The alternating groups and K3 surfaces

D.-Q. Zhang
Department of Mathematics, National University of Singapore, Singapore

Received 9 November 2004
Available online 17 November 2005
Communicated by T. Hibi

Abstract

In this note, we consider all possible extensions G of a non-trivial perfect group H acting faithfully on a $K 3$ surface X. The pair (X, G) is proved to be uniquely determined by G if the transcendental value of G is maximum. In particular, we have $G / H \leq(\mathbf{Z} /(2))^{\oplus 2}$, if H is the alternating group A_{5} and normal in G.

(C) 2005 Elsevier B.V. All rights reserved.

MSC: 14J28; 14J50; 14L30

0. Introduction

We work over the complex numbers field \mathbf{C}. A $K 3$ surface X is a simply connected projective surface with a nowhere vanishing holomorphic 2-form ω_{X}. In this note, we will consider finite groups in $\operatorname{Aut}(X)$. An element $h \in \operatorname{Aut}(X)$ is symplectic if h acts trivially on the 2 -form ω_{X}. A group $G_{N} \subseteq \operatorname{Aut}(X)$ is symplectic if every element of G_{N} is symplectic.

According to Nikulin [13], Mukai [11] and Xiao [24], there are exactly 80 abstract finite groups which can act symplectically on $K 3$ surfaces. Among these 80 , there are exactly four perfect groups (G is perfect if the commutator subgroup $[G, G]=G$): $A_{5}, L_{2}(7), A_{6}, M_{20}=C_{2}^{4}: A_{5}$ (the Mathieu group of degree 20), where the first three are also the only non-abelian simple groups which can act on a $K 3$ surface symplectically, and the last is the symplectic finite group with the largest order 960.

[^0]0022-4049/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2005.09.009

The common thing shared by the three bigger perfect groups $G_{N}=L_{2}(7), A_{6}$ and M_{20}, is that they all can be extended to a bigger group $G=G_{N} \cdot \mu_{4}$ acting faithfully on a $K 3$ surface X. Moreover, the pair (X, G) turns out to be unique in each case, $[9,18,6]$.

So one would expect that A_{5}, being a smaller one, should be extendable to a bigger group $G=A_{5} \cdot \mu_{I}$ for some $I \geq 3$. However, our result below shows that this is not the case. Indeed, only $I=1$, or 2 is possible.

Theorem A. Suppose that a finite group G acts faithfully on a $K 3$ surface. Suppose further that G contains A_{5} as a normal subgroup. Then G equals one of the following four groups, each realizable (see Example 1.10):

$$
A_{5}, S_{5}, A_{5} \times \mu_{2}, S_{5} \times \mu_{2}
$$

To be precise, as in 1.0 below, for every finite group G acting on a $K 3$ surface X, the symplectic elements of G (i.e., those h acting trivially on the non-zero 2-form ω_{X}) form a normal subgroup G_{N} such that $G / G_{N} \cong \mu_{I}$ (the cyclic group of order I in \mathbf{C}^{*}). Namely, we have $G=G_{N} \cdot \mu_{I}$ (see Notation below). The natural number $I=I(G)$ is determined by the action of G on X and called the transcendental value of (the action of) G.

It is proved in $[9,18]$ and [6] that for the three bigger perfect groups G_{N} above, there is an extension $G=G_{N} \cdot \mu_{I}$ such that the transcendental value $I=I(G)$ equals 4 . However, for the smaller perfect (and also simple) group A_{5}, we have:

Theorem B. Suppose that a finite group G acts faithfully on a K3 surface. Suppose further that G contains A_{5} as a normal subgroup. Then the transcendental value $I(G)$ equals 1 or 2 (both attainable as shown in Example 1.10).

A bit more surprise comes from the next result: the existence of action by a perfect group (together with the transcendental value being 4) will guarantee the existence of action by a quite large group G as well as the uniqueness of the pair (X, G).

Theorem C. Suppose that a finite group G acts faithfully on a K3 surface X. Suppose further that G contains a non-trivial perfect group H as a subgroup (not necessarily normal). Then we have:
(1) The transcendental value $I(G) \leq 4$.
(2) If $I(G)=4$, then $G=L_{2}(7) \cdot \mu_{4}, A_{6} \cdot \mu_{4}$ or $M_{20} \cdot \mu_{4}$, and the pair (X, G) is unique, up to isomorphisms, in all three cases.

