 

| f 

2 [~l 

3 [¢, ¢] 

4 [[zl] 

5 [~, T, T] 

6 [['r, ~l] 

7 [~, [ql 

8 [[[qll 

mj + (1 + c2,kn 2 = 1 

rndh + rn2(c2t~, + a2, + ¢b2 + 02) = ½ 

1 

y2[rn, + m2(1 + 2c20] + m2[a2jrh + e21(o2 + 0#2,1 = 

m2(a_~+O b~,'~ 1 

2 2 [ -  e21 ~ d21"l I 

m2[a~,ql + 02621(t/i + d21)] = 

y2[rn:h + rn2(2c2,Ph + 2a21 + ~2 + 02)] + mdh(O2e2, + 02d2,) = ½ 

choose some of these parameters, as long as the resulting equations are still consistent. Of course, 
it would be most prudent to try to set b2, = 0; unfortunately, this produces an inconsistency. We 
can always set ~bl = 0, and thus 0~ = r h, without losing any degree of freedom. Now, the choice of  
parameters must necessarily be influenced by stability considerations. We shall establish (by 
appealing to known results given by Ngrsett and Wanner [17]) that our scheme is unconditionally 
stable for 

- -  ~ 0.47048. 
12 

In our first approach, to streamline the method somewhat, we set d~, = O, e21 = a2~ and y2= ½. It 
then follows that OI must satisfy a certain eleventh-degree polynomial equation: 

9830401'-27033601°+2365440~+291840~ - 2078080~ + 1395520~ 

+180320~-644120~+ 100800~+234000~- 1138240+23349 =0 .  (29) 

We then solve for 01 by using the IMSL polynomial solver ZPOLR, and then, appealing to the 
routine ZSCNT, return to the original nonlinear system of Table 2 and reduce the parameter y 2 
to (3 + w/7)/12, yielding the parameter set below in Table 3. 

In an attempt to further simplify the scheme, we have tried to set e2~ = a2~, Ohm = ~2 = 0 and 
c2~ =0 .  In this case, we have obtained a solution with y2~  1.62, which again yields an 
unconditionally stable method, but as the error constant of this scheme will necessarily be larger 
than that of  the previous one, we shall not consider it further. 

Finally, we observe that by replacing the fourth and eighth equations of Table 3 by the equations 

and 

ml + m2(1 + 2c2,) = O, 

m2(a21vIi + e21tk2 + 02d2~) = 1/6, 

ml~h + mE(2C21rh + 2a21 + q~2 + 02) = 0 

m2rll( t~2e21 + 0 2 d 2 1 )  1 m ~ ,  

( 3 0 )  

(31) 

(32) 

(33) 

we may then attempt a solution which leaves the parameter y2 free. This produces 10 equations 
in the remaining 10 unknowns. After tedious algebraic reductions, we determine that r/i must satisfy 
the cubic equation 

24r/3 - 12r/2 - 4rh + 1 = 0, (34) 

which has the real roots 0.6571366762993064, -0.3423473692310087 and 0.1852106929317023. 
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Table 3. Solution of order equations; forced d2t = O, e21 = a2, 

a2, = -0.7777536224724765 m t = 1.022753184288266 
b2,=1.117655988539988 m 2 = 0.2080352101413627 
c2t = - 1.109377052294547 T2 = (3 + x / ~ ) / 1 2  

qj = O, = 0.5444631141603234 
~2 = 0.6622450174040982 
02 = 0.4462326530351922 

T a b ~  4. Two solutions of  order equations; ~2 free parameter 

ff1=0.1852106929317023 ff ,=0.6571366762993064 

a2t 0.8812757541276511 0.1629806272136976 
b2~ 0.5397522691127052 0.5325697649852304 
c21 2.799573347440441 -1.037190241336529 
d21 0.3923761529540218 0.04590171220992117 
e2t --I.267840885278147 1.649701575706587 
~2 0.006569219401703724 0.03152698463159001 
02 --!.583910034725311 0.2996484372403217 
m I 2.357197285405745 1.035856721220791 
m 2 --0.357197285405745 0.964143278779209 

For each of these values of ~h, further algebraic reduction shows that a21 must satisfy a fifth-degree 
polynomial equation. After having examined the various solution sets, we show in Table 4 below 
two such sets of  parameters which seem to give the most acceptable results. 

4. STABILITY 

Our linear stabifity analysis is predicated upon the fact that the schemes we have proposed are 
generalizations of  the Baker-Bramble method to nonlinear equations, which we now establish. It 
suffices to consider the scalar equation 

which becomes, in first-order form, 

with 

U " =  - 22U, (35) 

y '  = Ay ,  (36) 

A:I°-'01 
The Baker-Bramble scheme is obtained by approximating the solution for equation (36) over one 
time step y (h) = exp(hA)y(0) by 

y~ = R ( h A  )yo, (38) 

where 
R ( z )  = P ( z ) / ( 1  - ~2z2)S (39) 

and P ( z )  is a polynomial of  degree 2s given specifically by [cf. 17] 

Letting 

, / s \  (_?2)s-~ 
e(z)  = E : ' - '  E { . }  

j -o  i=io \ t j  (2i --j)!'  

