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Abstract

In this note, we consider all possible extensions G of a non-trivial perfect group H acting
faithfully on a K 3 surface X . The pair (X, G) is proved to be uniquely determined by G if the
transcendental value of G is maximum. In particular, we have G/H ≤ (Z/(2))⊕2, if H is the
alternating group A5 and normal in G.
c© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

We work over the complex numbers field C. A K3 surface X is a simply connected
projective surface with a nowhere vanishing holomorphic 2-form ωX . In this note, we will
consider finite groups in Aut(X). An element h ∈ Aut(X) is symplectic if h acts trivially on
the 2-form ωX . A group G N ⊆ Aut(X) is symplectic if every element of G N is symplectic.

According to Nikulin [13], Mukai [11] and Xiao [24], there are exactly 80 abstract
finite groups which can act symplectically on K 3 surfaces. Among these 80, there are
exactly four perfect groups (G is perfect if the commutator subgroup [G, G] = G):
A5, L2(7), A6, M20 = C4

2 : A5 (the Mathieu group of degree 20), where the first three
are also the only non-abelian simple groups which can act on a K 3 surface symplectically,
and the last is the symplectic finite group with the largest order 960.
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The common thing shared by the three bigger perfect groups G N = L2(7), A6 and M20,
is that they all can be extended to a bigger group G = G N · µ4 acting faithfully on a K 3
surface X . Moreover, the pair (X, G) turns out to be unique in each case, [9,18,6].

So one would expect that A5, being a smaller one, should be extendable to a bigger
group G = A5 · µI for some I ≥ 3. However, our result below shows that this is not the
case. Indeed, only I = 1, or 2 is possible.

Theorem A. Suppose that a finite group G acts faithfully on a K 3 surface. Suppose further
that G contains A5 as a normal subgroup. Then G equals one of the following four groups,
each realizable (see Example 1.10):

A5, S5, A5 × µ2, S5 × µ2.

To be precise, as in 1.0 below, for every finite group G acting on a K 3 surface X , the
symplectic elements of G (i.e., those h acting trivially on the non-zero 2-form ωX ) form a
normal subgroup G N such that G/G N ∼= µI (the cyclic group of order I in C∗). Namely,
we have G = G N · µI (see Notation below). The natural number I = I (G) is determined
by the action of G on X and called the transcendental value of (the action of) G.

It is proved in [9,18] and [6] that for the three bigger perfect groups G N above, there is
an extension G = G N ·µI such that the transcendental value I = I (G) equals 4. However,
for the smaller perfect (and also simple) group A5, we have:

Theorem B. Suppose that a finite group G acts faithfully on a K 3 surface. Suppose
further that G contains A5 as a normal subgroup. Then the transcendental value I (G)

equals 1 or 2 (both attainable as shown in Example 1.10).

A bit more surprise comes from the next result: the existence of action by a perfect group
(together with the transcendental value being 4) will guarantee the existence of action by a
quite large group G as well as the uniqueness of the pair (X, G).

Theorem C. Suppose that a finite group G acts faithfully on a K 3 surface X. Suppose
further that G contains a non-trivial perfect group H as a subgroup (not necessarily
normal). Then we have:

(1) The transcendental value I (G) ≤ 4.
(2) If I (G) = 4, then G = L2(7) ·µ4, A6 ·µ4 or M20 ·µ4, and the pair (X, G) is unique,

up to isomorphisms, in all three cases.

Remark D. (1) The three subgroups L2(7), A6 and M20 of G in Theorem C are all equal
to G N in the notation of 1.0, and are the only perfect groups among the 11 maximum
symplectic K 3 groups [11]. So the maximality of the transcendental value I (G) in the
situation of Theorem C guarantees the maximality of the symplectic part G N of G. This
also shows the importance of studying non-symplectic K3 groups.

(2) Regarding Theorems B and C, the readers may wonder whether the action of
Ã6 = A6 : µ4 on a K 3 surface X induces an action of H · µ4 on X with H = A5 a
smaller perfect (indeed simple) group. To elaborate, the unique group structure of Ã6 (and
also the unique pair (X, Ã6)) is described in [6,7]. In particular, the natural conjugation
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map Ã6 → Aut(A6) (x 7→ cx ; see Notation below) has the Mathieu group M10 as its
image; therefore, the conjugation µ4 action switches the two different conjugacy classes of
order 3 in A6 [4, Ch 10, Section 1.5]. On the other hand, for Ã6 to contain an A5 · µ4, the
conjugation µ4 action should stabilize at least one A5 in A6 and also preserve the unique
conjugacy class of order 3 in this A5, which is impossible.

(3) The same construction in [18, Appendix] shows that there is a smooth non-isotrivial
family of K 3 surfaces f : X → P1 such that all fibres admit A6 actions and infinitely
many of them are algebraic K3 surfaces. So, the symplectic part alone cannot determine
the surface uniquely, and the study of transcendental value is needed.

The main tools of the paper are the Lefschetz fixed point formula (both the topological
version and vector bundle version due to Atiyah–Segal–Singer [1,2]), the representation
theory on the K 3 lattice and the study in [26] on automorphism groups of Niemeier lattices
(in connection with Golay binary or ternary codes) where the latter is much inspired by
Conway–Sloane [4], Kondo [8] and Mukai [12].

The reduction to the study of automorphisms of Niemeier lattices was pioneered by
Nikulin (see e.g., [15, end of section 1.14]) and further developed by Kondo (see e.g. [8]).

We believe that the way of combining different very powerful machinaries to deduce
results as done in the paper should be applicable to the study of other problems. Our hum-
ble paper also demonstrates the powerfulness and depth of these algebraic results in the
study of geometry. The information we compute in Proposition 1.4 (and its generalization
in the future) should be of independent interest and use in understanding the geometry of
K 3 surfaces.

Note. “Maple” was used in solving the linear equations in the crucial Proposition 1.4. We
refer to Shimada [19–21] for more computations in Algebraic Geometry.

Notation. 1. When we write G = G N .µI we mean that G acts on a K 3 surface X
satisfying the situation in 1.0 below.

2. Sn is the symmetric group in n letters, An (n ≥ 3) the alternating group in n letters and
µI = 〈exp(2π

√
−1)/I 〉 the multiplicative group of order I in C∗.

3. For a group G, we write G = A.B if A is normal in G so that G/A = B. We write
G = A : B if we assume further that A is normal in G and B is a subgroup of G such
that the composition B → G → G/A = B is the identity (we say then that G is a
semi-direct product of A and B).

4. For groups H ≤ G and x ∈ G we denote by cx : H → G (h 7→ cx (h) = x−1hx) the
conjugation map.

5. For a K 3 surface X , we let SX and TX be the Neron–Severi and transcendental lattices.
So the K 3 lattice H2(X, Z) contains SX ⊕ TX as a sublattice of finite index.

1. Preparations and examples

1.0. In this section, we will prepare some basic results to be used later. Let X be a
K 3 surface with a non-zero 2-form ωX and let G ⊆ Aut(X) be a finite group of
automorphisms. For every h ∈ G, we have h∗ωX = α(h)ωX for some scalar α(h) ∈ C∗.
Clearly, α : G → C∗ is a homomorphism. A fact in basic group theory says that α(G) is
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a finite cyclic group, so α(G) = µI = 〈exp(2π
√
−1/I )〉 for some I ≥ 1. This natural

number I = I (G) is called the transcendental value of G. It is known that I = I (G) for
some G if and only if that the Euler function ϕ(I ) ≤ 21 and I 6= 60 [10].

Set G N = Ker(α). Then we have the basic exact sequence below:

1 −→ G N −→ G
α
−→ µI −→ 1.

For the G in the basic exact sequence, we write G = G N .µI , though there is no guarantee
that G = G N : µI (a semi-direct product).

Fact 1.0A. If G is a finite perfect group, i.e., the commutator group [G, G] = G
(especially if G is a non-abelian simple group like A5), then G = G N .

