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Background: Information in Electronic Health Records (EHRs) are being promoted for use in clinical
decision support, patient registers, measurement and improvement of integration and quality of care,
and translational research. To do this EHR-derived data product creators need to logically integrate
patient data with information and knowledge from diverse sources and contexts.
Objective: To examine the accuracy of an ontological multi-attribute approach to create a Type 2 Diabetes
Mellitus (T2DM) register to support integrated care.
Methods: Guided by Australian best practice guidelines, the T2DM diagnosis and management ontology
was conceptualized, contextualized and validated by clinicians; it was then specified, formalized and
implemented. The algorithm was standardized against the domain ontology in SNOMED CT-AU. Accuracy
of the implementation was measured in 4 datasets of varying sizes (927–12,057 patients) and an inte-
grated dataset (23,793 patients). Results were cross-checked with sensitivity and specificity calculated
with 95% confidence intervals.
Results: Incrementally integrating Reason for Visit (RFV), medication (Rx), and pathology in the algorithm
identified nearly100% of T2DM cases. Incrementally integrating the four datasets improved accuracy;
controlling for sample size, data incompleteness and duplicates. Manual validation confirmed the accu-
racy of the algorithm.
Conclusion: Integrating multiple data elements within an EHR using ontology-based case-finding algo-
rithms can improve the accuracy of the diagnosis and compensate for suboptimal data quality, and hence
creating a dataset that is more fit-for-purpose. This clinical and pragmatic application of ontologies to
EHR data improves the integration of data and the potential for better use of data to improve the quality
of care.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Electronic Health Records (EHRs) and informatics-enabled inte-
grated care can improve chronic disease management (CDM).
There are benefits for health care providers and consumers through
more accurate and timely information exchange, improved work
efficiency by avoiding repetition of information collection and
tests, and better decision-making [1]. A widely used CDM is the
Chronic Care Model (CCM) [2,3]. The CCM has six dimensions:
health care organization, delivery system design, decision support,
clinical information systems, self-management support, and com-
munity resources/policies to optimize integrated CDM. The CCM
describes an activated patient engaged with an activated health
care team to optimize patient-centred care [4] and the activated
patients involved in self-management.

Patient registers or lists derived from routinely collected data
in EHRs may be developed through ‘‘phenotyping’’ [5] or ‘‘case-
finding’’ algorithms to identify cases. The increasing use of
health-related social media, particularly in socially shaped diseases
such as obesity and depression, can and should be exploited to
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enhance traditional ways of using EHRs to support care and care
delivery [6].

The limitations of traditional EHR-based registers have been
reported in the USA [7], UK [8,9], Australia [10] and Canada [11].
The Canadian diabetes registry to support patient identification
and disease tracking was scrapped due to cost overruns and failure
to deliver to expectations. Basic questions about the accuracy and
completeness of EHR-based registers were only partially answered.
The sensitivity (extent to which all patients with the disease were
included) and specificity (extent to which patients who do not
have the disease were excluded) of these registers were often not
recorded.

The STrengthening the Reporting of OBservational studies in
Epidemiology (STROBE) and REporting of studies Conducted using
Observational Routinely collected Data (RECORD) initiatives recog-
nize this gap. However, RECORD and STROBE are in their infancy
and, in our view, lack sufficient and necessary support of clinical
informatics [12,13] and knowledge engineering communities.
There is scope to make greater use of semantic web technologies
to exploit propositional knowledge (http://www.phekb.org/) as
well as other domain knowledge: about health professionals,
patients’ health status, and the health system.

The design of many EHRs and EHR-based disease registers is not
transparent [14], mostly to protect intellectual property. The qual-
ity of disease registers has been critiqued in the UK [9,14,15] and
those within an electronic Practice Based Research Network
(ePBRN) in Australia [16,17]. Whilst some progress has been made,
the core outstanding issue is uncertainty about true negatives,
namely people without diabetes who are identified as such.