2s 

P(z) -- p:J, 
/ = 0  

- - .  (40) 
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it is easy to show that 

R(hA) = 

[1 + 1,2(h2)2] ' 

I a--I 
i (-- l)Jp2j(h2) 2jh Z (-- 1)ip2J+ ,(h"l) 2) 

j = o  j=o $--I 
Z (--1)/+lP2J+m(h2) 2j*' k (-- l)JP2:(h2) 2~ 

j=o j=o 

(40  

We wish to show that when the scheme (3)-(5) is applied to expression (36), there results a 
method of the form (38), with R(hA) having the same structure as in expression (41). Since the 
number of order conditions for the s-stage method when applied to the linear problem will be much 
less than in the nonlinear case, we will then justifiably assume that the parameters can be chosen 
to obtain the specific rational function used by Baker and Bramble, i.e. with P(z) given as in 
expression (40). That is, if the order is assumed to be at least 2s for the linear problem, we will 
have obtained exactly the Baker-Bramble scheme. 

Referring back to expression (3), we first see that when f (y)= Ay 

[ 1 + ' 2 z 2  0 1 
E = (42) 0 1 + ~2z2 ' 

where we let z = h2. Then, expression (4) can easily be expressed as 

1 : [  ~,:2 h 7 '-'V ~:2 ~,/, 7 k,=l+,2z-----~[L_~2 h O,z,jyo+~,L_,~,h~,, ~:2]k,j~, (43) 

where ~k~ = ~b~ + O; and ~% = ~b;fl o + ~o- Write expression (43) as 

The following is then easily established by induction. 
Proposition ! 

k, = (1 + V:z2); (,~llFil(g) IJT/~2(Z ) J '  

where ~'~(z) and T~2(z) are of degree 2i and T'~2 is of  degree (2i - 2), T'~t is of  degree (2i - 1). • 

Now, considering expression (5), we have 

y, = yo +,__E I l,,k,= 1 + E  (1 + 9z2)'LZ~r,i,(z) ~"~2(z) l i lY° 

=(1+,=)-  +,.,f., ,(l+,., y° 

= (1  +" 2z2"-" V R,(z) hRi2(z)-I 
• ~ j L;~R2,(z ) R2dz)jyo, (45) 

with degRn = 2s = degR22, degRu = 2s - 2, degR2~ = 2s - 1. Then, comparing (45) with (41), we 
see that both methods have exactly the same form. 

While a direct stability analysis for the case s = 2 is easily performed, as is presented in Ref. [18], 
we may appeal to the result of Norsett and Wanner [17] to establish the next stability result. 

Theorem 4 
The method (3)-(5) with s = 2 and parameters selected so that the order is v = 4 is I-stable [i.e. 

unconditionally stable for the test problem (36)-(37)] iff ~2>~ (3 + x/~)/12. • 
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We also show in Ref. [18] by elementary means that for 0 ~< 72~< ( 3 -  w/7)/12, the scheme is 
conditionally stable, with the requirement that 

57674 -- 28872 + 8 
(h2)2 "<< - 115276 + 62474 - 4872 + 1" (46) 

5. I M P L E M E N T A T I O N  AND EXAMPLES 

For  the original problem (1), the two-stage scheme (3)-(5) can be implemented as follows. Let 
kl = [p~ qi z~]T. From (2), the Jacobian 

[ i  v I i] [Gf iv i'] f y _ J =  0 t , so j 2 =  
0 

Let us write the scheme in a form which exhibits progression from time station t~ to t. + t = t~ + h. 
When arguments are unspecified, we are evaluating at t = t.. 

Let L = I - 72h2Gv. We determine {Pi, qi}i= t.2 via 

Lpl = V. + rhhG + 72h2G,, (47) 

Lql = G + rh[GvV. + G,], (48) 

Lp2 = 72h2(1 + c21)G, + V. + a21hql + dP2hG(U. + e21hpl, t. + e21h) 

+ OzhG(U.+d21hpl, t.+d21h)+c2]p~, (49) 

Lq2 = dp=hGv'(V. + ez,hq,) + G(U. + a2~hpl, t. + a21h) + dp2hG, 

+ 02hGv(U. + b21hp~, t. + b2i h). (V. + hd2tqO + OzhG,(U. + b2~ hp,, t. + b21 h) + c21 ql, (50) 

U.+t = U. + h{mtpl + m2P2} (51) 

and 

V.+, = IT. + h {mlq, + m2q2}. (52) 

We have applied our scheme to approximate the solution of  two model problems. The first is 
a modification of  a nonlinear wave-propagation model suggested by Fermi et al. [22]. 