Fact 1.0B. G N acts trivially on the transcendental lattice TX (Lefschetz theorem on (1, 1)-
classes).

Fact 1.0C. If a subgroup H ≤ G N fixes a point P , then H < SL(TX,P ) ∼= SL2(C) [11,
(1.5)]. The finite subgroups of SL2(C) are listed up in [11, (1.6)]. These are cyclic Cn ,
binary dihedral (or quaternion) Q4n (n ≥ 2), binary tetrahedral T24, binary octahedral O48
and binary icosahedral I120.

Lemma 1.1. Suppose that G := A5 · µI (with G N = A5) acts faithfully on a K 3 surface
X.

(1) The Picard number ρ(X) ≥ 19, and I = 1, 2, 3, 4, 6. Moreover, ρ(X) = 20 if I ≥ 3.
(2) We have G = A5 : µI , i.e., a semi-product of a normal subgroup A5 and a subgroup

µI of G. Moreover, G = A5 × µI if I = 3.

Proof. (1) In the notation of [24, the list], ρ(X) = rank SX ≥ c + 1 = 19. Also the Euler
function ϕ(I ) divides rank TX = 22− ρ(X) by [13, Theorem 0.1]. So (1) follows.
(2) Let g ∈ G such that α(g) is a generator of µI . Since Aut(A5) = S5 > A5 and the
conjugation homomorphism A5 → Aut(A5) (x 7→ cx ) is an isomorphism onto A5, the
conjugation map cg equals c(12)a or ca on A5 for some a ∈ A. Replacing g by ga−1, we
may assume that cg = c(12) or cid. Thus g2 commutes with every element in A5. If 2|I ,
then g I

∈ Ker(α) = A5 is in the centre of A5 (which is trivial) and hence ord(g) = I ; thus
G = A5 : µI . If I = 3, then gcd(3, ord(g)/3) = 1 as proved in [5] or [16, Proposition
5.1]; so replacing g by g` with ` = ord(g)/3 (or 2ord(g)/3), we have G = A5 × 〈g〉 =
A5 × µ3. �

The third result below [13, Section 5] is crucial in classifying symplectic groups in [11].
The second uses the fact A5 ⊂ Aut(X) in an essential way.

Lemma 1.2. (1) Let h be a non-symplectic involution on a K 3 surface X. Then Xh is a
disjoint union of s smooth curves Ci with 0 ≤ s ≤ 10. To be precise, Xh (if not empty)
is either a disjoint union of a genus ≥ 2 curve C and a few P1’s, or a disjoint union of
a few elliptic curves and P1’s, or a disjoint union of a few P1’s.

(2) For h in (1), suppose further that A5 ⊆ Aut(X). Then χtop(Xh) ≤ 18.
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(3) If δ is a non-trivial symplectic automorphism of finite order on a K 3 surface X, then
ord(δ) ≤ 8 and X δ is a finite set. To be precise, if ord(δ) = 2, 3, 4, 5, 6, 7, 8, then
|X δ
| = 8, 6, 4, 4, 2, 3, 2, respectively; see [13, Section 5] for the proof. In particular,

if A5 ⊆ Aut(X) then
∑

δ∈A5
χtop(X δ) = 360 (see 1.0A).

Proof. (1) Locally, at a point P ∈ Xh , we have h|P : (x, y) → (x,−y) for some
coordinates around P , because h is non-symplectic. Thus around P , our Xh

= {y = 0}
which is smooth. For the range of s, see [14] or [25]. If Xh contains a genus ≥ 2 curve
C , then the big and nefness of C and the Hodge index theorem show that the other s − 1
curves are negative definite, whence are P1’s. So (1) is true.
(2) Let Xh

=
∐s

i=1 Ci be as in (1). Then χtop(Xh) =
∑s

i=1(2− 2g(Ci )) ≤ 2s ≤ 20. If (2)
is false, then s = 10 and Ci ∼= P1. Thus, by [17, Theorem 4], X equals X4: the unique K 3
surface of Picard number ρ(X) = 20 and |Pic X | = −4. Now A5 ⊂ Aut(X4), where the
latter is given in [23]. This is impossible by the simplicity of A5 and the precise description
of Aut(X4) there (see the proof of [6, Proposition 4.1(3)]). �

For an automorphism h on a smooth algebraic surface Y , we split the pointwise
fixed locus as the disjoint union of the 1-dimensional part and the isolated part: Y h

=

Y h
1−dim

∐
Y h

isol. The proof of (1) below is similar to that for (1) in 1.2.

Fact 1.3. (1) Y h
1−dim (if not empty) is a disjoint union of smooth curves.

(2) The Euler number χtop(Y h
1−dim) =

∑
C (2− 2g(C)) = 2nh for some integer nh , where

C runs in the set Y h
1−dim of curves.

(3) The Euler number χtop(Y h) = mh + 2nh , where mh = |Y h
isol|.

The results of [5] below follow from the application of the Lefschetz fixed point formula
to the trivial vector bundle in Atiyah–Segal–Singer [1,2, pages 542 and 567]. The results
themselves should be very useful and informative for other studies in the future.

Important Proposition 1.4. Let X be a K 3 surface and let h ∈ Aut(X) be of order I such
that h∗ωX = ηI ωX for some primitive I th root ηI of 1.

(1) Suppose that I = 3. Then mh = 3 + nh and hence χtop(Xh) = 3(1 + nh). Moreover,
−3 ≤ nh ≤ 6.

(2) Suppose that I = 4. Then mh = 4+ 2nh and hence χtop(Xh) = 4(1+ nh). Moreover,
−2 ≤ nh ≤ 4.

(3) Suppose that I = 3, or 4. If δ ∈ Aut(X) is symplectic of order 5 and commutes with
h. Then |Xhδ

| = 4.
(4) Suppose that I = 4. If δ ∈ Aut(X) is symplectic of order 3 and commutes with h then

6 ≥ |Xh2δ
| ≥ |Xhδ

| ∈ {2, 4, 6}.

Proof. (1) The first part is proved in [17, Lemma 2.3]. Note that h∗|TX can be diagonalized
as diag[η3, η

2
3]
⊕s (s ≥ 1) by [13, Theorem 0.1]. So as in 1.7 below, χtop(Xh) =

2 + Tr(h∗|TX ) + Tr(h∗|SX ) ≤ 2 − s + rank SX ≤ 21, whence nh ≤ 6. Also mh ≥ 0
implies that nh ≥ −3.
(2) As in [17, Lemma 2.3], we calculate the holomorphic Lefschetz number L(h) in
two ways as in [1,2, pages 542 and 567], where Xh

isol = {Pj |1 ≤ j ≤ mh} (so



124 D.-Q. Zhang / Journal of Pure and Applied Algebra 207 (2006) 119–138

h∗|TPj = (η−1
4 , η2

4) up to switching the coordinates of the tangent plane at Pj ), Xh
1−dim =

{Ck}, gCk = g(Ck) the genus, and η−1
4 the eigenvalue of the action h∗ on the normal

bundle of Ck (in the first equation below we used Serre duality, while the last is from the
first two with x = η4):

L(h) =

2∑
i=0

(−1)i Tr(h∗|H i (X,OX )) = 1+ η−1
4 ,

L(h) =

mh∑
j=1

a(Pj )+
∑

k

b(Ck),

a(Pj ) = 1/det(1− h∗|TPj ) = 1/(1− η−1
4 )(1− η2

4),

b(Ck) = (1− gCk)/(1− η4)− η4C2
k /(1− η4)

2
= (1− gCk)(1+ η4)/(1− η4)

2,

0 = −(1+ x−1)+ mh/(1− x−1)(1− x2)+ nh(1+ x)/(1− x)2.

Noting that x = η4 satisfies x2
= −1 and solving the last equation, we get mh =

4 + 2nh . The second part of (2) is similar to (1), noting that h∗|TX can be diagonalized
as diag[η4,−η4]

⊕s (s ≥ 1).