Remark D. (1) The three subgroups $L_{2}(7), A_{6}$ and M_{20} of G in Theorem C are all equal to G_{N} in the notation of 1.0 , and are the only perfect groups among the 11 maximum symplectic $K 3$ groups [11]. So the maximality of the transcendental value $I(G)$ in the situation of Theorem C guarantees the maximality of the symplectic part G_{N} of G. This also shows the importance of studying non-symplectic K3 groups.
(2) Regarding Theorems B and C , the readers may wonder whether the action of $\tilde{A}_{6}=A_{6}: \mu_{4}$ on a $K 3$ surface X induces an action of $H \cdot \mu_{4}$ on X with $H=A_{5}$ a smaller perfect (indeed simple) group. To elaborate, the unique group structure of \widetilde{A}_{6} (and also the unique pair $\left(X, \widetilde{A}_{6}\right)$) is described in [6,7]. In particular, the natural conjugation
map $\widetilde{A}_{6} \rightarrow \operatorname{Aut}\left(A_{6}\right)\left(x \mapsto c_{x}\right.$; see Notation below) has the Mathieu group M_{10} as its image; therefore, the conjugation μ_{4} action switches the two different conjugacy classes of order 3 in $A_{6}\left[4\right.$, Ch 10, Section 1.5]. On the other hand, for \widetilde{A}_{6} to contain an $A_{5} \cdot \mu_{4}$, the conjugation μ_{4} action should stabilize at least one A_{5} in A_{6} and also preserve the unique conjugacy class of order 3 in this A_{5}, which is impossible.
(3) The same construction in [18, Appendix] shows that there is a smooth non-isotrivial family of $K 3$ surfaces $f: \mathcal{X} \rightarrow \mathbf{P}^{1}$ such that all fibres admit A_{6} actions and infinitely many of them are algebraic K3 surfaces. So, the symplectic part alone cannot determine the surface uniquely, and the study of transcendental value is needed.

The main tools of the paper are the Lefschetz fixed point formula (both the topological version and vector bundle version due to Atiyah-Segal-Singer [1,2]), the representation theory on the $K 3$ lattice and the study in [26] on automorphism groups of Niemeier lattices (in connection with Golay binary or ternary codes) where the latter is much inspired by Conway-Sloane [4], Kondo [8] and Mukai [12].

The reduction to the study of automorphisms of Niemeier lattices was pioneered by Nikulin (see e.g., [15, end of section 1.14]) and further developed by Kondo (see e.g. [8]).

We believe that the way of combining different very powerful machinaries to deduce results as done in the paper should be applicable to the study of other problems. Our humble paper also demonstrates the powerfulness and depth of these algebraic results in the study of geometry. The information we compute in Proposition 1.4 (and its generalization in the future) should be of independent interest and use in understanding the geometry of $K 3$ surfaces.

Note. "Maple" was used in solving the linear equations in the crucial Proposition 1.4. We refer to Shimada [19-21] for more computations in Algebraic Geometry.

Notation. 1. When we write $G=G_{N} \cdot \mu_{I}$ we mean that G acts on a $K 3$ surface X satisfying the situation in 1.0 below.
2. S_{n} is the symmetric group in n letters, $A_{n}(n \geq 3)$ the alternating group in n letters and $\mu_{I}=\langle\exp (2 \pi \sqrt{-1}) / I\rangle$ the multiplicative group of order I in \mathbf{C}^{*}.
3. For a group G, we write $G=A . B$ if A is normal in G so that $G / A=B$. We write $G=A: B$ if we assume further that A is normal in G and B is a subgroup of G such that the composition $B \rightarrow G \rightarrow G / A=B$ is the identity (we say then that G is a semi-direct product of A and B).
4. For groups $H \leq G$ and $x \in G$ we denote by $c_{x}: H \rightarrow G\left(h \mapsto c_{x}(h)=x^{-1} h x\right)$ the conjugation map.
5. For a $K 3$ surface X, we let S_{X} and T_{X} be the Neron-Severi and transcendental lattices. So the $K 3$ lattice $H^{2}(X, \mathbf{Z})$ contains $S_{X} \oplus T_{X}$ as a sublattice of finite index.