1.1. Theoretical approach

Our theoretical approach combines ontological and realist
perspectives. We use Gruber’s classic description of an ontology
as the ‘‘specification of a conceptualization’’ [18]. We incorporate
Carlsson’s work as the guiding principle within a critical realist
approach; [19] whilst adopting the practicality of Pawson and
Tilley’s method of conducting a realist evaluation. They describe
this straightforwardly as: ‘‘What works for whom in what context’’
[20]. Pawson and Tilley also describe how: ‘‘Context + Mecha-
nism = Impact/Outcome (CMIO).’’ [21]. Finally we take a knowl-
edge engineering approach (KE) to linking key data, information
and knowledge.

1.1.1. Ontology
We develop a phenotype ontology for type 2 diabetes mellitus

(T2DM) with a focus on supporting multidisciplinary integrated
care of patients with chronic diseases capable of supporting the
implementation of the CCM. Our ontological approach recognizes
that the quality of EHRs and EHR-derived utilities such as patient
registers is influenced by the data, knowledge modeling, system
architecture, implementation protocols, training and support and
associated knowledge management and information governance
processes. We adopt an ontological layered approach [22] that
incorporated rule-based methods, clinical guidelines and data
quality dimensions.

Ontologies can potentially support several categories of integra-
tion including:

� Data integration: from disparate clinical data sources within and
across EHRs.
� Knowledge integration: from diverse health and social profes-

sionals’ knowledge.
� Clinical integration: linking clinical concepts to model the

phenotype.
� Interdisciplinary integration: bringing together multiple disci-
plines to model and support multidisciplinary coordinated care
and information exchange in CDM over the patient’s journey
through a complex ecosystem of clinical and social factors and
contexts such as co-morbidities, health risks, health financing
and insurance.

We used the Australian extension to the Systematized
Nomenclature Of Medicine Clinical Terms (SNOMED CT-AU�) as a
standardized terminology for knowledge representation in
multidisciplinary clinical practice. SNOMED CT-AU� is an ontology
which formally defines classes of medical procedure, pharmaceuti-
cal or biologic product, and body structure (http://www.nehta.
gov.au/our-work/clinical-terminology/snomed-clinical-terms). In
Australia, SNOMED CT-AU� Ontology (SCAO) is available in Web
Ontology Language (OWL) from the National E-Health Transition
Authority (NEHTA). Preliminary tests of SNOMED CT-AU demon-
strated its suitability for integration with our specified ontology
to identify patients with T2DM.

1.1.2. Realist approach
Our realist CMIO framework is applied as follows:

� The context is the health system, including multidisciplinary
teams, continuity and integration of care, quality improvement
indicators, disease surveillance and population health. We
emphasize a need to collect and manage complete, correct, con-
sistent and timely information about the cycle of care, risk fac-
tors, disease indicators, quality of life and patient satisfaction.
� The mechanism to meet this need are the informatics and

knowledge engineering tools, including the EHR, its data and
ontologies to conceptualize the concepts and relationships
required to implement and evaluate evidence-based best prac-
tice guidelines for a range of contexts and purposes.
� The outcome in this study is the accuracy of the disease register.

We aim to embed ‘‘ontological’’ thinking in clinical practice to
facilitate more realistic and relevant translation of clinical practice
into knowledge modeling to improve knowledge collection, man-
agement and use in practice as well as the design of relevant deci-
sion support systems. The congruence of clinical and technical
ontologies is essential to facilitate semantic and syntactic integra-
tion to promote the development of more proactive and intelligent
CDM systems to reduce the burden on providers while still inte-
grating patient information to guide integrated multidisciplinary
practice, research and policy.

1.1.3. Knowledge engineering (KE)
A KE approach [23] has the potential to integrate knowledge

with the complex processes, sophisticated functions and rich infor-
mation inherent in CDM. Ontologies are especially important when
dealing with people with multiple chronic diseases, whose health
data are often distributed among different health and social care
providers and in different formats.