(3) & (4). In (4), note that Xhi δ
= Xhi

∩ X δ (i = 1, 2). So the inequalities there hold and
we have only to calculate |Xhδ

|; see 1.2.
Let g ∈ Aut(X) such that ord(g) = k I and g∗ωX = ηkωX where η = ηk I is a primitive

k I th root of 1. (We set g = hδ in (3) and (4).) If k ≥ 2 and gcd(k, I ) = 1 (these are
true in (3) and (4)), then g I is of order k and symplectic, so X g

⊆ X g I
is a finite set by

1.2. Namely, X g
= X g

isol = {Pj |1 ≤ j ≤ mg} say. Let Mg(i) be the set of points P in
X g satisfying g∗|TP = (η−i , ηk+i ) (up to switching the coordinates of the tangent plane
at P; so a(P) = 1/(1 − η−i )(1 − ηk+i ) in the notation for the formula of L(g)). Put
mg(i) = |Mg(i)|. Then for (I, k) = (3, 5) (the first case in (3)), we have X g

=
∐

Mg(i)
and mg =

∑
i mg(i), where i ∈ {1, . . . , 4, 11, 12}; for (I, k) = (4, 5) (the second case in

(3)), we have mg =
∑

i mg(i), where i ∈ {1, . . . , 4, 6, 7, 16, 17}; for (I, k) = (4, 3) (the
case in (4)), we have mg =

∑
i mg(i), where i ∈ {1, 2, 4, 10}.

As in (2), we have the following, where x = η = ηk I and i runs in the set specified
above:

0 = −(1+ x−k)+
∑

i

∑
P∈Mg(i)

a(P)

= −(1+ x−k)+
∑

i

mg(i)/(1− x−i )(1− xk+i ). (*)

For (I, k) = (3, 5), x satisfies the minimal polynomial Φg(x) = 1− x + x3
− x4

+ x5
−

x7
+ x8 and also x15

= 1, x10
= −1 − x5. Substituting these into (*) multiplied by the

common denominator (which is not zero), we will get an equation of degree ≤7 in x with
coefficients linear in mg(i). The minimality of Φg(x) implies that all 8 coefficients are
zero. Solving these 8 linear equations, we obtain, where mi = mg(i):

m1 = m4, m2 = −1+ m3, m11 = −1+ m4, m12 = m3. (**)
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By 1.2, we have 4 = mg3 ≥ mg =
∑4

i=1 mi +
∑12

i=11 mi = −2 + 3(m3 + m4). So
m3+m4 ≤ 2. This together with the condition mi ≥ 0 and the relations in (**), imply that
[m1, m2, m3, m4, m11, m12] = [1, 0, 1, 1, 0, 1]. In particular, mg = 4.

For (I, k) = (4, 5), x satisfies the minimal polynomial Φg(x) = 1− x2
+ x4
− x6
+ x8

and also x20
= 1, x10

= −1. As above, solving (*), we obtain, where mi = mg(i):

m1 = −3+ 2m3 − 3m4 + 4m6 − 2m7, m2 = −1+ m3 − 2m4 + 2m6,

m16 = −5+ 2m3 − 4m4 + 5m6 − 2m7, m17 = 3+ 2m4 − 2m6 + m7.
(***)

One can check that the following is the only possibility of mi satisfying the relations in
(***) and that 0 ≤ mi ≤ mg ≤ mg4 = 4 by 1.2; in particular, mg = 4:

[m1, m2, m3, m4, m6, m7, m16, m17] = [1, 1, 0, 0, 1, 0, 0, 1].

For (I, k) = (4, 3), x satisfies the minimal polynomial Φg(x) = 1 − x2
+ x4 and also

x12
= 1, x6

= −1. As above, solving (*), we obtain, where mi = mg(i):

m1 = 3+ 3m2 − 2m4, m10 = 1+ 2m2 − m4. (****)

One can check that the following are the only possibilities of mi satisfying the relations in
(****) and 0 ≤ mi ≤ mg ≤ mg4 = 6, 1.2; in particular, mg = 2, 4, 6 (so 1.4 is done):

[m1, m2, m4, m10] = [3, 0, 0, 1], [1, 0, 1, 0], [2, 1, 2, 1], [0, 1, 3, 0]. �

The following two results can be found in [13, Theorem 0.1], [10, Lemma (1.1)], or [18,
Lemma (2.8)].

Lemma 1.5. Suppose that X is a K 3 surface of Picard number ρ(X) = 20 and g an order-
4 automorphism such that g∗ωX = η4ωX with a primitive 4th root η4 of 1. Then we can
express the transcendental lattice TX as TX = Z[t1, t2] so that t2 = g∗(t1), g∗(t2) = −t1.
In particular, the intersection forms (ti · t j ) = diag[2m, 2m] for some m ≥ 1.

Now we assume that G = G N · µI (with I = I (G)) acts on a K 3 surface X . When
G N = A5, we will determine the action of G N on the Neron–Severi lattice SX of X :

Lemma 1.6. (1) Suppose that A5 acts on a K 3 surface X, and rank SX = 20 (this is true
if I ≥ 3 by 1.1). Then we have the irreducible decomposition below (in the notation
of Atlas for the characters of A5), where χ1 (the trivial character), χ4 and χ5 have
dimensions 1, 4 and 5, respectively, where χ ′i is a copy of χi :

SX ⊗ C = χ1 ⊕ χ ′1 ⊕ χ4 ⊕ χ ′4 ⊕ χ5 ⊕ χ ′5.

(2) For conjugacy class n A (and nB) of order n in A5 and the characters χi of A5, we
have the following Table 1 from [3], where Z is respectively 1A, 2A, 3A, 5A or 5B:

[χ1, χ2, χ3, χ4, χ5](Z) = [1, 3, 3, 4, 5], [1,−1,−1, 0, 1], [1, 0, 0, 1,−1],

[1, (1−
√

5)/2, (1+
√

5)/2, −1, 0], [1, (1+
√

5)/2, (1−
√

5)/2, −1, 0].

Proof. Applying the Lefschetz fixed point formula to the action of A5 on H∗(X, Z) =

⊕
4
i=0 H i (X, Z) and noting that H2(X, Z) contains SX ⊕TX as a finite index sublattice, we
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obtain (see also 1.0A–1.0C and 1.2):

2+ rank TX + rank(SX )A5 = rank H∗(X, Z)A5

=
1
|A5|

∑
a∈A5

χtop(Xa) = 360/60 = 6.

Thus rank S A5
X = 2. So the irreducible decomposition is of the following form, where

ai are non-negative integers:

S(X)⊗ C = 2χ1 ⊕ a2χ2 ⊕ a3χ3 ⊕ a4χ4 ⊕ a5χ5.

As in 1.7 below, using the topological Lefschetz fixed point formula, the fact that
rank T (X) = 2 and 1.0B, we have, for a ∈ A5, that:

χtop(Xa) = 4+ Tr(a∗|S(X)).

Running a through the five conjugacy classes and calculating both sides, using 1.2 and the
character Table 1 in (2), we obtain the following system of equations:

20 = 2+ 3(a2 + a3)+ 4a4 + 5a5,

4 = 2− (a2 + a3)+ a5,

2 = 2+ a4 − a5,

0 = 2+
1−
√

5
2

a2 +
1+
√

5
2

a3 − a4,

0 = 2+
1+
√

5
2

a2 +
1−
√

5
2

a3 − a4.

Now, we get the result by solving this system of Diophantine equations. �

1.7. Note that Aut(A5) = S5. For a group G = A5 ·µI (and the map α) in 1.0, we have the
natural homomorphism below, which is injective (since its restriction on A5 is an injection
onto A5 × (1)), where cx : a 7→ cx (a) = x−1ax is the conjugation map:

G −→ Aut(A5)× µI = S5 × µI ,

x 7→ (cx , α(x)).

Lemma. Suppose that G = A5·µ4 acts on a K 3 surface X (i.e., G N = A5 and I (G) = 4).
Then G = A5 : µ4, but G 6= A5×µ4. Our G → S5×µ4 (x 7→ (cx , α(x))) is an injective
homomorphism and the group structure of such G is unique up to isomorphisms.