1. Preparations and examples

1.0. In this section, we will prepare some basic results to be used later. Let X be a $K 3$ surface with a non-zero 2 -form ω_{X} and let $G \subseteq \operatorname{Aut}(X)$ be a finite group of automorphisms. For every $h \in G$, we have $h^{*} \omega_{X}=\alpha(h) \omega_{X}$ for some scalar $\alpha(h) \in \mathbf{C}^{*}$. Clearly, $\alpha: G \rightarrow \mathbf{C}^{*}$ is a homomorphism. A fact in basic group theory says that $\alpha(G)$ is
a finite cyclic group, so $\alpha(G)=\mu_{I}=\langle\exp (2 \pi \sqrt{-1} / I)\rangle$ for some $I \geq 1$. This natural number $I=I(G)$ is called the transcendental value of G. It is known that $I=I(G)$ for some G if and only if that the Euler function $\varphi(I) \leq 21$ and $I \neq 60$ [10].

Set $G_{N}=\operatorname{Ker}(\alpha)$. Then we have the basic exact sequence below:

$$
1 \longrightarrow G_{N} \longrightarrow G \xrightarrow{\alpha} \mu_{I} \longrightarrow 1
$$

For the G in the basic exact sequence, we write $G=G_{N} . \mu_{I}$, though there is no guarantee that $G=G_{N}: \mu_{I}$ (a semi-direct product).

Fact 1.0A. If G is a finite perfect group, i.e., the commutator group $[G, G]=G$ (especially if G is a non-abelian simple group like A_{5}), then $G=G_{N}$.

Fact 1.0B. G_{N} acts trivially on the transcendental lattice T_{X} (Lefschetz theorem on $(1,1)$ classes).

Fact 1.0C. If a subgroup $H \leq G_{N}$ fixes a point P, then $H<S L\left(T_{X, P}\right) \cong S L_{2}(\mathbf{C})$ [11, (1.5)]. The finite subgroups of $S L_{2}(\mathbf{C})$ are listed up in [11, (1.6)]. These are cyclic C_{n}, binary dihedral (or quaternion) $Q_{4 n}(n \geq 2)$, binary tetrahedral T_{24}, binary octahedral O_{48} and binary icosahedral I_{120}.

Lemma 1.1. Suppose that $G:=A_{5} \cdot \mu_{I}$ (with $G_{N}=A_{5}$) acts faithfully on a $K 3$ surface X.
(1) The Picard number $\rho(X) \geq 19$, and $I=1,2,3,4,6$. Moreover, $\rho(X)=20$ if $I \geq 3$.
(2) We have $G=A_{5}: \mu_{I}$, i.e., a semi-product of a normal subgroup A_{5} and a subgroup μ_{I} of G. Moreover, $G=A_{5} \times \mu_{I}$ if $I=3$.

Proof. (1) In the notation of [24, the list], $\rho(X)=\operatorname{rank} S_{X} \geq c+1=19$. Also the Euler function $\varphi(I)$ divides rank $T_{X}=22-\rho(X)$ by [13, Theorem 0.1]. So (1) follows.
(2) Let $g \in G$ such that $\alpha(g)$ is a generator of μ_{I}. Since $\operatorname{Aut}\left(A_{5}\right)=S_{5}>A_{5}$ and the conjugation homomorphism $A_{5} \rightarrow \operatorname{Aut}\left(A_{5}\right)\left(x \mapsto c_{x}\right)$ is an isomorphism onto A_{5}, the conjugation map c_{g} equals $c_{(12) a}$ or c_{a} on A_{5} for some $a \in A$. Replacing g by $g a^{-1}$, we may assume that $c_{g}=c_{(12)}$ or c_{id}. Thus g^{2} commutes with every element in A_{5}. If $2 \mid I$, then $g^{I} \in \operatorname{Ker}(\alpha)=A_{5}$ is in the centre of A_{5} (which is trivial) and hence $\operatorname{ord}(g)=I$; thus $G=A_{5}: \mu_{I}$. If $I=3$, then $\operatorname{gcd}(3, \operatorname{ord}(g) / 3)=1$ as proved in [5] or [16, Proposition 5.1]; so replacing g by g^{ℓ} with $\ell=\operatorname{ord}(g) / 3(\operatorname{or} 2 \operatorname{ord}(g) / 3)$, we have $G=A_{5} \times\langle g\rangle=$ $A_{5} \times \mu_{3}$.

