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Abstract Modeling and attitude control methods for a satellite with a large deployable antenna are

studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for

the deploying process are developed, which are built with the methods of multi-rigid-body dynam-

ics, hybrid coordinate and substructure. Then an attitude control method suitable for the deploying

process is proposed, which can keep stability under any dynamical parameter variation. Subse-

quently, this attitude control is optimized to minimize attitude disturbance during the deploying

process. The simulation results show that this attitude control method can keep stability and main-

tain proper attitude variation during the deploying process, which indicates that this attitude con-

trol method is suitable for practical applications.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Over the past two decades, great strides have been made in the
area of large space structures such as communication anten-

nae,1–4 solar sails,5–7 space-based radars,8 telescope reflectors,9

etc. The sizes of these deployable structures could be larger than
one hundred meters in the near future with extreme lightweight

and flexibility. Therefore, a deployable design is always neces-
sary for folding a structure to fit the space of fairing during
the launch stage and deploying it to a designed configuration

in orbit. Apparently, the deploying process is the key phase
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of such a mission with large deployable structures. In this phase,
the inertia tensor, the structural frequency, and the coupling
coefficients change widely under the influences of some uncer-

tain factors, such as manufacture errors of deployment mecha-
nism, impact torque, and space environment torque.10 During
this phase, the attitude of the satellite is critical to the mission.
If an active attitude control is not performed during this phase, the

attitude benchmark of the satellite may be lost, even the space-
craft would roll out of control, resulting in severe mission risks.

An effective approach toward solving this problem is to

control the satellite attitude during the deploying process to re-
strict the attitude variation in a certain range. As a foundation
of attitude control, a proper dynamic model should be estab-

lished first, which is often considered as a space structure mod-
eling problem. For the modeling problem, the hybrid
coordinate modeling method11 proposed by Likins is widely

used, which utilizes the rigid-body coordinate and the modal
coordinate to describe the rigid-body attitude motion and the
flexible vibration, respectively. This method has been successfully
applied in modeling many satellites.7,12–16 However, a
SAA & BUAA. Open access under CC BY-NC-ND license.
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satellite’s configuration changes continually during the deploy-
ing process of a space structure, so directly applying the hybrid
coordinate modeling method will generate a huge amount of

computation cost as the finite element model has to be built
for each possible configuration with subsequent modal analy-
ses for each model. Therefore, some alternative methods have

been proposed. Taking into account an important fact that
the only change to a single component during the deploying
process is its relative location to other components instead of

itself, the component modal synthesis method17 finds its
application value here. At present, this synthesis method has
been applied to the modeling of large spacecraft with complex
configurations,18,19 especially for the International Space

Station.20,21 However, no reports have been found for its
application in modeling the space structure deploying process.

The attitude control problem for the space structure deploy-

ing process can be classified as the space flexible structure atti-
tude control problem. There are many researches in this area.
In 1990s, NASA proposed the Controls-Structures Interaction

(CSI) research project, resulting in some new design theories for
flexible structure attitude control,22 which included the state
space based modern design and the frequency domain based

classical design. Due to its good adaptability to uncertain
parameters, the H1 design method has been addressed by
Fig. 1 Deploying process of a
many researchers.15,23–25 With the consideration of maturity
and reliability, the frequency domain based classical approaches
are still widely used in the attitude control of flexible

spacecraft,13,16,26,27 while the robust attitude control design
(H1 approach) has been validated by in-orbit experiments12,14

and applied in the SB4000 platform.28 Currently, there are 15

SB4000-based satellites in the orbit. However, the attitude
control for the space structure deploying process, which is a
critical phase of a mission, has not been studied so extensively.

In this paper, the deploying process dynamic modeling and
attitude control of a large deployable antenna are discussed.
For the deploying process modeling problem, to obtain a
proper and practically applicable dynamic model, a multi-

model strategy is developed. With these models, the attitude
control method for the deploying process is investigated in de-
tail. Finally, the numerical simulation results of the deploying

process attitude control are presented.

2. Deploying process modeling

2.1. Deploying process description

The deploying process of a large deployable antenna is some-
what complicated, which includes five steps: big arm deploying
large deployable antenna.
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(Fig. 1(a)), big arm turning (Fig. 1(b)), small arm deploying
(Fig. 1(c)), reflector unlocking (Fig. 1(d)), and reflector deploy-
ing (Fig. 1(e)). Divided between the third step (small arm

deploying) and the fourth step (reflector unlocking), the whole
deploying process can be considered as two phases, i.e., the
arm deploying phase and the reflector deploying phase. In or-

der to perform the control design and the computer simulation
of the deploying process, it is necessary to build its dynamic
model. For the computer simulation, the model should be

capable of describing the process, which is basically a dynamic
process, as accurate as possible. On the other hand, the model
should be practically applicable to the control design and
hence has a low order. However, due to the complexity of this

procedure, it is difficult to build a model to simultaneously sat-
isfy these two different requirements. For coping with this
problem, a proper modeling strategy is necessary.

According to the primary features of the deploying pro-
cess (wide range variations of the inertia tensor, the structural
frequencies, and the rotational coupling coefficients), a three-

aspect modeling strategy of this deploying process is sug-
gested as follows. Firstly, to characterize the wide variation
of the inertia tensor, a multi-rigid-body dynamic model

including both the arm deploying phase and the reflector
deploying phase is established with the assistance of commer-
cially available multi-body dynamics software. With this soft-
ware, which is used for simulating the inertia tensor’s wide

variation, and the control design/simulation software, we
take the approach of multi-body dynamics and attitude con-
trol interactive simulation to validate the control design in

the whole deploying process. Secondly, to characterize the
wide variations of the structural frequencies and the rota-
tional coupling coefficients during the arm deploying phase,

a composite flexible dynamic model is established using the
substructure method and the hybrid coordinates. This model
can describe the arm deploying phase analytically. The third

aspect is to select several typical working points in the
reflector deploying phase to characterize the deploying phase
and set up several flexible dynamic models corresponding to
some typical deploying steps in the reflector deploying phase,

which can approximately describe the wide range parameter
variations.