Proof. By 1.1, we have G = A5 : µ4. Suppose the contrary G = A5 × µ4. Write µ4 =

〈g〉. In the notation of 1.6, the g either stabilizes χi or switches χi with χ ′i (i = 4 or 5;

then denoted as χi
g
←→ χi , and Tr(g∗|(χi ⊕ χ ′i )) = 0)). Since G stabilizes an ample line

bundle (the pull back of an ample line bundle on X/G) and since G acts on S A5
X (whose

C-extension is χ1 ⊕ χ ′1), we may assume that g∗|(χ1 ⊕ χ ′1) = diag[1,±1] w.r.t. a suitable
basis. If χi is g-stable then g∗|χi is a scalar ζ c

4 with ζ4 = exp(2π
√
−1/4), by Schur’s

lemma.
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Let a ∈ A5. Then (ga)∗|TX = g∗|TX (see 1.0B) and the latter can be diagonalized as
diag[ζ4, ζ

−1
4 ] by [13, Theorem 0.1] and 1.1. Hence Tr(ga)∗|TX = 0. By the topological

Lefschetz fixed point formula and noting that H2(X, Z) contains SX ⊕ TX as a sublattice
of finite index, we have χtop(X ga) = ⊕4

i=0 Tr(ga)∗|H i (X, Z) = 2 + Tr(ga)∗|SX +

Tr(ga)∗|TX = 2 + Tr(ga)∗|SX . For a = 5A (an order-5 element) in A5, by 1.4 and
Table 1 in 1.6 (and Schur’s lemma), we have: 4 = χtop(X g5A) = 2 + Tr(g∗|χ1 ⊕ χ ′1) +

Tr(g5A)∗|(χ4 ⊕ χ4)+ 0, so one of the following cases occurs (using Schur’s lemma):
Case (i). g∗|SX ⊗ C = diag[1,−1,−I4,−I4, ?, ?],
Case (ii). g∗|SX ⊗ C = diag[1, 1, χ4

g
←→ χ4, ?, ?],

Case (iii). g∗|SX ⊗ C = diag[1, 1, I4,−I4, ?, ?],
Case (iv). g∗|SX ⊗ C = diag[1, 1, ζ4 I4, ζ

−1
4 I4, ?, ?].

By 1.4, we have (*): −4 ≤ χtop(X g) = 4(1 + ng) = 0 (mod 4) with −2 ≤ ng ≤ 4.
So χtop(X g) = 4 in Cases (ii), (iii) and (iv) (using Schur’s lemma). Thus ng = 0 and
mg = 4 + 2ng = 4 by 1.4. Now A5 (commuting with g) acts on the four isolated
points Pi in X g , whence fixing these four points (see 1.8 below). So A5 < SL(TX,P1),
contradicting 1.0C. In Case (i), by the fact (*) above and Schur’s lemma, we have
χtop(X g) = 2+ (1− 1− 4− 4+ 5+ 5) = 4, which will lead to the same contradiction.

By the proof of 1.1 and the result in the above paragraph, we may assume that there is
an order-4 element g ∈ G such that α(g) is the generator of µ4, so that G = A5 : 〈g〉 =
A5 : µ4 and the conjugation map cg = c(12) on A5. Clearly, the group structure of G is
unique. The lemma is proved. �

The two results below are either easy or well known and will be frequently used in the
arguments of the subsequent sections.

Lemma 1.8. Let f : A5 → Sr (r ≥ 2) be a homomorphism.
(1) If r = 2, 3, or 4, then f is trivial.
(2) If Im( f ) is a transitive subgroup of the full symmetry group Sr in r letters {1, 2, . . . , r}

(whence r ≥ 5 by (1)), then r ||A5| with |A5|/r equal to the order of the subgroup of
A5 stabilizing the letter 1, so r ∈ {5, 6, 10, 12, 15, 20, 30}.

Lemma 1.9. (1) Aut(P1) includes A5 but not S5 [22, Theorem 6.17].
(2) If id 6= f ∈ Aut(P1) is an automorphism of finite order, then f fixes exactly two points

of P1 (by the diagonalization of a lifting of f to GL2(C)).
(3) If fr (r = 2 or 3) is an order −r automorphism of an elliptic curve E, then either fr

acts freely on E, or the fix locus satisfies |X fr | = 4 (resp. = 3) if r = 2 (resp. r = 3)
(by the Hurwitz formula).

The examples below are to show the existence of the groups in Theorems A and B.

Example 1.10. (1) G = G N · µI = S5 × µ2 (with G N = S5, I = 2) acts on a K 3.
Let X = {

∑5
i=1 X i =

∑6
i=1 X2

i =
∑5

i=1 X3
i = 0} ⊂ P5. We define the symplectic

action of σ ∈ S5 on X (the same as in [11, no 3]) and a non-symplectic involution g on X
as follows (see [11, Lemma 2.1]):

σ : [X1 : · · · : X6] 7→ [Xσ(1) : · · · : Xσ(5) : (sign σ)X6],

g : [X1 : · · · : X6] 7→ [X1 : · · · : X5 : −X6].

Let G = 〈S5, g〉. Then G = S5 × 〈g〉 is the required one.
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(2) G = G N .µI = A5 : µ2 = S5 (with G N = A5, I = 2) acts on a K 3 surface.
Let X = {

∑6
i=1 X i =

∑6
i=1 X2

i =
∑6

i=1 X3
i = 0} ⊂ P5. We define the action of

σ ∈ S6 on X (the same as in [11, no 2]):

σ : [X1 : · · · : X6] 7→ [Xσ(1) : · · · : Xσ(6)].

Since A6 is perfect, its action on X is symplectic 1.0A. If we let G̃ = S6, then G̃ = G̃ N .µ2
with G̃ N = A6 and I = 2 (see [11, Lemma 2.1]). Now a subgroup G = S5 of G̃ is the
required one.

2. The determination of some topological invariants

Let X be a K 3 surface with a faithful action by a group of the form G := A5 · µ4 as in
1.0. Then G = A5 : µ4 and the unique group structure of such G is given in 1.7.

We will use the notation in 1.6. Let g be a generator of µ4 < G. We may also assume
the following is true (after a change of g):

Lemma 2.1. (1) The conjugation action cg(.) = c(12)(.) on A5. So 〈g2
〉 is in the centre of

G and G → Aut(A5) = S5 (x 7→ cx ) induces an isomorphism G/〈g2
〉 ∼= S5.

(2) g∗ωX = ζ4ωX with ζ4 = exp(2π
√
−1/4).

(3) g2 is a non-symplectic involution on X and commutes with every element in A5.
(4) Set σ = (12)(34) and τ = (345). Then g commutes with every element in 〈σ, τ 〉 = S3.

So G = A5 : µ4 > S3 × µ4.
(5) Set σ = (12)(34), γ = (123). Then g normalizes 〈σ, γ 〉 = A4. So G = A5 : µ4 >

A4 : µ4. Set σ1 = σ and σ2 = (13)(24) (all in A4).
(6) g stabilizes both χ1 and χ ′1; the restrictions g∗|χ1 = id and g∗|χ ′1 = ±id (after a

change of basis).
(7) g either stabilizes both χ4 and χ ′4 (so the restrictions of g∗ on χ4 and χ ′4 are scalar

multiplications), or switches χ4 with χ ′4.
(8) g either stabilizes both χ5 and χ ′5 (so the restrictions of g∗ on χ5 and χ ′5 are scalar

multiplications), or switches χ5 with χ ′5.

(9) Both g2
|χi and g2

|χ ′i (i = 4, 5) are scalar multiplications.