1.2. Study setting

The ePBRN in South West Sydney provided the dataset to create
an EHR-based register of patients with diabetes, to assess the accu-
racy of the tools and ontology-specified algorithm, and to test the
resulting informatics and KE infrastructure developed. The records
were linked, using a probabilistic matching and record linkage tool
[24], to assess the extent of duplicate patient records and to avoid
double counting of patients who used multiple practices in the
study area (medical neighborhood).

http://www.phekb.org/
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This paper describes the use of ontology and KE tools to design,
develop, implement and validate the T2DM phenotyping algorithm
component of a comprehensive ontological approach to identifying
and managing patients with T2DM from primary care EHRs.
2. Methods

We adopted an approach we had previously piloted [25]:
2.1. Specification and conceptualization

The diabetes conceptual framework and, subsequent, multi-
attribute T2DM phenotyping algorithm was developed using exist-
ing clinical knowledge and best practice guidelines [26,27], and our
research into guideline implementation research findings [17].

A unified context was specified to act in the presence of differ-
ences in terminology and semantics from different EHRs, support
reusability and integration of data. This approach also supported
the development of automated systems for data annotation,
extraction and linkage, information retrieval, data quality manage-
ment (DQM) and natural-language processing [28]. By incorporat-
ing defined rules, the ontology generated logical inferences and
consequently controlled the inclusion/exclusion of relevant objects
[29]. Examples of this include: the patient with T2DM-related
Reason for Visit (RFV), medication (Rx), specific pathology test
(e.g. glycated haemoglobin (HbA1c), plasma glucose), service (e.g.
referral to a diabetologist), benefits paid (e.g. T2DM cycle of care),
risk factors (e.g. body mass index (BMI)), and/or a Family History
(FH) [30].

The conceptualization of the ontology was finalized through an
iterative process with the clinicians participating in the electronic
Practice Based Research Network (ePBRN).
2.2. Formalization and implementation

The ePBRN pilot dataset is an aggregate of EHR data from four
participating practices. These practices contain 93,000 pseudony-
mised patients, with over a 13 year review period more than
1.6 million consultation records, 690,000 diagnoses (including
RFV where it implies a diagnosis), 1 million prescription records,
and 1.6 million pathology records. We used Microsoft SQL
Server (http://www.microsoft.com/en-us/sqlserver/default.aspx)
to implement the algorithm. The repository for the ePBRN data
was created with five indexed tables:

� Diagnosis_Table including RFV,
� Prescription_Table for Rx,
� Pathology_Table for laboratory test name and result,
� Measures_Table provided additional information (e.g. BMI) and

the
� Family_History_Table.

We used these tables to support decisions about the patients
who do not have a DM label but have some relevant information
that suggest that they may have DM. This hybrid structure of rela-
tional and non-relational database attributes was developed to
deliver maximum efficiency and flexibility. The significant compu-
tational cost of a query across a number of large tables is reduced
by indexing and restricting the number of tables to those listed
above. Retrieval time is proportional to log(n), where n is the num-
ber of records. A properly cached index meant that lookup from our
1.6 million-row table was done in milliseconds. The algorithm was
implemented in T-SQL (Transact-SQL) (http://msdn.microsoft.com/
en-us/library/ms189826%28v=sql.90%29.aspx), an extension of
SQL (Structured Query Language) supported by Microsoft. Fig. 1
summarizes the flow of the T2DM case finding algorithm.

Finally, we checked for and excluded duplicate or multiple
records, to reduce the likelihood of double-counting in a geograph-
ical area where patients may use a number of general practices and
hospital-based services. While the duplicate check can be done at
every phase, we chose to check at the end to avoid excluding
DM-related data that may exist separately in the duplicated
records, either within a single practice or across a number of
practices.
2.3. Architecture of ontology infrastructure

The architecture to facilitate the classification and retrieval of
DM patients is shown in Fig. 2.

Patient data were extracted and selected from individual
participating general practice EHRs by GRHANITE™ (http://www.
grhanite.com), which provides a user accessible data repository
sitting over a secure server [24]. Patient data, associated with
ontology classes or properties, are sorted using -ontopPro-
(http://ontop.inf.unibz.it/), which is theoretically based on the
Ontology-Based Data Access principles [31]. The knowledge com-
ponent of the infrastructure, related to conceptual terminologies
was defined by the specification ontology, and built using SNOMED
CT-AU and Web Ontology Language (OWL) (http://www.w3.org/
TR/owl-features/) using the Protege open source ontology editor
(http://protege.stanford.edu/).