The third result below [13, Section 5] is crucial in classifying symplectic groups in [11]. The second uses the fact $A_{5} \subset \operatorname{Aut}(X)$ in an essential way.

Lemma 1.2. (1) Let h be a non-symplectic involution on a $K 3$ surface X. Then X^{h} is a disjoint union of s smooth curves C_{i} with $0 \leq s \leq 10$. To be precise, X^{h} (if not empty) is either a disjoint union of a genus ≥ 2 curve C and a few \mathbf{P}^{1},s, or a disjoint union of a few elliptic curves and \mathbf{P}^{1},s, or a disjoint union of a few \mathbf{P}^{1},s.
(2) For h in (1), suppose further that $A_{5} \subseteq \operatorname{Aut}(X)$. Then $\chi_{\mathrm{top}}\left(X^{h}\right) \leq 18$.
(3) If δ is a non-trivial symplectic automorphism of finite order on a $K 3$ surface X, then $\operatorname{ord}(\delta) \leq 8$ and X^{δ} is a finite set. To be precise, if $\operatorname{ord}(\delta)=2,3,4,5,6,7,8$, then $\left|X^{\delta}\right|=8,6,4,4,2,3,2$, respectively; see [13, Section 5] for the proof. In particular, if $A_{5} \subseteq \operatorname{Aut}(X)$ then $\sum_{\delta \in A_{5}} \chi_{\mathrm{top}}\left(X^{\delta}\right)=360$ (see 1.0A).
Proof. (1) Locally, at a point $P \in X^{h}$, we have $h \mid P:(x, y) \rightarrow(x,-y)$ for some coordinates around P, because h is non-symplectic. Thus around P, our $X^{h}=\{y=0\}$ which is smooth. For the range of s, see [14] or [25]. If X^{h} contains a genus ≥ 2 curve C, then the big and nefness of C and the Hodge index theorem show that the other $s-1$ curves are negative definite, whence are \mathbf{P}^{1} 's. So (1) is true.
(2) Let $X^{h}=\coprod_{i=1}^{s} C_{i}$ be as in (1). Then $\chi_{\text {top }}\left(X^{h}\right)=\sum_{i=1}^{s}\left(2-2 g\left(C_{i}\right)\right) \leq 2 s \leq 20$. If (2) is false, then $s=10$ and $C_{i} \cong \mathbf{P}^{1}$. Thus, by [17, Theorem 4], X equals X_{4} : the unique $K 3$ surface of Picard number $\rho(X)=20$ and $|\operatorname{Pic} X|=-4$. Now $A_{5} \subset \operatorname{Aut}\left(X_{4}\right)$, where the latter is given in [23]. This is impossible by the simplicity of A_{5} and the precise description of $\operatorname{Aut}\left(X_{4}\right)$ there (see the proof of [6, Proposition 4.1(3)]).

For an automorphism h on a smooth algebraic surface Y, we split the pointwise fixed locus as the disjoint union of the 1-dimensional part and the isolated part: $Y^{h}=$ $Y_{1-\operatorname{dim}}^{h} \coprod Y_{\text {isol }}^{h}$. The proof of (1) below is similar to that for (1) in 1.2.

Fact 1.3. (1) $Y_{1-\operatorname{dim}}^{h}$ (if not empty) is a disjoint union of smooth curves.
(2) The Euler number $\chi_{\text {top }}\left(Y_{1-\operatorname{dim}}^{h}\right)=\sum_{C}(2-2 g(C))=2 n_{h}$ for some integer n_{h}, where C runs in the set $Y_{1-\mathrm{dim}}^{h}$ of curves.
(3) The Euler number $\chi_{\text {top }}\left(Y^{h}\right)=m_{h}+2 n_{h}$, where $m_{h}=\left|Y_{\text {isol }}^{h}\right|$.

The results of [5] below follow from the application of the Lefschetz fixed point formula to the trivial vector bundle in Atiyah-Segal-Singer [1,2, pages 542 and 567]. The results themselves should be very useful and informative for other studies in the future.