Proof. (1) is from the last part of the proof of 1.7. (2) is true because g is a generator of
µ4 < G = A5 : µ4. (3), (4) and (5) follow from (1). (6) is true because G = A5 : 〈g〉
stabilizes one ample line bundle (the pull back of an ample line bundle on X/G) and g acts
on S A5

X (defined over Z) whose C-extension is χ1 ⊕ χ ′1. (7), (8) and (9) are from the form
of the decomposition in 1.6 and Schur’s lemma. �

In the rest of the section, we will prove the Key result 2.2 below which will be used in
the proof of Theorems A, B and C in Section 3 and is the consequence of 2.6–2.9 below.
The representation theory (mainly on A5) is fully applied. We divide into cases according
to whether g stabilizes or switches χi (i = 4, 5).
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Key Proposition 2.2. Suppose that G = A5 : µ4 acts on a K 3 surface X. Then with the
notation in 2.1 and 1.4, (ng, mg; χtop(X g), χtop(X gτ ), χtop(X g2τ ), χtop(X g2

)) is one of
the following:

(1, 6; 8, 2, 6, 0), (0, 4; 4, 4, 6, 0), (−1, 2; 0, 6, 6, 0).

The result below is used in 2.4 to determine the representation of S3 × µ4 < G there.

Lemma 2.3. (1) Suppose that g stabilizes χ4. Then w.r.t. one and the same basis
{v1, . . . , v4}, we have the following matrix representation of A4 : µ4 on χ4:

σ ∗1 = diag[1, 1,−1,−1], σ ∗2 = [1,−1, 1,−1],

γ ∗ =


1 0 0 0
0 0 0 β4
0 β2 0 0
0 0 β3 0

 , g∗ =


α1 0 0 0
0 α2 0 0
0 0 0 α5
0 0 α4 0

 .

We have exactly the same kind of matrix representation of A4 : µ4 w.r.t. one and the
same basis {v′1, . . . , v

′

4} of χ ′4. But we use β ′i and α′i for γ ∗|χ ′4 and g∗|χ ′4 instead.

(2) Suppose g stabilizes χ5. Then w.r.t. one and the same basis {y1, . . . , y5}, we have the
following matrix representation of A4 : µ4 on χ5, where η3 is a primitive 3rd root of 1:

σ ∗1 = diag[1, 1, 1,−1,−1], σ ∗2 = [1, 1,−1, 1,−1],

γ ∗ =


η3 0 0 0 0
0 η2

3 0 0 0
0 0 0 0 b5
0 0 b3 0 0
0 0 0 b4 0

 , g∗ =


0 a2 0 0 0
a1 0 0 0 0
0 0 a3 0 0
0 0 0 0 a5
0 0 0 a4 0

 .

We have exactly the same kind of matrix representation of A4 : µ4 w.r.t. one and the
same basis {y′1, . . . , y′5} of χ ′5. But we use b′i and a′i for γ ∗|χ ′5 and g∗|χ ′5 instead.

Proof. This follows from the character Table 1 in 1.6 and the fact that the conjugation cg
fixes σ1, and exchanges σ2 with σ1σ2 and γ with γ−1. �

Lemma 2.4. (1) Suppose that g stabilizes χ4. Then w.r.t. one and the same basis
{u1, . . . , u4}, we have the following matrix representation of S3 × µ4 on χ4, where
η3 is a primitive 3rd root of 1. Moreover, d3 = ±d1 and (g2)∗|χ4 = d2

1 id:

τ ∗ = [1, 1, η3, η
2
3], g∗ = diag[d1,−d3, d3, d3],

σ ∗ = diag
[

1,−1,

(
0 1
1 0

)]
.

We have exactly the same kind of matrix representation of S3 × µ4 w.r.t. one and the
same basis {u′1, . . . , u′4} of χ ′4. But we use d ′i for g∗|χ ′4 instead.

(2) Suppose that g stabilizes χ5. Then w.r.t. one and the same basis {x1, . . . , x5}, we have
the following matrix representation of S3 × µ4 on χ5, where η3 is a primitive 3rd root
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of 1. Moreover, e2 = ±e1, (g2)∗|χ5 = e2
1 id (and e1 equals a3 in 2.3):

τ ∗ = diag[1, η3, η
2
3, η3, η

2
3], g∗ = [e1, e2, e2,−e2,−e2],

σ ∗ = diag
[

1,

(
0 1
1 0

)
,

(
0 1
1 0

)]
.

We have exactly the same kind of matrix representation of S3 × µ4 w.r.t. one and the
same basis {x ′1, . . . , x ′5} of χ ′5. But we use e′i for g∗|χ ′5, instead.

Proof. (1) follows from the character Table 1 in 1.6 and the fact that g commutes with
both σ, τ , if we claim only g∗|χ4 = diag[d1, d2, d3, d3] instead. It suffices to show that
d2 = −d3. On the one hand, over the eigenspace V4(σ = −1) ⊂ χ4 of σ corresponding
to the eigenvalue −1, we have g∗|V4(σ = −1) = diag[d2, d3]. On the other hand, by 2.3,
g∗|V4(σ = −1) = diag[

√
α4α5,−

√
α4α5]. Thus d2 = −d3. Now d1 = ±d3 follows from

the fact that (g2)∗|χi is a scalar.

(2) is similar, except the determination of ei in g∗ = diag[e1, e2, e2, e4, e4]. Indeed,
comparing the diagonalization in 2.3 and here we see also that diag[e2, e4] = g∗|V5(σ =

−1) = diag[
√

a4a5,−
√

a4a5], whence e4 = −e2. Taking the trace in 2.3 and here, we
obtain a3 = Tr(g∗|χ5) = e1. �

Lemma 2.5. (1) Suppose that g switches χ4 with χ ′4. Then w.r.t. one and the same basis
{u1, . . . , u8}, we have the following matrix representation of S3×µ4 on χ4⊕χ ′4, where
η3 is a primitive 3rd root of 1. Moreover, (g2)∗|χ4 = (d1d5) id = (g2)∗|χ ′4:

τ ∗ = [1, 1, η3, η
2
3, 1, 1, η3, η

2
3],

σ ∗ = diag
[(

1 0
0 −1

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)]
,

g∗ =



0 0 0 0 d5 0 0 0
0 0 0 0 0 d6 0 0
0 0 0 0 0 0 d7 0
0 0 0 0 0 0 0 d8
d1 0 0 0 0 0 0 0
0 d2 0 0 0 0 0 0
0 0 d3 0 0 0 0 0
0 0 0 d4 0 0 0 0


.

(2) Suppose that g switches χ5 with χ ′5. Then w.r.t. one and the same basis {x1, . . . , x10},
we have the following matrix representation of S3 × µ4 on χ5 ⊕ χ ′5, where η3 is a
primitive 3rd root of 1. Moreover, (g2)∗|χ5 = (e1e6) id = (g2)∗|χ ′5:

τ ∗ = [1, η3, η
2
3, η3, η

2
3, 1, η3, η

2
3, η3, η

2
3],

σ ∗ = diag
[

1,

(
0 1
1 0

)
,

(
0 1
1 0

)
, 1,

(
0 1
1 0

)
,

(
0 1
1 0

)]
,
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g∗ =



0 0 0 0 0 e6 0 0 0 0
0 0 0 0 0 0 e7 0 0 0
0 0 0 0 0 0 0 e7 0 0
0 0 0 0 0 0 0 0 e9 0
0 0 0 0 0 0 0 0 0 e9
e1 0 0 0 0 0 0 0 0 0
0 e2 0 0 0 0 0 0 0 0
0 0 e2 0 0 0 0 0 0 0
0 0 0 e4 0 0 0 0 0 0
0 0 0 0 e4 0 0 0 0 0


.

Proof. The proof is similar to 2.4. �

To prove 2.2, we consider first the case where both χ4 and χ5 are g-stable:

Lemma 2.6. Suppose that both χ4 and χ5 are g-stable.

(1) We have the following, where by
∑

d1, etc. we mean d1 + d ′1, etc.:

χtop(X g±) = 2+ Tr(g∗|χ1 ⊕ χ ′1)+
∑

(d1 + d3 + e1),

χtop(X g−1τ∓) = χtop(X gτ±) = 2+ Tr(g∗|χ1 ⊕ χ ′1)+
∑

(d1 − 2d3 + e1),

χtop(X g2
) = 2+

∑
(4d2

1 + 5e2
1),

χtop(X g2τ±) = 2+
∑

(d2
1 − e2

1).