2.2. Multi-rigid-body dynamic modeling

With the commercially available multi-body dynamics soft-
ware and its interface to the computer aided design (CAD)

software, all the moving elements in the deploying process
Fig. 2 Reflector deplo
can be modeled. Then, according to the motion properties of
the deploying process, 278 constraints are added to the model,
including hinge, translation, fix, etc. Next, the forces and tor-

ques during the deploying process are defined (except for the
driving cable force), including torsion spring force, bushing
force, contact friction force, etc. There are totally 375 forces

and torques added in all. In this way, a basic multi-rigid-body
dynamic model is established. In the steps of reflector unlock-
ing and reflector deploying, the unlocking and locking proce-

dures in the dynamic model are considered as changes of the
constraints. Thus, the complicated whole deploying process
(including Steps 1-5) can be modeled with the established mod-
el of multi-rigid-body dynamics.

In the step of reflector deploying, the antenna truss deploys
under the traction of the driving cable as shown in Fig. 2. As
an indispensable part, it is necessary to establish a dynamic

model for this driving cable. Undoubtedly, during the in-orbit
reflector deploying process, the tension force is the main force
applied to the driving cable. Therefore, the driving cable is in a

tensioned state. As the force in the driving cable should
approximately satisfy the Hooke theorem, for a deployable
unit of the antenna truss, the driving cable and the deploying

mechanism can be simplified as shown in Fig. 3(a). During
the reflector deploying, the chain wheel rotates and the cable’s
friction and pressure force drive the reflector truss to deploy as
illustrated in Fig. 3(b).

According to classical Palmgrem empirical formulae, the
friction torque M on the chain wheel bearing can be expressed
as

M ¼ f1Fbdm ð1Þ

where f1 is a coefficient, Fb is the composite torque load, which
approximately equals the radial force Fc of the ball bearing,

and dm is the bearing diameter. Let f= f1dm, Eq. (1) can be
rewritten as

M ¼ fFc ð2Þ

The dynamic equations of the chain wheel could be written
as

Tn þ Tnþ1 þ Fc �mac ¼ 0 ð3Þ

Rn � Tn þ Rnþ1 � Tnþ1 þM� 1

2
m j Rij2

dx

dt
¼ 0 ð4Þ

where m, ac, and x represent the mass of the chain wheel, the
acceleration of the chain wheel’s mass center, and the angular

velocity of the chain wheel, respectively. Here Rn is the vector
from the chain wheel center to the action point of the tension
ying driving cable.



Fig. 4 Unsynchronized phenomenon in the reflector deploying

phase.

Fig. 3 A simplified model of the driving cable.

Fig. 5 Sketch map of the deployable arm deploying phase.
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force Tn, andM corresponds to the magnitude of the vectorM,
so as the other vectors. For a specific antenna, m and ŒRiŒ are

4.43 · 10�3 kg and 13.7 · 10�3 m, respectively.
Considering the fact that a typical tension force is 103 N

and ac is relatively small in a practical deploying process,

Eq. (3) could be approximately simplified as

Tn þ Tnþ1 þ Fc ¼ 0 ð5Þ

Similarly, because ŒRiŒ and _x are also relatively small, Eq.
(4) could also be simplified as

Rn � Tn þ Rnþ1 � Tnþ1 þM ¼ 0 ð6Þ

The essence of this simplification is to neglect the inertia of
the chain wheel. In a large deployable antenna, the chain wheel

is so small and light that the simplification is proper and
acceptable.

According to Eq. (5), there is

F2
c ¼ T2

n þ T2
nþ1 þ 2TnTnþ1 cos h ð7Þ

and from Eq. (6), another relation is derived as

ðTn � Tnþ1ÞR� fFc ¼ 0 ð8Þ

where R represents the magnitude of Ri. From Eqs. (7) and (8),
one can have

ðTn � Tnþ1ÞR� f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

n þ T2
nþ1 þ 2TnTnþ1 cos h

q
¼ 0 ð9Þ

which is the dynamic model of the driving cable.
In Eq. (9), for a given Tn, the subsequent cable force Tn+1

can be calculated. Thus, if the initial force T1 is given (by the
electric motor), all the cable forces in the reflector can be cal-

culated during the reflector deploying process. However, each
calculation with Eq. (9) needs to solve a quadratic equation,
which complicates the calculation and decreases the calcula-

tion accuracy and efficiency. Therefore, a further simplification
is required. For one ball bearing, the cable force on each side is
nearly the same, i.e., Tn and Tn+1 are almost the same. From

Eq. (9) and the trigonometric function formula, a further sim-
plified cable dynamic model can be obtained, which is

Tnþ1 ¼
R� f cos

h
2

Rþ f cos
h
2

Tn ð10Þ

The simplified cable dynamic model of Eq. (10) can be val-
idated by comparing the results calculated using Eq. (9) and
Eq. (10) with the typical values of parameters and forces,
where R is 0.0137 m, f is 6 · 10�4 m, h is 120�, and Tn is

1000 N. With Eq. (9), the cable tension force Tn+1 is
957.1127 N, whereas Tn+1 is 957.1428 N by Eq. (10). There-
fore, this simplified cable dynamic model is usable.

In the subsequent simulation, the unsynchronized phenom-
enon in the practical ground deploying test can be generated
with the dynamic model and thus built as shown in Fig. 4,

which also validates the model’s reliability and accuracy.

2.3. Composite flexible dynamic modeling for the arm deploying
phase

Except for the inertia tensor, the structural frequencies and the
rotational coupling coefficients also change widely in the arm
deploying phase, which cannot be characterized by the multi-

rigid-body model established above. Therefore, for this phase,
a composite flexible dynamic model is developed with the sub-
structure method and the hybrid coordinates. The related

coordinate frames and vectors are defined as shown in Fig. 5
and listed in Table 1.



Table 1 Coordinate frame description.