We used hierarchical conceptual modeling to create the T2DM
phenotype ontology, guided by the Australian National Guidelines
for T2DM and discussions with the research team and general
practitioners participating in the ePBRN. The formalized T2DM
phenotype ontology consists of 4 main classes: Actor, Content,
Mechanism and Impact; and 68 subclasses with object or data
properties specified for the study objective. We modeled the
domain specific knowledge for T2DM identification in SNOMED
CT-AU Ontology (SCAO), which has more than 300,000 concepts.

We used T-SQL™ to link the server objects in the SQL Server to
the heterogeneous datasets. The SQL query results were mapped,
using -ontopPro-, to the patient data in the T2DM phenotype ontol-
ogy; these in turn were associated with relevant classes. This
meant that the schematic or semantic heterogeneity challenges
faced were solved at either data or ontology level. The mapping
mechanism supplied by -ontopPro- enabled: the populating of
class members, assigning of property values, and incorporation of
schematic data in the ePBRN repository with semantic concepts
provided by the ontologies. Finally, we used T-SQL™ to implement
the phenotyping algorithm on the knowledge engineered ontology
infrastructure to identify patients with T2DM.
2.4. Testing and validating the accuracy of the implementation of the
algorithm

2.4.1. Measures of accuracy
We adopted the International Standard Organization (ISO) 5725-

1 definition of accuracy as consisting of trueness (proximity of mea-
surement results to the true value) and precision (repeatability or
reproducibility of the measurement) (see Fig. 3). Cases of DM in
medical records can be true or false positives (TP or FP), true or false
negatives (TN, FN). Accuracy is the proportion of true results
(TP + TN) in the population. Positive predictive value (PPV) is defined
as all positive test results (both TP + FP) that are truly positive.
Sensitivity (also called true positive rate) measures the proportion
of actual positives that are correctly identified as such
(TP/(TP + FP)). Specificity (also called true negative rate) measures
the proportion of negatives that are correctly identified as such

http://www.microsoft.com/en-us/sqlserver/default.aspx
http://msdn.microsoft.com/en-us/library/ms189826%28v=sql.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms189826%28v=sql.90%29.aspx
http://www.grhanite.com
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http://www.w3.org/TR/owl-features/
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http://protege.stanford.edu/


Fig. 1. Flowchart of the T2DM case finding algorithm.
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(TN/(TN + FN)). If prevalence is known, PPV may be determined
from Sensitivity (Sn) and Specificity (Sp), using the equation:

PPV ¼ Sn�prevalence=ðSn�prevalenceþð1�SpÞ� ð1�prevalenceÞÞ:

From the Sn, Sp and PPV (precision), we can compute the F-Measure,
weighted harmonic mean that takes into account both the precision
and recall of a test. The receiver operating characteristic (ROC)
curve is a graphical demonstration of the relationship between sen-
sitivity and specificity. We are only using a binary classification
algorithm and therefore not varying the decision threshold. In the
case of a binary test, the area under the ROC curve can be shown,
using simple geometry, to be [(Sn + Sp)/2].

Sample size: To achieve 95% confidence intervals (CI) for a
conservative estimate of 0.5 (+/�0.025) for Sn/Sp, for single or
multiple attributes, we calculated the sample size to be 5000
patients (Australian National Statistical Services online sample
size calculator; http://www.nss.gov.au/nss/home.nsf/pages/Sample+
size+calculator?OpenDocument).

2.4.2. Testing process
The T2DM phenotyping algorithm was first tested in the small-

est ePBRN practice (Practice #1), with the other practice datasets of
increasing sizes added one at a time. This enabled an assessment of
any effects of combining practice datasets of varying data quality
[32], as well as addressing semantic and technical integration
issues. Previous studies have found more than 300 terms which
might be associated with a diagnosis of DM [16].

The first pass through the data sets used Reason for Visit (RFV)
as the filter (Fig. 1).

In the second pass, a DM medication (Rx) filter was used on all
FP (Diagnoses/RFV of DM). All FP cases with a DM medication (both
oral and insulin) were re-categorized as TP (based on Diagnosis/
RFV or Rx). Presence of insulin only meant that the case was
T1DM and therefore not T2DM and therefore a TN. The Sn/Sp
(for diagnosis RFV or Rx) was calculated (see Fig. 3).