(2) We have d4
1 = e4

1 = (d ′1)
4
= (e′1)

4
= 1 and d3 ∈ {±d1}, d ′3 ∈ {±d ′1}.

(3) Among six 4th roots of 1: e1, e′1, di , d ′i (i = 1, 3), either all six of them are primitive, or
exactly e1, e′1 are primitive, or exactly the di , d ′i (i = 1, 3) are primitive 4th roots of 1.

(4) 2.2 holds.

Proof. (1) and (2) follow from 2.4. For (3), the formula for χtop(X g2
) in (1) and its upper

bound 18 in 1.2 imply that at least one of the six 4th roots of 1 in (3) is primitive. Now
(3) is a consequence of (2) and the description of χtop(X g) and χtop(X gτ ) in (1) and the
difference (i.e., 3

∑
d3 = 3(d3 + d ′3)) of which must be real numbers (indeed, integers).

To prove (4), we apply (3). If exactly these four: di , d ′i (i = 1, 3) are primitive 4th roots

of 1, then χtop(X g2τ ) = 2 + (−2) − 2 < 0, contradicting 1.4. If all these six in (3) are
primitive 4th roots of 1, then χtop(X g) and χtop(X gτ ), given in (1) and being real numbers,
must all be equal to 2+ Tr(g∗|χ1 ⊕ χ ′1); hence they are all equal to 4 — the only possible

common value of these two, by 1.4; but then χtop(X g2τ ) = 2 + (−2) − (−2) = 2 < 4 =
χtop(X gτ ), a contradiction to 1.4.

Thus, exactly e1, e′1 are primitive 4th roots of 1, while di , d ′i ∈ {±1} (i = 1, 3). So (*):

−2 ≤ χtop(X g) ≤ 8. Also χtop(X g2
) = 2 + 4 × 2 + 5 × (−2) = 0 and χtop(X g2τ±) =

2+ 2− (−2) = 6. Now (1) implies that χtop(X gτ±)+ 3
∑

d3 = χtop(X g) = 0 (mod 4) by
1.4, and also

∑
d3 = d3 + d ′3 ∈ {0,±2} and χtop(X gτ±) ∈ {2, 4, 6} by 1.4. These and (*)

above infer that the cases in 2.2 occur. The lemma is proved. �
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The first two assertions below are consequences of 2.4 and 2.5 and an argument similar
to 2.6.

Lemma 2.7. Suppose that g switches χ4 with χ ′4 but keeps χ5 (and χ ′5) stable.
(1) We have the following, where δ ∈ S3 = 〈σ, τ 〉 and by

∑
e1 etc. we mean e1 + e′1 etc.:

χtop(X g−1δ−1
) = χtop(X gδ) = 2+ Tr(g∗|χ1 ⊕ χ ′1)+

∑
e1,

χtop(X g2
) = 2+ 8d1d5 + 5

∑
e2

1,

χtop(X g2τ±) = 2+ 2d1d5 −
∑

e2
1.

(2) We have e4
1 = (e′1)

4
= (d1d5)

2
= 1. Either {e1, e′1} = {±

√
−1}, or e1, e′1 ∈ {±1}.

(3) 2.2 holds.

Proof. To prove (3), by (1) χtop(X g) (= 0 mod 4) and χtop(X gτ ) (∈ {2, 4, 6}) are equal

(see 1.4). Hence they are all equal to 4. If both e1, e′1 are in {±1}, then χtop(X g2τ ) =

2 + 2d1d5 − 2 ≤ 2 < 4 = χ(X gτ ), contradicting 1.4. Thus, {e1, e′1} = {±
√
−1}. By 1.4,

we have 4 = χtop(X gτ ) ≤ χtop(X g2τ ) = 2 + 2d1d5 + 2, whence the latter equals 6 and

d1d5 = 1. Now χtop(X g2
) = 2 + 8 + 5 × (−2) = 0. Therefore, the second case in 2.2

occurs. This proves the lemma. �

Lemma 2.8. Suppose that χ4 (and χ ′4 are) is g-stable but g switches χ5 with χ ′5.
(1) We have the following, where by

∑
d1 etc. we mean d1 + d ′1 etc.:

χtop(X g±) = 2+ Tr(g∗|χ1 ⊕ χ ′1)+
∑

(d1 + d3),

χtop(X g−1τ∓) = χtop(X gτ±) = 2+ Tr(g∗|χ1 ⊕ χ ′1)+
∑

(d1 − 2d3),

χtop(X g2
) = 2+ 4

∑
d2

1 + 10e1e6,

χtop(X g2τ±) = 2+
∑

d2
1 − 2e1e6.

(2) We have d4
1 = (d ′1)

4
= (e1e6)

2
= 1 and d3 ∈ {±d1}, d ′3 ∈ {±d ′1}.

(3) Either the four 4th roots of 1: di , d ′i (i = 1, 3) are all in {±
√
−1}, or these four are all

in {±1} (so e1e6 = −1 and χtop(X g2
) = 0 by 1.2).

(4) 2.2 holds.

Proof. (1)–(2) are consequences of 2.5 and 2.6, while the proof of (3)–(4) are similar to
the argument for the case of 2.6. Indeed, if the first (resp. second) situation in (3) occurs,
then a contradiction (resp. 2.2 holds). This proves the lemma. �

Lemma 2.9. Suppose that g switches χ4 with χ ′4 and χ5 with χ ′5. Then 2.2 holds.
To be precise, we have the following, where δ is in S3 = 〈σ, τ 〉, where (d1d5)

2
=

(e1e6)
2
= 1:

χtop(X g−1δ−1
) = χtop(X gδ) = 2+ Tr(g∗|χ1 ⊕ χ ′1),

χtop(X g2
) = 2+ 8d1d5 + 10e1e6,

χtop(X g2τ±) = 2+ 2d1d5 − 2e1e6.
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Proof. The formulae or equalities are consequences of 2.4 and 2.5. As in 2.7, the formulae
in (1) and 1.4 imply that χtop(X g) = χtop(X gτ ) = 4. The formula for χtop(X g2τ ) and its
lower bounder 4 = χtop(X gτ ) by 1.4 infer that it equals 6 and d1d5 = 1, e1e6 = −1. This
proves the lemma. The proof of 2.2 is completed. �

3. The proofs of Theorems A–C

In this section we shall prove Theorems A–C. We first prove the result below which is
a consequence of 3.2–3.8 below.

Theorem 3.1. (1) There is no faithful group action of the form A5 · µ4 (see 1.0) on a K 3
surface.

(2) If A5 · µI acts faithfully on a K 3 surface, then I = 1, or 2.

(2) follows from (1), 1.1 and [26, Theorem 3.1]. Let us prove 3.1 (1). Suppose the
contrary that G := A5 · µ4 acts on a K 3 surface X . Then G = A5 : µ4 and the unique
group structure of such G is given in 1.7. We use the notation in 2.1 and 2.2. First, we need:

Proposition 3.2. Suppose that G = A5 : µ4 acts on a K 3 surface X. Then with the
notation in 2.1, the fixed locus X g2

= C
∐6

i=1 Di is a disjoint union of a genus-7 curve C
(hence C2

= 12) and six smooth rational curves. Both C and
∑6

i=1 Di are G-stable.