Important Proposition 1.4. Let X be a $K 3$ surface and let $h \in \operatorname{Aut}(X)$ be of order I such that $h^{*} \omega_{X}=\eta_{I} \omega_{X}$ for some primitive Ith root η_{I} of 1 .
(1) Suppose that $I=3$. Then $m_{h}=3+n_{h}$ and hence $\chi_{\mathrm{top}}\left(X^{h}\right)=3\left(1+n_{h}\right)$. Moreover, $-3 \leq n_{h} \leq 6$.
(2) Suppose that $I=4$. Then $m_{h}=4+2 n_{h}$ and hence $\chi_{\mathrm{top}}\left(X^{h}\right)=4\left(1+n_{h}\right)$. Moreover, $-2 \leq n_{h} \leq 4$
(3) Suppose that $I=3$, or 4 . If $\delta \in \operatorname{Aut}(X)$ is symplectic of order 5 and commutes with h. Then $\left|X^{h \delta}\right|=4$.
(4) Suppose that $I=4$. If $\delta \in \operatorname{Aut}(X)$ is symplectic of order 3 and commutes with h then $6 \geq\left|X^{h^{2} \delta}\right| \geq\left|X^{h \delta}\right| \in\{2,4,6\}$.

Proof. (1) The first part is proved in [17, Lemma 2.3]. Note that $h^{*} \mid T_{X}$ can be diagonalized as $\operatorname{diag}\left[\eta_{3}, \eta_{3}^{2}\right]^{\oplus s}(s \geq 1)$ by [13, Theorem 0.1]. So as in 1.7 below, $\chi_{\mathrm{top}}\left(X^{h}\right)=$ $2+\operatorname{Tr}\left(h^{*} \mid T_{X}\right)+\operatorname{Tr}\left(h^{*} \mid S_{X}\right) \leq 2-s+\operatorname{rank} S_{X} \leq 21$, whence $n_{h} \leq 6$. Also $m_{h} \geq 0$ implies that $n_{h} \geq-3$.
(2) As in [17, Lemma 2.3], we calculate the holomorphic Lefschetz number $L(h)$ in two ways as in [1,2, pages 542 and 567], where $X_{\text {isol }}^{h}=\left\{P_{j} \mid 1 \leq j \leq m_{h}\right\}$ (so
$h^{*} \mid T_{P_{j}}=\left(\eta_{4}^{-1}, \eta_{4}^{2}\right)$ up to switching the coordinates of the tangent plane at $\left.P_{j}\right), X_{1-\operatorname{dim}}^{h}=$ $\left\{C_{k}\right\}, g C_{k}=g\left(C_{k}\right)$ the genus, and η_{4}^{-1} the eigenvalue of the action h_{*} on the normal bundle of C_{k} (in the first equation below we used Serre duality, while the last is from the first two with $x=\eta_{4}$):

$$
\begin{aligned}
& L(h)=\sum_{i=0}^{2}(-1)^{i} \operatorname{Tr}\left(h^{*} \mid H^{i}\left(X, \mathcal{O}_{X}\right)\right)=1+\eta_{4}^{-1}, \\
& L(h)=\sum_{j=1}^{m_{h}} a\left(P_{j}\right)+\sum_{k} b\left(C_{k}\right), \\
& a\left(P_{j}\right)=1 / \operatorname{det}\left(1-h^{*} \mid T_{P_{j}}\right)=1 /\left(1-\eta_{4}^{-1}\right)\left(1-\eta_{4}^{2}\right), \\
& b\left(C_{k}\right)=\left(1-g C_{k}\right) /\left(1-\eta_{4}\right)-\eta_{4} C_{k}^{2} /\left(1-\eta_{4}\right)^{2}=\left(1-g C_{k}\right)\left(1+\eta_{4}\right) /\left(1-\eta_{4}\right)^{2}, \\
& 0=-\left(1+x^{-1}\right)+m_{h} /\left(1-x^{-1}\right)\left(1-x^{2}\right)+n_{h}(1+x) /(1-x)^{2} .
\end{aligned}
$$

Noting that $x=\eta_{4}$ satisfies $x^{2}=-1$ and solving the last equation, we get $m_{h}=$ $4+2 n_{h}$. The second part of (2) is similar to (1), noting that $h^{*} \mid T_{X}$ can be diagonalized as $\operatorname{diag}\left[\eta_{4},-\eta_{4}\right]^{\oplus s}(s \geq 1)$.
(3) \& (4). In (4), note that $X^{h^{i} \delta}=X^{h^{i}} \cap X^{\delta}(i=1,2)$. So the inequalities there hold and we have only to calculate $\left|X^{h \delta}\right|$; see 1.2.