Coordinate Description

Oxyz The inertial coordinate frame, simplified as o frame

Obxbybzb The satellite bus frame with the origin located at the

satellite mass center, simplified as b frame

Oixiyizi The first-stage flexible appendage i (big arm) frame,

simplified as i frame

Ojxjyjzj The second-stage flexible appendage j (small arm and

reflector) frame, simplified as j frame
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For a point on the satellite bus b, its location in the inertial
space is

Rb ¼ Xþ rb ð11Þ

in which X is the displacement of the satellite bus mass center
and rb is the vector from Ob to this point. Thus, the velocity of

this point can be expressed as

_Rb ¼ Cb
o

_Xþ ~rTbxs ð12Þ

where Cb
o is the transformation matrix from o frame to b frame,

~rb the external product matrix of the vector rb with ‘‘ � ’’ being
the external product sign, and xs the angular velocity vector of

the satellite bus. Then the kinetic energy of the satellite bus b
can be written as

Tb ¼
1

2

Z
b

_RT
b

_Rbdm

¼ 1

2
Mb

_XT _Xþ _XT
X
b

mbC
bT
o ~rTb

 !
xs þ

1

2
xT

s

X
b

mb~rb~r
T
b

 !
xs

ð13Þ

whereMb is the mass of the satellite bus and mb the mass of the
point. There is no elastic potential energy in the satellite bus

(rigid-body).
For a point on the first-stage flexible appendage i, its loca-

tion in the inertial space is defined as

Ri ¼ Xþ di þ ri þ di ð14Þ

where di is the vector from Ob to Oi, ri is the vector from Oi to
dmi shown in Fig. 5, and di is the deformation displacement of

dmi. In the modal space, di can be expressed as

di ¼ figTUitgi ð15Þ

where {i} is the basic vector of the i frame, Uit is the normal
modes matrix of the first-stage flexible appendage i, which only

includes the translational modes, and gi is the corresponding
modal coordinate.

Let

Ai ¼ C i
bC

b
o ð16Þ

Bi ¼ C i
b
~dTi þ ~rTi C

i
b ð17Þ

The velocity of this point is

_Ri ¼ C i
bC

b
o

_Xþ Bixs þ ~rTi xi þ _di ð18Þ

where C i
b is the transformation matrix from the b frame to the i

frame, ~di is the external product matrix of the vector di, and xi

is the angular velocity vector of the first-stage flexible
appendage i. Thus the kinetic energy of the first-stage flexible

appendage i can be expressed as

Ti ¼
1

2

Z
i

_RT
i

_Ridm

¼ 1

2
Mi

_XT _Xþ _XT
X
i

miA
T
i Bi

 !
xs þ _XT

X
i

miA
T
i ~rTi

 !
xi

þ _XT
X
i

miA
T
i Uit _gi

 !

þ 1

2
xT

s

X
i

miB
T
i Bi

 !
xs þ xT

s

X
i

miB
T
i ~rTi

 !
xi

þxT
s

X
i

miB
T
i Uit _gi

 !

þ 1

2
xT

i

X
i

mi~ri~r
T
i

 !
xi þ xT

i

X
i

mi~riUit _gi

 !

þ 1

2

X
i

mi _g
T
i U

T
itUit _gi

ð19Þ

where Mi is the mass of the first-stage flexible appendage i and
mi the mass of the point. Different from the satellite bus, the
first-stage flexible appendage i has its elastic potential energy,

which is

Vi ¼
1

2
gT
i U

T
i K

i
nnUigi ¼

1

2
gT
i Kigi ð20Þ

where K i
nn is the stiffness matrix of the first-stage flexible

appendage i, Ui is the normal modes matrix under the con-
strained boundary condition, and Ki is the eigenvalue matrix
under the constrained boundary condition.

For a point on the second-stage flexible appendage j, its
location in the inertial space can be expressed as

Rj ¼ Xþ di þ dj þ rj þ dj ð21Þ

where dj is the vector from Oi to Oj, rj is the vector from Oj to
dmj, and dj is the deformation displacement of dmj, which is
caused by two factors which are the deformation of the first-

stage flexible appendage i (boundary displacement) and the
deformation of the second-stage flexible appendage j itself.
In the modal space, dj can have the form as

dj ¼ fjgTUjtgj þ fjg
T
Wjtej ð22Þ

where {j} is the basic vector of the j frame, Ujt is the normal

modes matrix of the second-stage flexible appendage j which
only includes the translational modes, gj is the corresponding
modal coordinate, Wjt is the constraint mode matrix, and ej
is the boundary DOF corresponding to Wjt.

In order to obtain Wjt, one should find the internal displace-
ment rji of the appendage j caused by the boundary DOF’s unit

rotation in the Ojxj direction

rji ¼
xj

j xj j
� rj ð23Þ

which can also have the form of

fjgTrji ¼ fjgT
xj

j xj j
� rj ð24Þ
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where

rji ¼
rjix

rjiy

rjiz

2
64

3
75 ¼ xj

j xj j
� rj ð25Þ

In fact, because
xj
jxj j is a unit vector, there is

xj

j xj j
¼

1

0

0

2
64
3
75 ð26Þ

With Eqs. (25) and (26), the internal displacement rji can be
obtained.

With the same approach, the internal displacement rjj of the
appendage j caused by the boundary DOF’s unit rotation

along the Ojyj direction can be expressed as

rjj ¼
rjjx

rjjy

rjjz

2
64

3
75 ¼ yj
j yj j

� rj ð27Þ

Since
yj
jyj j

is also a unit vector, there is

yj
j yj j

¼
0

1

0

2
64
3
75 ð28Þ

and thus the internal displacement rjj can be obtained from
Eqs. (27) and (28).