Proof. We apply 2.2. Then we always have χtop(X g2
) = 0. Also 1.4 implies that X g2

⊇

X g
6= ∅, so either X g2

=
∐s

i=1 Ei with 1 ≤ s ≤ 10 (by 1.2) is a disjoint union of a few
smooth elliptic curves Ei (so X g

1−dim is, if not empty, a disjoint union of some of the Ei ’s,

and hence ng = 0 in the notation of 1.4), or X g2
= C

∐s
i=1 Di is a disjoint union of a

smooth curve C and s smooth rational curves Di with 9 ≥ s = g(C)− 1 ≥ 1 (see 1.2).
Consider the case where X g2

=
∐s

i=1 Ei . Then ng = 0 and (ng, mg;χtop(X g),

χtop(X gτ ), χtop(X g2τ ), χtop(X g2
)) = (0, 4; 4, 4, 6, 0). Note that |X g

isol| = mg = 4. We
may assume that E1 contains an isolated g-fixed point. Since the restriction g|E1 is now of
order 2, this E1 contains all four isolated g-fixed points by 1.9. Now g commutes with every
element of 〈σ, τ 〉 = S3 as mentioned in 2.1, and hence there is a natural homomorphism
S3 → S4 (= the full symmetry group of the 4-point set X g

isol). By 1.2 and 1.9, the restriction
τ |X g

isol 6= id. So the image of this homomorphism equals one of the four 1-point (say P1)
stabilizer subgroups (∼= S3) in S4. This leads to that S3 < SL(TX,P1), contradicting 1.0C.

Next we consider the case where X g2
= C

∐s
i=1 Di . We claim that s = 1, 5, 6. Since g2

is in the centre of G by 2.1, our G acts on X g2
and hence stabilizes C and permutes Di ’s.

Note that C and the A5-orbits of {D1, . . . , Ds} will give linearly independent classes in
S A5

X ⊗Q. Since the latter is of rank 2 by 1.6, this A5 acts transitively on the set {D1, . . . , Ds}

and hence the image of the natural homomorphism A5 → Ss is a transitive subgroup of
Ss . Now the claim follows from 1.8.

We assert that C is not g-fixed. Indeed, let δ = (13)(24), then cδ(g) = gσ with
σ = (12)(34) (because cg = c(12) on A5). Hence X gσ

= δ(X g). So δ(C) is contained in

X gσ
⊆ X g2

(noting that (gσ)2
= g2), whence it equals the unique curve C of genus ≥ 2
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in X g2
. Thus C = δ(C) is pointwise gσ -fixed. However, C is also pointwise g-fixed,

whence it is pointwise σ -fixed. This contradicts 1.2. So the assertion is proved.
We claim that s = 1 is impossible. Consider the case s = 1. Then G = A5 : 〈g〉 acts

on the set {C, D1} and hence stabilizes both C and D1. If D1 is pointwise g-fixed, then as
above, D1 would be pointwise (gσ and hence) σ -fixed, a contradiction. So the restriction
g|D1 is not identity. We consider the natural homomorphism f : S5 = A5 : 〈g〉 =
G/〈g2

〉 → Aut(D1) (see 2.1), where g is the coset in 〈g〉/〈g2
〉 containing g. Clearly, the

restriction f |A5 is an injection by 1.2. Hence |Ker( f )| ≤ 2 and Ker( f ) is normal in S5.
So Ker( f ) = (1) and S5 ∼= f (S5) < Aut(P1), contradicting 1.9.

We still have to rule out the case s = 5. Since C is not pointwise g-fixed as proved
above, X g

1−dim is (if not empty) a disjoint union of ng/2 (≥0) of Di ’s. If τ = (345)

stabilizes some D j then τ fixes exactly two points on D j by 1.2 and 1.9. Since |X τ
| = 6,

this τ stabilizes at most three D j ’s. Thus we may assume that τ permutes D1, D2, D3 while
it stabilizes D4, D5. Now the commutability of g with τ implies that g stabilizes each Di
(i = 1, 2, 3); also none of Di (i = 1, 2, 3) is pointwise g-fixed, for otherwise all these three
Di (forming one τ -orbit) are pointwise g-fixed, whence ng ≥ 3, contradicting 2.2. Thus,
mg = |X

g
isol| ≥

∑3
i=1 |D

g
i | = 6. So the first case in 2.2 occurs and ng = 1, mg = 6. Here

ng = 1 implies that (after switching D4 with D5 if necessary) D5 is pointwise g-fixed, and
D4 is g-stable but not g-fixed. This leads to 6 = |X g

isol| ≥
∑4

i=1 |D
g
i | = 8, a contradiction.

So 3.2 is proved. Indeed, for the last part, note that g2 is in the centre of G by 2.1 and hence
G acts on X g2

. �

We continue the proof of 3.1 (1). In the notation of 3.2, we set D =
∑6

i=1 Di and
L0 := Z[C, D]. Then we have:

Lemma 3.3. Suppose that G = A5 : µ4 acts on a K 3 surface X.

(1) L0 is a sublattice (with intersection form diag[12,−12]) of S A5
X of finite index d1. In

particular, SG
X = S A5

X , i.e., g∗|S A5
X = id.

(2) If d1 > 1, then d1 = 2 and S A5
X equals Z[u1, u2] with u1 =

1
2 (C + D) and

u2 =
1
2 (C − D) and with the intersection form U (6), i.e., u2

i = 0 and u1 · u2 = 6.

Proof. (1) Clearly, S A5
X ⊇ SG

X ⊇ L0 by 3.2. Now (1) follows from the fact that rank S A5
X =

2 by 1.6.
(2) Suppose that d1 > 1. Let θ = 1

12 (aC + bD) be in S A5
X ⊆ L∨0 = Hom(L0, Z) =

Z[C/12, D/12] but not in L0. Since −2b/12 = θ · D1 ∈ Z, we have 6|b. This and
(a2
− b2)/12 = θ2

∈ Z imply that 12 divides a2, whence 6|a. So modulo L0, our
θ = C/2, or D/2 or (C + D)/2. Since θ2

∈ 2Z, we have θ = (C + D)/2 and hence
S A5

X = Z[C, (C + D)/2] = Z[(C + D)/2, (C − D)/2]. The lemma is proved. �

Set L = H0(X, Z) which contains SX ⊕ TX as a sublattice of finite index. Also L A5

contains S A5
X ⊕ TX as a sublattice of finite index d by 1.0A and 1.0B.

Lemma 3.4. The quotient L A5/(S A5
X ⊕ TX ) is 2-elementary of order d and isomorphic to

(0) (d = 1), Z/(2) (d = 2) or (Z/(2))⊕2 (d = 4).
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Proof. For a lattice M , we denote by M∨ = Hom(M, Z) the dual and AM = M∨/M the
discriminant group. Then we have, where ι is the inclusion:

S A5
X ⊕ TX ⊆ L A5 ⊆ (L A5)∨ ⊆ (S A5

X )∨ ⊕ T∨X ,

ι : L A5/(S A5
X ⊕ TX )→ A

S
A5
X
⊕ ATX .

Let pr1 and pr2 be the projections from A
S

A5
X
⊕ ATX to its first and second summands,

respectively. Since S A5
X and TX are primitive in L A5 , both compositions pri ◦ι are injective.

In particular, the quotient group in 3.4 is regarded as a subgroup of a bigger group ATX ,
whence it is generated by 2 elements because the same is true for the bigger group (since
rank TX = 2 by 1.1). We still have to show that this quotient group is 2-elementary.

Take a coset θ from the quotient group in 3.4. In the notation of 1.5, we write

θ = u +
1

2m
(at1 + bt2) ∈ (S A5

X )∨ ⊕ T∨X .

Regarding θ as an element of A
S

A5
X

via the injection pr1 ◦ ι, we have by 3.3, modulo

S A5
X ⊕ TX , that

0 = g∗θ − θ =
1

2m
[a(g∗t1 − t1)+ b(g∗t2 − t2)] =

1
2m
[−(a + b)t1 + (a − b)t2].

So 2m divides a + b, a − b (and hence 2a and 2b) because TX is primitive in L . Thus
m divides a and b and we write a = ma′ and b = mb′ so that θ = u + 1

2 (a′t1 + b′t1).

Therefore, modulo TX , we have 2u = 2θ ∈ 2LG N ⊂ LG N , whence 2u ∈ L∩(S A5
X )∨ = S A5

X
(because the latter is primitive in L). So 2θ = 0. The lemma is proved. �

Lemma 3.5. One of the following cases occurs.