Let $g \in \operatorname{Aut}(X)$ such that $\operatorname{ord}(g)=k I$ and $g^{*} \omega_{X}=\eta^{k} \omega_{X}$ where $\eta=\eta_{k I}$ is a primitive $k I$ th root of 1 . (We set $g=h \delta$ in (3) and (4).) If $k \geq 2$ and $\operatorname{gcd}(k, I)=1$ (these are true in (3) and (4)), then g^{I} is of order k and symplectic, so $X^{g} \subseteq X^{g^{I}}$ is a finite set by 1.2. Namely, $X^{g}=X_{\text {isol }}^{g}=\left\{P_{j} \mid 1 \leq j \leq m_{g}\right\}$ say. Let $M_{g}(i)$ be the set of points P in X^{g} satisfying $g^{*} \mid T_{P}=\left(\eta^{-i}, \eta^{k+i}\right)$ (up to switching the coordinates of the tangent plane at P; so $a(P)=1 /\left(1-\eta^{-i}\right)\left(1-\eta^{k+i}\right)$ in the notation for the formula of $\left.L(g)\right)$. Put $m_{g}(i)=\left|M_{g}(i)\right|$. Then for $(I, k)=(3,5)$ (the first case in (3)), we have $X^{g}=\bigsqcup M_{g}(i)$ and $m_{g}=\sum_{i} m_{g}(i)$, where $i \in\{1, \ldots, 4,11,12\}$; for $(I, k)=(4,5)$ (the second case in (3)), we have $m_{g}=\sum_{i} m_{g}(i)$, where $i \in\{1, \ldots, 4,6,7,16,17\}$; for $(I, k)=(4,3)$ (the case in (4)), we have $m_{g}=\sum_{i} m_{g}(i)$, where $i \in\{1,2,4,10\}$.

As in (2), we have the following, where $x=\eta=\eta_{k I}$ and i runs in the set specified above:

$$
\begin{align*}
0 & =-\left(1+x^{-k}\right)+\sum_{i} \sum_{P \in M_{g}(i)} a(P) \\
& =-\left(1+x^{-k}\right)+\sum_{i} m_{g}(i) /\left(1-x^{-i}\right)\left(1-x^{k+i}\right) . \tag{*}
\end{align*}
$$

For $(I, k)=(3,5), x$ satisfies the minimal polynomial $\Phi_{g}(x)=1-x+x^{3}-x^{4}+x^{5}-$ $x^{7}+x^{8}$ and also $x^{15}=1, x^{10}=-1-x^{5}$. Substituting these into $\left(^{*}\right)$ multiplied by the common denominator (which is not zero), we will get an equation of degree ≤ 7 in x with coefficients linear in $m_{g}(i)$. The minimality of $\Phi_{g}(x)$ implies that all 8 coefficients are zero. Solving these 8 linear equations, we obtain, where $m_{i}=m_{g}(i)$:

$$
\begin{equation*}
m_{1}=m_{4}, \quad m_{2}=-1+m_{3}, \quad m_{11}=-1+m_{4}, \quad m_{12}=m_{3} . \tag{**}
\end{equation*}
$$

By 1.2 , we have $4=m_{g^{3}} \geq m_{g}=\sum_{i=1}^{4} m_{i}+\sum_{i=11}^{12} m_{i}=-2+3\left(m_{3}+m_{4}\right)$. So $m_{3}+m_{4} \leq 2$. This together with the condition $m_{i} \geq 0$ and the relations in (**), imply that $\left[m_{1}, m_{2}, m_{3}, m_{4}, m_{11}, m_{12}\right]=[1,0,1,1,0,1]$. In particular, $m_{g}=4$.