Similarly, the internal displacement rjk of the appendage j
caused by the boundary DOF’s unit rotation along the Ojzj
direction can be expressed as

rjk ¼
rjkx

rjky

rjkz

2
64

3
75 ¼ zj

j zj j
� rj ð29Þ

Because
zj
jzj j is a unit vector, there is

zj
j zj j

¼
0

0

1

2
64
3
75 ð30Þ

According to Eqs. (29) and (30), the internal displacement

rjk can be obtained.
With Eqs. (25)–(30), the constraint mode matrix Wj t can be

given by

Wjt ¼
1 0 0 rjix rjjx rjkx

0 1 0 rjiy rjjy rjky

0 0 1 rjiz rjjz rjkz

2
64

3
75 ð31Þ

The joint point Oj, which connects the first-stage flexible
appendage i and the second-stage flexible appendage j,
can be considered as a point of the flexible appendage i, and

thus

fjgTej ¼ figTdi� ¼ fjgTQ j
i di� ¼ fjgTQ j

i Ui�gi ð32Þ

where di* is the Oj’s deformation presenting in the flexible

appendage i, Ui* is the Oj’s normal modes matrix under the
fixed boundary condition, and

Q j
i ¼ diag C j

i ;C
j
i

� �
ð33Þ
where C j
i is the transformation matrix from the i frame to the j

frame.
According to Eqs. (22), (31), and (32), dj can be expressed

as

dj ¼ fjgTUjtgj þ fjg
T
WjtQ

j
i Ui�gi ð34Þ

Let

Bj ¼ C j
iC

i
b
~dTi þ C j

i
~dTj C

i
b þ ~rTj C

j
iC

i
b ð35Þ

Dj ¼ C j
i
~dTj þ ~rTj C

j
i ð36Þ

The velocity of a point on the appendage j can be expressed as

_Rj ¼ C j
iC

i
bC

b
o

_Xþ Bjxs þDjxi þ ~rTj xj þUjt _gj þWjtQ
j
i Ui� _gi

ð37Þ

where ~dj is the external product matrix of the vector dj; ~rj the
external product matrix of the vector rj, and xj the angular
velocity vector of the second-stage flexible appendage j relative

to the first-stage flexible appendage i. Thus, one can have the
kinetic energy of the second-stage flexible appendage j:

Tj ¼
1

2

Z
j

_RT
j Rjdm

¼ 1

2
Mj

_XT _Xþ _XT
X
j

mjA
T
j Bj

 !
xs þ _XT

X
j

mjA
T
j Dj

 !
xi

þ _XT
X
j

mjA
T
j ~rTj

 !
xj þ _XT

X
j

mjA
T
j Ujt

 !
_gj

þ 1

2
xT

s

X
j

mjB
T
j Bj

 !
xs þ xT

s

X
j

mjB
T
j Dj

 !
xi

þxT
s

X
j

mjB
T
j ~rTj

 !
xj þ xT

s

X
j

mjB
T
j Ujt

 !
_gj

þxT
s

X
j

mjB
T
j Wjt

 !
Q j

i Ui� _gi

þ 1

2
xT

i

X
j

mjD
T
j Dj

 !
xi þ xT

i

X
j

mjD
T
j ~rTj

 !
xj

þxT
i

X
j

mjD
T
j Ujt

 !
_gj þ xT

i

X
j

mjD
T
j Wjt

 !
Q j

i Ui� _gi

þ 1

2
xT

j

X
j

mj~rj~r
T
j

 !
xj þ xT

j

X
j

mj~rjUjt

 !
_gj

þxT
j

X
j

mj~rjWjt

 !
Q j

i Ui� _gi

þ 1

2
_gT
j

X
j

mjU
T
jtUjt

 !
gj þ _gT

j

X
j

mjU
T
jtWjt

 !
Q j

i Ui� _gi

þ 1

2
_gT
i U

T
i�Q

j
i

X
j

mjW
T
jtWjt

 !
Q j

i Ui� _gi

þ _XT
X
j

mjA
T
j Wjt

 !
Q j

i Ui� _gi

ð38Þ

where Mj is the mass of the second-stage flexible appendage j
and mj is the mass of the specified point. The second-stage flex-
ible appendage j also has its elastic potential energy, which is



�
Fig. 6 A validation example of the composite flexible model.

Table 2 Validation results of the composite flexible dynamic

model.

Model The 1st

modal

frequency

(Hz)

The 2nd

modal

frequency

(Hz)

The 3rd

modal

frequency

(Hz)

Composite flexible model 0.4448 0.4691 1.2112

Hybrid coordinate model 0.4446 0.4688 1.2101

Relative error (%) 0.04 0.06 0.09
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Vj ¼
1

2
gT
j U

T
j K

j
nnUjgj ¼

1

2
gT
j Kjgj ð39Þ

where K j
nn is the stiffness matrix of the second-stage flexible

appendage j, and Uj and Kj are the normal mode matrix and
the eigenvalue matrix under constrained boundary condition,
respectively.

With the above derivations based on the substructure meth-
od and the hybrid coordinates, the system’s kinetic energy and
potential energy have been obtained. Using the Lagrange

equation, the composite flexible dynamic model for the arm
deploying phase can be obtained as follows:

M€Xþ Ps _xs þ Pi _xi þ Pj _xj þ Fti€gi þ Ftj€gj ¼ F ð40Þ

PT
s

€Xþ Is _xs þ Rsi _xi þ Rsj _xj þ Fsi€gi þ Fsj€gj ¼Mbt ð41Þ

PT
i

€Xþ RT
si _xs þ Ii _xi þ Rij _xj þ Fii€gi þ Fij€gj ¼Mit ð42Þ

PT
j

€Xþ RT
sj _xs þ RT

ij _xi þ Ij _xj þ Fjj€gj þ Fji€gi ¼Mjt ð43Þ

FT
ti

€Xþ FT
si _xs þ FT

ii _xi þ FT
ji _xj þ VT

ji
€gj þ Vii€gi þ Kigi ¼ 0 ð44Þ

FT
tj

€Xþ FT
sj _xs þ FT

ij _xi þ FT
jj _xj þ €gj þ Vi€gi þ Kigi ¼ 0 ð45Þ

where

M ¼Mb þMi þMj; Pj ¼
X
j

mjA
T
j ~rTj

Ps ¼
X
b

mbC
bT
o ~rTb þ

X
i

miA
T
i Bi þ

X
j

mjA
T
j Bj

Pi ¼
X
i

miA
T
i ~rTi þ

X
j

mjA
T
j Dj

Fti ¼
X
i

miA
T
i Uit þ

X
j

mjA
T
j WjtQ

j
i Ui� ; Ftj ¼

X
j

mjA
T
j Ujt

Is ¼
X
b

mb~rb~r
T
b þ

X
i

miB
T
i Bi þ

X
j

mjB
T
j Bj

Rsi ¼
X
i

miB
T
i ~rTi þ

X
j

mjB
T
j Dj; Rsj ¼

X
j

mjB
T
j ~rTj

Fsi ¼
X
i

miB
T
i Uit þ

X
j

mjB
T
j WjtQ

j
i Ui� ; Fsj ¼

X
j

mjB
T
j Ujt

Ii ¼
X
i

mi~ri~r
T
i þ

X
j

mjD
T
j Dj; Rij ¼

X
j

mjD
T
j ~rTj

Fii ¼
X
i

mi~riUit þ
X
j

mjD
T
j WjtQ

j
i Ui� ; Fij ¼

X
j

mjD
T
j Ujt

Ij ¼
X
j

mj~rj~r
T
j ; Fjj ¼

X
j

mj~rjUjt; Fji ¼
X
j

mj~rjWjtQ
j
i Ui�

Vji ¼
X
j

mjU
T
jtWjtQ

j
i Ui� ; Vii ¼ IþUT

i�Q
jT
i

X
j

mjW
T
jtWjt

 !
Q j

i Ui

F is the total external force of the satellite, Mbt is the total
external torque of the satellite bus b, Mit is the total external

torque of the first-stage flexible appendage i, Mjt is the total
external torque of the second-stage flexible appendage j, and
I is the identity matrix.

In the deploying process of a large deployable antenna, the
total external force and the external torque are relatively small,
so as the angular velocity of the flexible appendages. There-
fore, some small variables such as €X, F, xi, xj, Mit, and Mjt

can be omitted. In this way, the composite flexible dynamic
model can be further simplified as
Is Fsi Fsj

FT
si Vii VT

ji

FT
sj Vji I

2
64

3
75

_xs

€gi

€gj

2
64

3
75þ

0

Ki

Kj

2
64

3
75

xs

gi

gj

2
64

3
75 ¼

Mbt

0

0

2
64

3
75
ð46Þ

Utilizing the effective inertia matrix truncation criterion,

the number of modes included in the model of Eq. (46) can
be selected according to specified requirements.

To validate the composite flexible dynamic model for the
arm deploying phase, an example is made as shown in

Fig. 6. In this example, the structural frequencies are calcu-
lated according to the composite flexible dynamic model (Eq.
(46)) and the classical hybrid coordinate model, with the re-

sults compared in Table 2. In the composite flexible dynamic
model, the mass matrix and the stiffness matrix are

Marm ¼
Vii VT

ji

Vji I

" #
ð47Þ

Karm ¼
Ki

Kj

� �
ð48Þ
2.4. Flexible dynamic modeling for the reflector deploying phase

In the reflector deploying phase, it is difficult to establish a
practically applicable low-order dynamic model because there
are hundreds of movable parts in the reflector, and the config-

uration is uncertain during the reflector deploying. To solve
such problems, we take the modeling strategy of only building



Fig. 7 Finite element models for the four typical deploying states.

306 Z. Xing, G. Zheng
dynamic models for typical deploying states of the reflector. In
this paper, four states are modeled to approximately character-

ize the reflector deploying process, as shown in Fig. 7.
The inertia tensors, the structural frequencies, and the

rotational coupling coefficients of these typical deploying
states are calculated with the built hybrid coordinate flexible

dynamic model. Results of the calculation are given in the
Appendix A.

3. Attitude control for the deploying process

Considering the dynamic features of a satellite with a large
deployable antenna, major requirements on the attitude con-

trol design include the following:

(1) The closed-loop system stability should be independent

of the inertia tensor, the structural frequencies, and the
rotational coupling coefficients, for the fact that these
dynamic parameters change widely and are difficult to

be accurately estimated.
(2) The attitude control system should be designed with

multi-input multi-output (MIMO) approaches owing
to the notable coupling among the roll/pitch/yaw axis.

(3) The control method should have good disturbance
rejection capability for keeping attitude stability under
deploying disturbances such as locking/unlocking impact.

To satisfy above requirements, in this section, a robust con-
trol method is proposed. Then theH1 performance index opti-

mization is performed to optimize the disturbance rejection
capability, which yields a robust attitude control with good
disturbance rejection performance.

3.1. Robust control design

Let Æ(v) denote the variable dynamic parameters during the
deploying process, and subscripts ‘‘s’’, ‘‘n’’, and ‘‘a’’ denote
the south solar array, the north solar array, and the flexible an-
tenna, respectively (the satellite is shown in Fig. 1(e)). The hy-

brid coordinate dynamic equations can be written as

IsðvÞ€hþ Fs;s€gs þ Fs;n€gn þ Fs;aðvÞ€ga ¼ uþ w ð49Þ
€gs þ 2fsXs _gs þX2

sgs þ FT
s;s

€h ¼ 0 ð50Þ
€gn þ 2fnXn _gn þX2

ngn þ FT
s;n

€h ¼ 0 ð51Þ
€ga þ 2faðvÞXaðvÞ _ga þX2

aðvÞga þ FT
s;aðvÞ€h ¼ 0 ð52Þ

where h, Is(v), Fs, u, and w are the satellite attitude vector, the
inertia tensor of the whole satellite, the rotational coupling
coefficients, the control torque, and the disturbance torque.