The third pass identified diagnostic pathology (Path) tests for
DM (HbA1c P 6.5%, fasting plasma glucose P 7, random plasma
Glucose P 11.1) as the filter. Abnormal DM specific tests meant
re-categorization as TP (RFV or Rx or Path). The Sn/Sp (diagnosis,
RFV or Rx or Path) was calculated.

The fourth pass used the presence of a DM-related diagnosis/
RFV on at least two visits, a family history of diabetes and
BMI P 30 as filters to gain further information about patients
who may be unrecognized diabetics or have pre-diabetes. We also
calculated 95% confidence intervals for the Sn/Sp using the Wilson
score method without continuity correction [33].

http://www.nss.gov.au/nss/home.nsf/pages/Sample+size+calculator?OpenDocument
http://www.nss.gov.au/nss/home.nsf/pages/Sample+size+calculator?OpenDocument


Fig. 2. Ontology architecture to classify and retrieve patients with T2DM.
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2.4.3. Triangulation
The accuracy (trueness + precision) was triangulated by feed-

back from clinicians at Practice 1 about the list of T2DM cases iden-
tified. We did not obtain feedback on the list of negatives.

3. Results

T2DM patients identified at each stage of the algorithm for the
ePBRN data repository (N = 23,793) were sorted into TP, TN, FP and
FN groups (Fig. 4). Similar summary figures were created for each
source practice datasets. We validated the accuracy of the T2DM
cases identified in Practice #1.

The Sn/Sp of the algorithm and 95% confidence intervals (CI) and
completeness of data in the patient record were calculated for each
of the datasets and summarized in Tables 1 and 2 respectively.
Table 1 demonstrates that, when taken together, the RFV and Rx
will accurately identify around 95% of the cases; when abnormal
pathology was included, the accuracy was almost unity. Table 1
Fig. 3. Contingency table summarizi
also shows the increasing precision (decreasing confidence inter-
vals) as the size of the source practice data set increases down
the table to the total of all 4 practices. The precision is adequate
once the data set meets or exceeds a required sample size.

While we conservatively calculated the required sample size as
5000 patients, it is possible that 3500 would be adequate (Table 2).
The size of the data set influenced the PPV of the algorithm, with-
out appreciable depreciation in the Sp or Negative Predictive Value
(NPV).

The result for Practice 1 (n = 927) reflected the participating
GPs’ reports that they did not routinely record diabetes type in
the RFV field, which affirmed the value of this approach as
the cases would not be identified as T2DM if we relied on the
diagnosis/RFV alone. The large 95% confidence intervals reflected
the small size of Practice 1 and, perhaps, the completeness of the
dataset (Table 3). The range of estimates of prevalence of T2DM
ranged from 2.6% in Practice 1 to 9.3% in Practice 2; the pattern
was not consistently related to the size of the data set, suggesting
ng accuracy measures adopted.



Fig. 4. T2DM cases identified by algorithm to 3rd level in ePBRN data repository.
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that data completeness was a factor. The prevalence of T2DM in
the combined data set was 6.7%.

4. Discussion

By integrating diagnosis/RFV, Rx and pathology, this algorithm
could identify T2DM cases with an accuracy of 99.9% and PPV of
96.4%. Using more than the three data elements did not improve
the accuracy significantly. The 6.7% prevalence of T2DM calculated
by the ontology-based ‘‘RFV or Rx or Pathology’’ algorithm was com-
parable with the prevalence of 6.5% reported by the local health
authority. In comparison, the prevalence of the T2DM reported
using RFV alone was only 5.8%. The 1:20 ratio of T1DM to T2DM
in the ePBRN data set was consistent with prevalence estimates
in the literature [27,34]. The size of the data repository (calculated
practice list size of 5000) was adequate for phenotyping; although
the actual requirement may be less. This confirms the importance
of calculating and achieving an adequate sample size to answer
specific questions.

