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We establish the existence of a solution to the optimality equation for discounted 
finite Markov decision processes by means of Birkhoffs fixed point theorem. The 
proof yields the well-known linear programming formulation for the optimal value 
function while its dual characterizes the optimal value function as the maximum 
over all value functions. © 1986 Academic Press, Inc. 

For a discounted finite state and action Markov decision process (e.g., 
see [1, 2]), we call any solution V of the optimality equation 

Vi= max r(i, a) + fl ~ psi(a) , i =  1 - "  S ( o g )  
a = l . . A  j = l  

an optimal value function. Introducing the optimal reward operator 

T: ~s__, Rs 

c ( " )) v ~  max r ( i , a ) + f l  ~ p u ( a )  vj , i = l . . . S  
\ a ~  1..A j = l  

we may write (OE) as V= TV. 
The usual way to prove the existence of an optimal value function is to 

apply Banach's fixed point theorem to the contraction mapping T (e.g., see 
[3, 4]). The method of successive approximations applied to T is the value 
iteration of dynamic programming, which is not finite but returns the 
optimal policy of the decision process in a finite number of steps (turnpike 
theorems, cf. [5, 6]). 

Shapiro showed in [7]  that V can also be obtained by use of Brouwer's 
fixed point theorem. We do not know whether the algorithm of Scarf [8],  
proposed in [7]  for the computation of the fixed point of T, has any 
advantage over the value iteration. 

We give the proof for the existence of a solution to the optimality 
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equation that uses the monotonicity of T instead of its continuity. 
Moreover, we show that this access is equivalent to the linear program- 
ming approach to Markov  decision processes used first by D'Epenoux [-9] 
and Manne [-10] and studied extensively by Kallenberg [11]. 

First we give a formulation and a proof  of Birkhoffs fixed point theorem 
[12, 13]: 

Let L be a complete lattice and T: L ~ L isotone. Then there exists Ve L 
such that T V =  V. 

Proof Let S = { s ~ L : s > T s } ,  V = i n f S .  Then for any s e S  we have 
s> Ts> TV, which implies that V=infS__> TV and V~S.  Now 
TV > T( TV) implies TV e S, hence TV >__ V. 

The existence of an optimal value function now follows from Birkhoffs 
theorem and the following three lemmata. For this, let M = maxi, a Jr(i, a)[, 
2 = M / ( 1 - f l ) ,  l=(2 ,2 , . . . , 2 )eN  s, L={xe~S:lxil<__L i = I - - ' S } ,  and 
define the partial order > on L (resp. N s) by x __> y <=~ xi > yi, i = 1 -- '  S. 

LEMMA 1. L is a complete lattice. 

Proof Let A c L. If A = ~Z~ then inf A = I, or else the inf if given com- 
ponent-wise. 

LEMMA 2. T is isotone. 

Proof From x>=y it follows that ZS_lpi;(a) x j>ZS=lpo. (a)y  ;, 
i = 1 ...  S, a = 1 " " A ,  since pij(a) are not negative. Adding r(i, a) and tak- 
ing the maximum over all a yields Tx > Ty. 

LEMMA 3. T maps L to itself 

Proof The proof  given in [-7] is straightforward, using the contraction 
property of T. An alternative proof  is given by the fact that Tl<=l, 
T( - l) > - l and by the monotonici ty of T (note that l is the 1 and - l the 0 
of the lattice L). 

F rom the proof  of Birkhoffs theorem it follows that a solution of (OE) 
can be obtained by determining the least element v of L such that v >= Tv, 
that is, 

V = m i n { v e L :  v> Tv}. (1) 

Since the minimum in (1) exists, it can be obtained by minimizing Zs= l  vi. 
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Moreover, v > Tv is equivalent to v i > r(i, a) + fl Z s_ 1Pu(a) vj, i = 1... S, 
a = 1---A. Hence, a solution of (OE) is given by the optimal solution of 

S 

1) i ~ min, 
i = 1  

s 

vi-- fl ~ Pij(a)vj>>=r(i, a), 
j - - I  

1vii <L  

i = l - . . S ,  

i = l - - . S ,  

a = l . - ' A ,  

which is a linear programming problem (LP). 
The uniqueness of the optimal value function follows easily from the con- 

traction property of T. Since v > Tv implies v > V for any v • [~s, the fixed 
point V of T is also given by 

V= min{v • ~s: v> Tv}, (2) 

and is the optimal solution to 

S 

V i ~ min, 
i = 1  

s 

v i - f l  ~ pij(a) vj>_r(i, a), 
j = l  

V i • ~ ,  

i = I . - - S ,  

i = l - - . S .  

a = l . . . A ,  

The (lattice-theoretic) dual to (1) and (2) is given by 

V = m a x { v • L :  v< rv} = m a x { v •  Ns: v< rv}. (3) 

This cannot lead to a LP, since the set {v•L:  v< Tv} is, in general, not 
convex (see example below). 

Introducing for any policy f •  F := { g: S--, A } the operator 

Tr: ~s__, ~s 

v ~ ( r ( i , f ( i ) ) + f l  ~, p,j(f(i))vj),  i= I ' " S  
j = l  

and the value function V: as the fixed point of T:, we have as above 

v:= max{  • v=< 
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Since Tv=max{Tfv, f e F } ,  we can write (3) as 

V = m a x { v : 3 f e F :  v< T/v} = m a x  U {v: v< TFv } 
f~ F 

= m a x  { m a x  { v: v < Tsv }, f ~  F} = max { Vs, 7 s  F}, 

hence V is the maximum over all value functions VI, f e  F. 

EXAMPLE.  L e t  A = S = 2 ,  r(i, a )  = a - l ,  a = l ,  2 ,  i = l ,  2;  

p o ( a ) =  1, i+ j+aodd ,  
and fl  < 1. 

= 0 ,  i + j  + a e v e n ,  

Then {VE~S:u~Tv}={1) e~2;UI~I~-flU2, 
v1<0 ,  v2<0} ,  which is not a convex se t ,  

{v e ~2: vt > 1 + [1v2, v2 > 1 + [3vl } is  c o n v e x .  

v2 <-_ 1 + 3v, } ~ {v e ~2: 
while {veNS:v> Tv}= 
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