Definitions for the modal parameters are the modal coordinate
vector g, the modal damping matrix f, and the modal fre-
quency matrix X. The output of this model is

y ¼ hT _hT
� �T ð53Þ

By defining a vector x ¼ hT gT
n gT

s gT
a

� �T
, the dynamic

model expressed by Eqs. (49)–(52) can be rewritten in a com-

pact form as

MðvÞ€xþ CðvÞ€xþ KðvÞx ¼ Suþ Sw ð54Þ

where

MðvÞ ¼

IsðvÞ Fs;n Fs;s Fs;aðvÞ
FT
s;n I

FT
s;s I

FT
s;aðvÞ I

2
6664

3
7775

CðvÞ ¼ diagð0; 2fnXn; 2fsXs; 2faXaðvÞÞ
KðvÞ ¼ diagð0;X2

n;X
2
s ;X

2
aðvÞÞ

S ¼ I 0 0 0½ �T
Lemma 1. If the parameters of Eq. (54) satisfy

MðvÞ > 0; CðdÞP 0; KðdÞP 0

then the system is detectable and stabilizable. 12
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If the location and velocity feedback

u ¼ � Gl Gv½ �y ð55Þ

y ¼ xTS _xTS½ �T ð56Þ

satisfy

Gl > 0; Gv > 0 ð57Þ

according to Eqs. (54)–(56), the closed-loop system can be gi-
ven by

MðvÞ€xþ CclosedðvÞ _xþ KclosedðvÞx ¼ Sw ð58Þ

where Cclosed(v) = C(v) + SGvS
T and Kclosed(v) = K(v) +

SGlS
T.

Lemma 2. If the system defined by Eqs. (53) and (54) is
detectable and stabilizable, then the closed-loop system (58)

satisfies 12:

CclosedðvÞ > 0;KclosedðvÞ > 0 ð59Þ

Lemma 3. (Schur Complementary): For a given symmetric

matrix R ¼ R11 R12

R21 R22

� �
> 0, the following propositions are

equivalent:

(1) R> 0

(2) R11 > 0; R22 � RT
12R

�1
11 R12 > 0

(3) R22 > 0; R11 � RT
21R

�1
22 R21 > 0

By generalizing the theorem proposed in Ref.,12 we can
arrive at Theorem 1.

Theorem 1. In the deploying process of a large deployable

antenna, for any M(v), Cclosed(v), and Kclosed (v), the closed-loop
system defined by Eq. (58) keeps stable.

Proof. According to Lemmas 1 and 2, for anyM(v), Cclosed (v),
and Kclosed(v), there is

MðvÞ > 0; CclosedðvÞ > 0; KclosedðvÞ > 0 ð60Þ

Let XT ¼ xT €xT½ �, then the closed-loop system can be

rewritten as

_X ¼ AðvÞXþ BðvÞw ð61Þ

where

AðvÞ ¼
0 I

�M�1ðvÞKclosedðvÞ �M�1ðvÞCclosedðvÞ

� �

BðvÞ ¼
0

M�1ðvÞL

� �
8>>><
>>>:

ð62Þ

The necessary and sufficient condition for the system (61)
stability is that there is a symmetric matrix P > 0, which sat-

isfies the following Lyapunov inequality

PAðvÞ þ ATðvÞP < 0 ð63Þ

Suppose that P0 ¼
KclosedðvÞ bMðvÞ
bMðvÞ MðvÞ

� �
and note that

Kclosed(v) > 0 and M(v) > 0, so that "P „ 0 yielding
PTKclosedðvÞP ¼ dKðPÞ > 0 ð64Þ
PTMðvÞP ¼ dMðPÞ > 0 ð65Þ

Therefore, 90 < b < b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dKðPÞ
dMðPÞ

s
, making PTKclosed(v)P �

b2PTM(v)P > 0, i.e.,

KclosedðvÞ � b2MðvÞ > 0 ð66Þ

According to Lemma 3, we can obtain that P0 > 0, and

P0AðvÞ þ ATðvÞP0 ¼ �QðvÞ ð67Þ

where QðvÞ ¼ 2bKclosedðvÞ bCclosedðvÞ
bCclosedðvÞ 2CclosedðvÞ � 2bMðvÞ

� �
.

Because Kclosed(v) > 0, Cclosed(v) > 0, and M(v) > 0,

"P „ 0, there is

2PTCclosedðvÞP ¼ dCðPÞ > 0 ð68Þ

PT 2MðvÞ þ CclosedK
�1
closedCclosed

2

	 

P ¼ dðPÞ > 0 ð69Þ

Hence, 90 < b < b2 ¼
dCðPÞ
dðPÞ , making

2Cclosed � b 2MðvÞ þ CclosedK
�1
closedCclosed

2

	 

> 0 ð70Þ

According to Lemma 3, we know that Q(v) > 0.

Overall, when 0 < b < min{b1,b2}, $P0 > 0 (symmetric)

satisfies the following Lyapunov inequality

P0AðvÞ þ ATðvÞP0 ¼ �QðvÞ < 0 ð71Þ

Therefore, in the deploying process of the antenna, the
closed-loop system keeps stable under uncertain M(v),
Cclosed(v), and Kclosed(v). h
3.2. H1 performance index optimization

According to the attitude control requirements of the antenna
deploying process, good disturbance rejection performance is
important to maintain the satellite attitude stable. Firstly, se-

lect the output z as

z ¼
h

g _h

� �
ð72Þ

where g is the weight to balance the angle or the angle velocity

design target. Taking the disturbance torque w as the external
input and z as the output, the system’s state equations can be
given by

_X ¼ AðvÞXþ BðvÞw ð73Þ
z ¼ CX ð74Þ

where

C ¼ diagðST; gSTÞ ð75Þ

According to the state Eqs. (73) and (74), the transfer func-
tion matrix from w to z can be expressed as

TðsÞ ¼ CðsI� AÞ�1B ð76Þ

and its H1 norm can be given by

kTðsÞk1 ¼ sup
x

rmaxðTðjxÞÞ ¼ Cee ¼ sup
kwk261

kzk2 ð77Þ



308 Z. Xing, G. Zheng
where rmax(T(jx)) is the maximum singular value of the

closed-loop frequency response, and Cee is the energy to energy
gain. By minimizing the H1 norm in Eq. (77), the disturbance
rejection performance can also be enhanced. Lemma 4 is intro-

duced to optimize the controller disturbance rejection.