(1) We have m = 5. Both the quotients S A5
X /L0 and L A5/(S A5

X ⊕ TX ) are isomorphic to
Z/(2). Moreover, the discriminant form of (L A5)∨/L A5 ∼= (Z/(30))⊕2 is given in [26,
Theorem 2.1] (corresponding to the matrix M1 there) and generated by the cosets εi
with ε1 = e∗1, ε2 = e∗2 + e∗3 + e∗4 and the intersection form (note that ε2

i is in Q/2Z
while ε1.ε2 is in Q/Z):

(εi .ε j ) =

(
−23/30 −1/5
−1/5 −35/30

)
.

(2) We have m = 10, S A5
X /L0 ∼= Z/(2) and L A5/(S A5

X ⊕ TX ) ∼= (Z/(2))⊕2.

(3) We have m = 5, L0 = S A5
X and L A5/(S A5

X ⊕ TX ) ∼= (Z/(2))⊕2.

Proof. In the notation of 3.3 and 3.4, we have −(122)(4m2) = |L0||TX | = d2
1 d2
|L A5 |. On

the other hand, −|L A5 | = 302, 3 × 102, 202, 3 × 202, 3 × 402 by the calculation in [26,
Theorem 2.1]. Then the lemma follows easily. �

Lemma 3.6. The case (3) in 3.5 does not occur.
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Proof. Consider the case (3) in 3.5. Let θ be an element in L A5 but not in the smaller set
S A5

X ⊕TX . We claim that θ2
∈ 2Z implies that modulo this smaller set, our θ equals some θ j

below, where u1 := C , u2 := D and TX = Z[t1, t2] as in 1.5. Here θ j :=
1
2 (t1+ t2)+ 1

2 u j .
Indeed, since the quotient group in 3.5(3) is 2-elementary, we can write, modulo the

smaller set, that θ = 1
2 (a1t1 + a2t2 + b1u1 + b2u2) with ai , b j in {0, 1} but not all zero.

Indeed, (a1, a2) 6= (0, 0) 6= (b1, b2) because both S A5
X and TX are primitive in L . Now

modulo 2Z, we have the following, so the claim follows:

1
2
(a2

1 + a2
2)+ b2

1 + b2
2 =

2m

4
(a2

1 + a2
2)+

12
4

(b2
1 − b2

2) = θ2
= 0.

Since θ1 − θ2 is not in L A5 (not in L at all, by the primitivity of S A5
X in L), at most one of

θ j is in L A5 . So L A5/(S A5
X ⊕ TX ) is of order ≤ 2, a contradiction. �

We start anew. By 3.3 and 3.6, the lattice S A5
X equals Z[u1, u2] with u1 =

1
2 (C + D)

and u2 =
1
2 (C − D), and has the intersection form U (6).

Lemma 3.7. The case (2) in 3.5 is impossible.

Proof. Take θ in L A5 but not in the smaller set S A5
X ⊕ TX . As in 3.6, θ2

∈ 2Z implies that
modulo the smaller set, our θ is one of the following:

θ i
=

1
2

ti +
1
2
(u1 + u2), θ j =

1
2
(t1 + t2)+

1
2

u j .

Since θ1
−θ2 is not in L A5 (not in L at all), not both θ i are in L A5 . By the same reasoning

not both θ j are in L A5 . Since L A5/(S A5
X ⊕ TX ) ∼= (Z/(2))⊕2 is generated by two elements,

one of θ i (i = 1, 2) and one of θ j ( j = 1, 2) are in L A5 . But θ i .θ j =
2m
4 +

6
4 =

13
2 , which

is not an integer. This is a contradiction. �

Lemma 3.8. Suppose the case (1) in 3.5 occurs. Then we have:

(1) L A5 is generated by SX , TX and θ = 1
2 (t1 + t2 + u1 + u2).

(2) The discriminant group AL A5 = (L A5)∨/L A5 (with the dual (L A5)∨ = Hom(L A5 , Z))
is generated by the cosets δ j ( j = 1, 2) which (together with the intersection form) is
given as follows (where t∗i .t j = δi j , and u∗i .u j = δi j in Kronecker’s symbol):

δ1 = t∗2 + u∗1 + 2u∗2 =
1
10

t2 +
1
6
(2u1 + u2), δ2 = t∗1 + u∗1 =

1
10

t1 +
1
6

u2,

(δi .δ j ) =

(
23/30 1/3

1/3 1/10

)
.

Proof. (1) can be proved as in 3.6, by making use of that θ2
1 ∈ 2Z for every θ1 in L A5 .

(2) Since δi .θ , δi .t j and δi .u j are all in Z by a direct calculation, we see that both δi are
in (L A5)∨. One checks easily that the subgroup 〈δ1, δ2〉 of the discriminant group in (2) is
isomorphic to (Z/(30))⊕2, whence this subgroup is indeed the whole discriminant group
in (2) (because the latter is of order 302 by 3.5). This proves the lemma. �
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Here comes the punch line. By 3.5–3.8, there is an isometry ϕ : 〈ε1, ε2〉 −→ 〈δ1, δ2〉,

so for some integers a, b, c, d , we can write (ϕ(ε1), ϕ(ε2)) = (δ1, δ2)
(

a c
b d

)
. Thus,

−23/30 = ε2
1 = ϕ(ε1)

2
= (aδ1 + bδ2)

2
=

1
30

(23a2
+ 3b2

+ 20ab) (mod 2Z),

−23 = 23a2
+ 3b2

+ 20ab (mod 60Z).

The congruence above implies that modulo 4, we have 1 = −a2
− b2, which is

impossible. This completes the proof of 3.1 (1) and also the whole of 3.1.
We now prove Theorems A–C in the introduction. In Theorem C, we have H ≤ G N

by 1.0A; so H is either one of A5, L2(7), A6 and M20 = C⊕4
2 : A5, by [24, the list]; if

H = L2(7) then G N = H by [11] and Theorem C follows from [18, Main Theorem].
Therefore, we may assume that in all three theorems, G is a finite group containing A5

and acting faithfully on a K 3 surface X . Write G = G N · µI as in 1.0. By 1.0A the A5 in
G is contained in G N . So G N is either one of A5, S5, A6 and M20 = C⊕4

2 : A5, by [24, the
list].

Consider the case G N = A5. Then I = 1, 2, by 1.1, [26, Theorem 3.1] and 3.1. If
I = 1, then G = A5. If I = 2, let ρ : G → S5 × µ2 (x 7→ (cx , α(x))) be the injection
as in 1.7 so that ρ(A5) = A5 × 〈1〉; if the projection pr1 : S5 × µ2 → S5 maps ρ(G) to
A5 (resp. to S5), then G ∼= ρ(G) = A5 × µ2 (resp. G ∼= ρ(G) ∼= pr1(ρ(G)) = S5, by
comparing the orders); see the argument below. Thus Theorems A–C are true.

Consider the case G N = S5. Let g be in G such that α(g) is a generator of µI . Since
Aut(S5) = S5 and x 7→ cx gives rise to an isomorphism S5 → Aut(S5), we see that the
map G → Aut(S5) = S5 (x 7→ cx ) is surjective, and the conjugation maps cg = cs on
S5, for some s ∈ S5. Replacing g by gs−1, we may assume that g commutes with every
element in G N = S5. So g I

∈ Ker(α) = G N is in the centre of G N = S5 (which is (1)),
whence ord(g) = I , while α(g) is a generator of µI . Thus G = S5 × µI ≥ A5 × µI . So
I = 1, 2 by 1.1, [26, Theorem 3.1] and 3.1. Hence Theorems A–C are true.

Consider the case where G N = A6 or G N = M20 = C4
2 : A5. Then G N does not

contain an A5 as a normal subgroup (otherwise, in the latter case, M20 = C4
2× A5, absurd).

So A5 is also not normal in G. Thus Theorems A and B are void this time. Now Theorem C
follows from [9] and [6].
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