The increasing yield of cases identified by using three attributes
(diagnosis/RFV, medication and pathology), while maintaining the
accuracy, suggested that this ontological multi-attribute approach
was more accurate than just relying on single attributes such as
disease codes. It provided some insight into the reliability and
validity of routinely collected data in the source practice records,
and likely degree of inter-practice variation. The method is trans-
parent and can be built on, with feedback given to practices and
practitioners to improve data recording and completeness. The
other dimensions of data quality (DQ) that the ePBRN research is
focused on – correctness and consistency [16,17] – have been
addressed within the ontology.

The findings of this study can guide the development of thresh-
olds for other possible associations and/or predictors of T2DM and
for other chronic diseases or co-morbidity, BMI (obesity), ethnicity,
and gender. The ontological approach has the potential to help pre-
serve the fidelity of searches in the real world of clinical practice
where the patient often requires multidisciplinary integrated care
for multiple health issues related to multimordibity and polyphar-
macy. This study validates the ontology-based approach to inte-
grate the attributes of a diabetic patient at the data (diagnosis/
RFV) and knowledge (diagnosis/RFV, Rx and Path) levels. We have
conducted but not reported on analyses on integration at the clin-
ical (BMI + FH) and interdisciplinary (referrals and use of T2DM
related services provided by other service providers) levels as they
were superfluous to this exercise to examine the accuracy of the
T2DM phenotyping algorithm. A substantive evaluation of the
inter-disciplinary aspect of this approach is planned for future
studies, using another clinical diagnosis.



Table 1
Increasing Sn/Sp with increasing size of source practice and ePBRN data repository.

Diabetes attribute TP FP TN FN Sn% 95% CI Sp% 95% CI

Source Practice 1 (n = 927)⁄ [T1DM = 2 (identified at RFV)]
Reason for Visit (RFV) 2 36 867 22 8.3 2.3–25.8 96.0 94.5–97.1
RFV or medication (Rx) 21 20 883 3 87.5 69.0–95.6 97.8 96.6–98.6
RFV or Rx or pathology 24 18 885 0 100 86.20–100 98.0 96.9–98.7
After duplicates removed 24 18 885 0 100 86.20–100 98.0 96.9–98.7

Source Practice 2 (n = 3,699)⁄ [T1DM = 7 (4 identified at RFV and 3 at Rx)]
Reason for Visit (RFV) 44 161 3196 298 12.9 9.7–16.8 95.2 94.5–95.9
RFV or medication (Rx) 303 10 3347 39 88.6 84.8–91.5 99.7 99.5–99.8
RFV or Rx or pathology 342 6 3351 0 100 98.8–100 99.8 99.6–99.9
After duplicates removed 342 6 3341 0 100 98.8–100 99.8 99.6–99.9

Source Practice 3 (n = 7110)^ [T1DM = 26 (21 identified at RFV and 5 at Rx)]
Reason for Visit (RFV) 242 82 6626 160 60.2 55.3–64.9 98.8 98.5–99.0
RFV or medication (Rx) 385 14 6694 17 95.8 93.3–97.3 99.8 99.6–99.9
RFV or Rx or pathology 402 13 6695 0 100 99.05–100 99.8 99.7–99.9
After duplicates removed 402 13 6644 0 100 99.05–100 99.8 99.7–99.9

Source Practice 4 (n = 12,057)# [T1DM = 47 (35 identified at RFV and 12 at Rx)]
Reason for Visit (RFV) 590 160 11,065 242 70.9 67.7–73.9 99.6 98.3–98.8
RFV or medication (Rx) 801 26 11,199 31 96.3 94.8–97.4 99.8 99.7–99.8
RFV or Rx or pathology 832 22 11,203 0 100 99.5–100 99.8 99.7–99.9
After duplicates removed 832 22 11,120 0 100 99.5–100 99.8 99.7–99.9

Practice 1 + 2 (n = 4626)) [T1DM = 9 (6 identified at RFV and 3 at Rx)]⁄
Reason for Visit (RFV) 46 197 4063 320 12.6 9.6–16.4 95.4 94.7–95.9
RFV or medication (Rx) 324 30 4230 42 88.5 84.8–91.4 99.3 99.0–99.5
RFV or Rx or pathology 366 24 4236 0 100 98.9–100 99.4 99.2–99.6
After duplicates removed 302 18 3295 0 100 99.7–100 99.5 99.1–99.7