Problem 1. Seek u(t)  ~ •" satisfying 

as(t) = F(uj+, - us) - F(u s - u s_ ,) + &(t), 

where 

. [ 2 n j ~  
F ( u ) = 2 u + ~ u  p, Uo(t)=u.+l(t)=O, uj(O)=smtn--_~_-i-), fis(O)=O j = l , . . . , n ,  

and we have selected &(t) so that the exact solution is given by 

• ( 2 , q ' ~  . 

us(t ) = s,nt,7;--i-)cos ,. 

(53) 

(54) 

We have introduced the parameter 2 to allow control of  the spectral radius of the Jacobian, and 
thus to introduce stiffness attributes• We report results with n = 20. 

Problem 2. The equation of  motion of  a soliton in an exponential lattice given by Toda [23] is 
the highly nonlinear system 

as(t ) = 2e-", - e-"J - '  - e -us +', 

uj(O) = - log[l +//2sech2(ccj)], (55) 

2# 3 sech2(~j)tanh(~j) 
tis(0) = [1 + fl2sech2(0tj)] ' 
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which has a solution given by 

where 
e-UJ -- 1 = fl2seeh2(~j d- f i t) ,  

fl = sinh ~. 

(56) 

We have chosen ~t = 2 and n = 20. For  each problem, with M time steps, M h  = I, we record 
the 12-norm of  the error in u and u, at t = 1, 

Hu(1) -UMII2  = ./~ [u,(1)--u,]2/20 
~ j = i  

and 

[I u , (1 )  - vM 112 ~ [uj(1) - vilE/20. 

We remark that both model problems have tridiagonal Jacobian; in this regard, they are 
reasonable models for the class of  sparse Jacobian problems to which our method, requiring an 
evaluation of  the Jacobian at an off-step point on the r.h.s, of  expression (50), is most suited. 

In the following tables, we report the errors and the observed rates of  error reduction. These 
computations were performed in double precision arithmetic on an IBM 4341 at the University 
of  Tennessee, Knoxville. In all cases, we have used the scheme whose parameters are given in Table 
3, for which y 2 is at its lower limit for unconditional stability. 

First, in Tables 5 and 6, we have situations where stability is not an important factor, and we 
see clear indication of  the anticipated fourth-order convergence in both u and ut. 

In order to introduce stability as a factor in the selection of  stepsize, we have performed several 
experiments on Problem 1 with various choices of  parameters. A representative case is shown below 
in Table 7, where we let k = 10,000, ct = 2, p = 3. In this case, the spectral radius of the Jacobian 
at t = 0 is about 39787. For  the conditionally-stable well-known fourth-order method of  Numerov, 
one finds that M I> 79 steps are required to reach t = 1 if blow up is to be avoided. On the other 
hand, the unconditional stability of  our method is apparent from the tabulated results. Addi- 
tionally, the observed convergence rates are heading toward 4 in both u and u, again. 

We have not meant to draw any far-reaching conclusions from these experiments, but predicted 
accuracy and stability behavior appears to be evidenced, at least for some range of  moderately stiff 
problems. 

T a b l e  5. P r o b l e m  1: ). = I ,  r, = p = 2 

M Ilu(I)--UMII2 R a t e  tl u ( I )  - VM[I 2 R a t e  

5 0 . 3 6 2  x 10 - s  0 .198  x 10 4 
10 0 . 2 3 8  x 10 -6  3 .92  0 .123  x 10 - s  4 .01 
20 0.153 × 10 -7 3.97 0.766 x 10 -7 4.01 

4 0  0 .971 × 10 -9  3 ,98  0 . 4 7 8  × 10 - s  4 . 0 0  

T a b l e  6. P r o b l e m  2 

M II u ( I )  - -  uu i l  2 R a t e  II u ( I )  - VM 112 R a t e  

5 0 . 4 6 3  x 10 -6  0 . 4 4 9  x 10 -6  
10 0 .301 x 10 -7  3 .94  0 .301 x 10 -7  3 .90  
20 0 . 1 8 9  x 10 - s  3 .99  0 . 1 9 3  x 10 - s  3 .96  
40  0 .118  x 10 -9  4 . 0 0  0 . 1 2 2  x 10 -9  3 .98  

T a b l e  7. P r o b l e m  l :  2 = 10,000,  ~t = 2 ,  p = 3  

M II u ( 1 )  - u u  112 R a t e  II u ( l )  - -  vM 112 R a t e  

30  0 . 9 3 2  × l 0  -4  0 . 1 1 9  x 10 -2  
4 0  0 .241 × 10 -4  4 . 7 0  0 .771 × 10 -3  1.51 
50 0 . 8 4 5  × 10 -5  4 . 6 9  0 .373  × l 0  -3  3 .25  
60  0 . 3 7 9  × 10 -5  4 . 4 0  0 .193  × 10 -3  3.61 
70  0 . 1 9 9  × 10 -5  4 . 1 8  0 .108  x l 0  -3  3 .77  
80  0 . 1 1 6  × 10 - s  4 . 0 4  0 . 6 5 0  x l 0  -4  3 .80  
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