Lemma 4.
29: Using the following optimizing calculation

min c ð78Þ

s:t:

ATPþ PA PB CT

BTP �rI DT

C D �rI

2
64

3
75 < 0 ð79Þ

P > 0 ð80Þ

The minimum H1 solution can be obtained.

Substituting P0 ¼
KclosedðvÞ bMðvÞ
bMðvÞ MðvÞ

� �
> 0 into Eq. (79)

and according to Lemma 3 (Schur Complementary), Eq. (79)
can be rewritten as

ðb2 þ 1ÞSST bSST

bSST ð1þ g2ÞSST

" #
< cQðvÞ ð81Þ

where

QðvÞ ¼
2bKclosedðvÞ bCclosedðvÞ
bCclosedðvÞ 2CclosedðvÞ � 2bMðvÞ

� �
ð82Þ

For any given dynamic model (58), the linear matrix
inequality (LMI) solver of the MATLAB can be used to solve

the LMI problem of Eq. (81), i.e., the controller
G ¼ Gl Gv½ � can be obtained which minimizes iT(s)i1. In
a practical design, considering some engineering factors such

as control authority limitation (induced by fly wheels), we can
obtain the controller G ¼ Gl Gv½ � which satisfies the sub-
optimal index

kTðsÞk1 < c0: ð83Þ
3.3. Controller parameter design for the deploying process

In the deploying process, matrices M(v), C(v), and K(v)
are time-varying due to the time-varying dynamic features,
which make it infeasible to use the LMI approach. Via the
Fig. 8 Finite element models for the
convex decomposition, this time-varying dynamics can be ex-
pressed as

MðvÞ ¼
Xn
l¼1

klMl ð84Þ

CðvÞ ¼
Xn
l¼1

klCl ð85Þ

KðvÞ ¼
Xn
l¼1

klKl ð86Þ

where n is the number of the typical states, kl is the weighting
coefficient, and Ml, Cl, and Kl are the typical state parameters.

In fact, these decompositions use the weighting sum of several
typical states to approximately describe the dynamic features
of any state in the deploying process. If the number of these

typical states is large enough and these typical states properly
distribute over the whole deploying stages, representing all the
key deploying motions, these approximations can properly de-

scribe the dynamic features of the antenna deploying process.
Then, with Eqs. (84)–(86), Eq. (81) can be rewritten asXn
l¼1

kl

ðb2 þ 1ÞSST bSST

bSST ð1þ g2ÞSST

" #
� cQlðvÞ

( )
< 0 ð87Þ

where

Ql ¼
2bðKl þ SGlS

TÞ bðCl þ SGvS
TÞ

bðCl þ SGvS
TÞ 2ðCl þ SGvS

TÞ � 2bMl

" #
ð88Þ

Then the optimization is turned into solving the following
LMI problem:

min c ð89Þ

s:t:
ðb2þ1ÞSST bSST

bSST ð1þg2ÞSST

" #
�cQlðvÞ<0 ðl¼1;2; . . . ;nÞ ð90Þ

Gl>0; Gv>0 ð91Þ

Clearly, it is difficult even impossible to establish Ml, Cl,
and Kl for each state in the deploying process. Therefore,

according to the aforementioned requirements to properly de-
scribe the deploying dynamic features, seven typical states are
selected in all, including the four typical states shown in Fig. 7

and the other three shown in Fig. 8, with the corresponding
descriptions and parameters listed in the Appendix A.

Taking b = 0.0001, g = 48.5366, and the sub-optimal tar-

get as 1 yields the following attitude controller
other three typical deploying states.
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Gl ¼ diagð�294;�294;�294Þ ð92Þ
Gv ¼ diagð�882;�881;�882Þ ð93Þ

The design principle can be summarized as follows:

(1) Adjust g to change the overshoot and settling time of the

attitude response.
(2) The main constraints of the optimization target is the

torque limitation induced by fly wheels, and the smaller

the H1 optimization target, the better the disturbance
rejection capability, but the higher the torque limitation
requirement.

4. Dynamics and control simulation of the deploying process

4.1. Whole deploying process simulation using the multi-rigid-
body dynamic model

Using the multi-rigid-body dynamic model for the whole
deploying process (proposed in Section 2.2) and the robust
attitude controller (proposed in Section 3), the whole

deploying process dynamics and control simulation can be
Fig. 9 Roll, pitch and yaw angle responses during the deploying

process.
performed. The roll, pitch and yaw angle responses during
the deploying process are shown in Fig. 9.

From the simulation data, we can obtain the following

results:

(1) In the whole deploying process, the variation range of

the roll angle is in ±0.05�, and those of the pitch and
yaw angles are ±0.8� and ±0.05�, respectively. The
stability and control authority requirements (<1 N Æ m)

are satisfied in the three directions, which indicates that
the attitude control method proposed in this paper can
maintain good performance under the condition of
widely changing dynamic parameters.

(2) The simulation results show that the main disturbance in
the deploying process is the reflector unlocking/locking
procedure. Therefore, except for a proper attitude

control design, an important factor for improving the
attitude response during the deploying phase is to
reduce the shocks generated by the unlocking/locking

mechanism.

4.2. Deployable arm deploying phase simulation using the
composite flexible dynamic model

Using the composite flexible dynamic model, the variations
of the dynamic characteristics during the arm deploying

phase can be obtained analytically. For example, the first
three frequencies during the arm deploying phase are given
in Fig. 10.

Similarly, the inertia tensor and the rotational coupling
coefficients can be obtained using this composite flexible dy-
namic model. Then the dynamic and control simulation can

be performed, results of which are shown in Fig. 11.
Simulation results shown in Figs. 11 indicate that, the

closed-loop system stability can be ensured even when flex-

ible dynamic parameters such as the structural frequencies
and the rotational coupling coefficients change in wide
ranges.