Practice 1 + 2 + 3 (n = 11,736) [T1DM = 30 (22 identified at RFV and 8 at Rx)]⁄
Reason for Visit (RFV) 288 279 18,182 480 37.5 34.1–40.9 99.7 99.5–99.8
RFV or medication (Rx) 709 44 10,924 59 92.3 90.2–94.0 99.6 99.5–99.7
RFV or Rx or pathology 768 37 10,931 0 100 99.5–100 99.7 99.5–99.8
After duplicates removed 628 26 8390 0 100 99.4–100 99.7 99.5–99.8

Practice 1 + 2 + 3 + 4 (n = 23,793) [T1DM = 82 (62 identified at RFV and 20 at Rx)]⁄
Reason for Visit (RFV) 878 439 21,754 722 54.8 52.4–57.3 98.4 98.2–98.6
RFV or medication (Rx) 1510 70 22,123 90 94.4 93.1–95.4 99.6 99.6–99.7
RFV or Rx or pathology 1600 59 22,134 0 100 99.8–100 99.7 99.6–99.8
After duplicates removed 1593 59 21,522 0 100 99.8–100 99.7 99.6–99.8

NOTE: 24 patients had T2DM and T1DM RFV in records (2 from Practice 3 and 22 from Practice 4) and were categorized as T2DM.

Table 2
Accuracy measures by source practice and total data sets (to 3rd level).

Accuracy measures Practice 1 (N = 927) Practice 2 (N = 3699) Practice 3 (N = 7110) Practice 4 (N = 12,057) Total (N = 23,793)

Sensitivity 100.0 100.0 100.0 100.0 100.0
Specificity 98.0 99.8 99.8 99.8 99.7
PPV 57.1 98.3 96.9 97.4 96.4
NPV 98.2 100.0 100.0 100.0 100.0
Accuracy 98.1 99.8 99.8 99.8 99.8
Balanced accuracy 99.0 99.9 99.9 99.9 99.9
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4.1. International comparisons

The situation is similar in the authors’ countries – Australia, UK
and Canada – where similar problems and issues are faced. In the
UK the Royal College of General Practitioners (RCGP) and NHS Dia-
betes set up a classification group to create a pragmatic classifica-
tion for use in clinical records; the motivation for this was that
there were differences between prevalence in epidemiological
studies and those found in disease registers, The underlying issue
was errors in the coding and classification of diabetes [8,15,35].
This led to an educational initiative and the development of audit
tools, made freely available online, customized for each different
brand of computer system, to enable practices to improve their
data quality (www.clininf.eu/cod/). Superficially, all UK brands of
computer system use the same coding system; however, they use
different versions, there is variation in the drug dictionary, local
codes and how practitioners interface with those codes [36,37].
These are the same problems likely to be encountered in Australia
and Canada; though a common data extraction tool usable across
all brands of computer system simplifies, though does not solve,
the challenge of how to reliably identify people with a specific
phenotype [38].

Canada has had similar problems with developing diabetes and
other CDM registers [11] despite evidence pointing to the need for
one [39]. A foremost issue is that Canada has struggled with EHR
design and implementation issues due to overemphasis on data
collection and technology rather than meaningful application of
EHR data to support essential tasks such as CDM [40].
4.2. Limitations of the method

The manual validation of the positive T2DM cases found in a
small general practice may not address the accuracy measure ade-
quately. A PhD project manually audited all the records in the prac-
tice and confirmed the accuracy (Sensitivity and Specificity > 95%)

http://www.clininf.eu/cod/


Table 3
Completeness of source practice and multi-practice data set.

Attribute Completeness* (expressed as% total records)

Practice 1 (N = 927) Practice 2 (N = 3699) Practice 3 (N = 7110) Practice 4 (N = 12,057) Total (N = 23,793)

All Reason for Visit (RFV) 95.47 86.59 92.14 98.92 94.84
� All DM RFV 4.31 5.65 4.85 6.51 5.8
� T2DM RFV 0.2 1.4 3.7 4.9 3.9
All prescription (Rx) 79.61 94.48 95.82 95.86 95.00
� All diabetes Rx 2.37 8.35 5.37 6.64 6.36
� T2DM Rx 2.6 7.4 3.2 1.8 2.8
All pathology 15.86 61.21 62.95 65.56 62.17
� All HbA1c 0.76 7.98 1.32 1.47 2.41
� HbA1c P 6.5% 0.54 5.68 0.89 0.98 1.66
� All random BSL 1.29 10.11 45.67 55.04 43.16
� Random BSL P 11.1 0 0.49 1.39 1.97 1.49
� All fasting BSL 6.15 50.85 8.38 6.3 13.84
� Fasting BSL P 7 0.32 5.73 0.9 0.75 1.56
All measures 82.31 84.75 90.13 91.95 89.91
� All body mass index 11.54 23.95 19.89 16.12 18.28
� Body mass index P 30 5.39 10.84 9.68 7.92 8.8
Family History (FH) 18.23 8.57 10.28 9.06 9.7

* Completeness was defined as at least 1 record per patient. For pathology it was based on the test result, prescription on the medication name, and family history and RFV
on whether the record contained a text entry.
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in this practice; submitted elsewhere as a thesis paper. Finally,
data integrity and fidelity issues have not been addressed.

4.3. Next steps

The methodology is valid for quality improvement and research
purposes. The integration of biostatistics and informatics methods,
including KE, has triangulated and grounded the findings to
increase our understanding of the impact of data completeness
and dataset size on algorithm accuracy. The ePBRN research pro-
gram aims to extend this integrative work with data-driven techni-
cal and semantic ontological methods. Ontology-based methods
are essential to the automated integration and management of
the increasing volumes of complex clinical information from dispa-
rate EHRs. Basic data quality (DQ) metrics are important and can be
embedded in the ontology infrastructure to manage data reposito-
ries. We have selected completeness, correctness, consistency and
duplication (C3D) as the core DQ metrics for demographic and clin-
ical data collected, and to compare within and among EHRs. Both
clinical data and professional knowledge changes over time and
ontology-based KE tools are the most promising instruments to
deal with this temporal dimension cost-effectively.

Potentially, the concept of ontologically-specified mapping,
using -ontopPro- for instance, of relevant data/information may
allow automated (intelligent) focused access to distributed EHRs,
using only the required data and leaving the other data where they
are. This is becoming increasingly necessary when clinical and
social media data become so ‘‘big’’ that extracting, moving or copy-
ing the data becomes impractical.

Intelligent systems are needed to identify cases of a particular
phenotype and integrate patient information to guide practice,
research and policy. The ontology-based approach can address
the integration of patient data within a single and across multiple
EHRs to develop clinical phenotypes for CDM and integration of
clinical concepts to model the phenotype (clinical integration)
recognizing that CDM is non-linear, complex and operates in a
context that includes clinical factors such as co-morbidities, risk
factors and allergies and non-clinical factors such as health financ-
ing and insurance, to support tasks such as clinical care, practice
organization, and quality improvement initiatives. Ontological
methods also allow a clinician to look at many attributes of a single
patient while simultaneously permitting analysts to look at a sin-
gle attribute across many patients, within the same environment.
Models, methodologies and tools to support EHR-driven phenotyp-
ing in multiple contexts are needed to support well-coordinated
health promotion and prevention and management of chronic
disease.

5. Conclusion

We examined the accuracy of a T2DM phenotyping algorithm
and its ontology infrastructure in finding cases of T2DM in individ-
ual EHRs and a multi-EHR data repository. Our clinical informatics
program enables the reuse of the knowledge already represented
in SNOMED CT-AU to perform semantic retrievals for different
applications and clinical domains. The goal to create knowledge-
driven models to integrate disparate datasets and knowledge bases
to support the integrated care of patients with multiple chronic
diseases and on multiple medications has been partially achieved.
The ontologically driven approach can improve the accuracy of
EHR-based disease registers and potentially lead to improved and
coordinated chronic disease management, patient safety, and qual-
ity outcomes.
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