4.3. Reflector deploying phase simulation using the approximate
dynamic model

In the reflector deploying phase, the flexible dynamic models of

four typical states are built to approximately describe the
Fig. 10 The first three frequencies during the deployable arm

deploying phase.



Fig. 12 The first three frequencies during the reflector deploying

phase.

Fig. 13 Roll, pitch and yaw angle responses during the reflector

deploying phase.

Fig. 11 Roll, pitch and yaw angle responses during the deploy-

able arm deploying phase.
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dynamics. With this approach, the variation trend of the dy-
namic parameters, for example the first three modal frequen-

cies, can be obtained as shown in Fig. 12. The attitude
control results for the reflector deploying phase are shown in
Fig. 13.

These simulation results indicate that the attitude stability
can also be ensured in the phase of reflector deploying, which
means that the design requirements are satisfied with the pro-
posed controller in this paper.

5. Conclusions

(1) To describe a complicated antenna deploying process in
a practically realizable and low-order approach, this
paper develops three dynamic models. Among these

models, a multi-rigid-body dynamic model is established
to simulate the inertia tensor variation during the whole
deploying process, and a composite flexible dynamic

model for the deployable arm deploying phase is built
to analytically describe the flexible structural parame-
ters, while in the reflector deploying phase, a set of mod-
els are set up for several selected typical states to deal

with the problem of time-varying structural parameters.
(2) An attitude control method is proposed in this paper,

stability of which is independent of the time-varying

structural parameters. In order to maintain the
satellite attitude during the deploying process, the H1
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optimization approach is taken to achieve better distur-

bance rejection performance, hence a robust attitude
controller is obtained for the deploying process.

(3) A simplified cable dynamic model is developed. By

inserting this model into the multi-body dynamic
model built in the present paper, the unsynchronized
phenomenon, which has been discovered in practical
ground antenna deploying tests, can be rediscovered

from computer simulation.
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Appendix A. The selected seven typical states are listed and
illustrated in Table A1.

The inertia tensors of the typical states are (kgÆm2)

IA ¼
15319 �228 �838
�228 7012 53

�838 53 16949

2
64

3
75

IB ¼
16125 �160 �1722
�160 8068 64

�1722 64 17609

2
64

3
75

IC ¼
18523 �83 �3081
�83 10508 131

�3081 131 18927

2
64

3
75

ID ¼
22398 15 �4933
15 14530 215

�4933 215 21202

2
64

3
75

IE ¼
17351 �18 �880
�18 5713 �275
�880 �275 13868

2
64

3
75
Table A1 The selected seven typical states.

Sequence State Description

1 E Initial state

2 F Big arm deployed

3 G Big arm turned 90�
4 A Small arm deployed/reflector in initial state

5 B Reflector one third deployed (1/3)

6 C Reflector two thirds deployed (2/3)

7 D Reflector deployed and locked (final state)
IF ¼
15333 �346 �877
�346 4395 44

�877 44 14444

2
64

3
75

IG ¼
16485 �131 �795
�131 4354 �146
�795 �146 13240

2
64

3
75

where the subscript ‘‘A’’ denotes ‘‘State A’’, so as the other
subscripts ‘‘B’’, ‘‘C’’, ‘‘D’’, ‘‘E’’, ‘‘F’’, and ‘‘G’’. The structural
frequency matrices of the typical states are (rad/s)

XA ¼ diagð2:79; 2:95; 7:60; 10:98; 17:84; 24:55Þ

XB ¼ diagð0:79; 1:56; 2:38; 3:17; 4:50; 4:52Þ

XC ¼ diagð0:44; 0:70; 1:32; 2:03; 2:69; 3:38Þ

XD ¼ diagð0:79; 0:89; 2:07; 3:40; 5:56; 6:39Þ

XE ¼ diagð52:02; 59:81; 74:39; 81:51; 83:23; 92:62Þ

XF ¼ diagð4:18; 4:94; 6:37; 9:53; 10:38; 21:60Þ

XG ¼ diagð4:55; 4:92; 7:23; 9:49; 12:06; 25:45Þ

The rotational coupling coefficients of the typical deploying
states are

FA ¼
�0:87 7:31 3:15 2:38 �1:02 1:67

�50:25 �14:62 �8:77 19:77 0:99 10:93

9:12 57:49 �5:58 1:59 �7:16 5:08

2
64

3
75

FB ¼
�20:43 �3:63 2:55 13:53 �0:49 �2:90
�2:36 �62:78 22:38 �3:18 �17:31 �28:10
49:72 �4:99 �0:17 51:81 �10:41 4:06

2
64

3
75

FC ¼
�48:07 �1:92 3:54 13:57 3:24 �3:05
�3:11 �66:63 34:64 �3:28 0:86 �41:72
55:81 �7:07 0:92 42:92 �18:42 �2:07

2
64

3
75

FD ¼
4:36 8:37 �59:04 �3:15 �23:33 �1:57
103:49 6:49 2:67 �55:28 0:99 �6:70
7:23 �108:56 �40:97 1:34 �16:36 �1:17

2
64

3
75

FE ¼
�2:11 13:17 0:16 0:11 0:51 0:10

14:19 1:89 1:87 �0:40 �4:65 �3:45
�0:74 �5:73 2:25 �4:15 �1:60 0:41

2
64

3
75

FF ¼
7:86 3:87 4:84 �0:23 �2:27 �0:12
�4:92 �31:70 �3:36 9:85 �10:14 �4:97
22:75 0:73 28:30 �3:45 2:61 0:26

2
64

3
75

FG ¼
�2:99 �16:28 �1:585 �1:26 3:89 0:92

�17:36 5:07 �32:69 �6:63 �1:07 2:67

0:08 �34:74 4:45 11:31 4:83 3:68

2
64

3
75
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