For $(I, k)=(4,5), x$ satisfies the minimal polynomial $\Phi_{g}(x)=1-x^{2}+x^{4}-x^{6}+x^{8}$ and also $x^{20}=1, x^{10}=-1$. As above, solving $\left({ }^{*}\right)$, we obtain, where $m_{i}=m_{g}(i)$:

$$
\begin{align*}
& m_{1}=-3+2 m_{3}-3 m_{4}+4 m_{6}-2 m_{7}, \quad m_{2}=-1+m_{3}-2 m_{4}+2 m_{6}, \\
& m_{16}=-5+2 m_{3}-4 m_{4}+5 m_{6}-2 m_{7}, \quad m_{17}=3+2 m_{4}-2 m_{6}+m_{7} . \tag{***}
\end{align*}
$$

One can check that the following is the only possibility of m_{i} satisfying the relations in $\left({ }^{* * *}\right)$ and that $0 \leq m_{i} \leq m_{g} \leq m_{g^{4}}=4$ by 1.2 ; in particular, $m_{g}=4$:

$$
\left[m_{1}, m_{2}, m_{3}, m_{4}, m_{6}, m_{7}, m_{16}, m_{17}\right]=[1,1,0,0,1,0,0,1]
$$

For $(I, k)=(4,3), x$ satisfies the minimal polynomial $\Phi_{g}(x)=1-x^{2}+x^{4}$ and also $x^{12}=1, x^{6}=-1$. As above, solving $\left({ }^{*}\right)$, we obtain, where $m_{i}=m_{g}(i)$:

$$
\begin{equation*}
m_{1}=3+3 m_{2}-2 m_{4}, \quad m_{10}=1+2 m_{2}-m_{4} . \tag{****}
\end{equation*}
$$

One can check that the following are the only possibilities of m_{i} satisfying the relations in $\left(^{* * * *}\right.$) and $0 \leq m_{i} \leq m_{g} \leq m_{g^{4}}=6,1.2$; in particular, $m_{g}=2,4,6$ (so 1.4 is done):

$$
\left[m_{1}, m_{2}, m_{4}, m_{10}\right]=[3,0,0,1], \quad[1,0,1,0], \quad[2,1,2,1], \quad[0,1,3,0] .
$$

The following two results can be found in [13, Theorem 0.1], [10, Lemma (1.1)], or [18, Lemma (2.8)].

Lemma 1.5. Suppose that X is a $K 3$ surface of Picard number $\rho(X)=20$ and g an order4 automorphism such that $g^{*} \omega_{X}=\eta_{4} \omega_{X}$ with a primitive 4 th root η_{4} of 1 . Then we can express the transcendental lattice T_{X} as $T_{X}=\mathbf{Z}\left[t_{1}, t_{2}\right]$ so that $t_{2}=g^{*}\left(t_{1}\right), g^{*}\left(t_{2}\right)=-t_{1}$. In particular, the intersection forms $\left(t_{i} \cdot t_{j}\right)=\operatorname{diag}[2 m, 2 m]$ for some $m \geq 1$.

Now we assume that $G=G_{N} \cdot \mu_{I}$ (with $I=I(G)$) acts on a $K 3$ surface X. When $G_{N}=A_{5}$, we will determine the action of G_{N} on the Neron-Severi lattice S_{X} of X :

Lemma 1.6. (1) Suppose that A_{5} acts on a $K 3$ surface X, and rank $S_{X}=20$ (this is true if $I \geq 3$ by 1.1). Then we have the irreducible decomposition below (in the notation of Atlas for the characters of A_{5}), where χ_{1} (the trivial character), χ_{4} and χ_{5} have dimensions 1,4 and 5 , respectively, where χ_{i}^{\prime} is a copy of χ_{i} :

$$
S_{X} \otimes \mathbf{C}=\chi_{1} \oplus \chi_{1}^{\prime} \oplus \chi_{4} \oplus \chi_{4}^{\prime} \oplus \chi_{5} \oplus \chi_{5}^{\prime}
$$

(2) For conjugacy class $n A$ (and $n B$) of order n in A_{5} and the characters χ_{i} of A_{5}, we have the following Table 1 from [3], where Z is respectively $1 A, 2 A, 3 A, 5 A$ or $5 B$:

$$
\begin{aligned}
& {\left[\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}\right](Z)=[1,3,3,4,5], \quad[1,-1,-1,0,1], \quad[1,0,0,1,-1],} \\
& {[1,(1-\sqrt{5}) / 2,(1+\sqrt{5}) / 2,-1,0], \quad[1,(1+\sqrt{5}) / 2,(1-\sqrt{5}) / 2,-1,0] .}
\end{aligned}
$$

Proof. Applying the Lefschetz fixed point formula to the action of A_{5} on $H^{*}(X, \mathbf{Z})=$ $\oplus_{i=0}^{4} H^{i}(X, \mathbf{Z})$ and noting that $H^{2}(X, \mathbf{Z})$ contains $S_{X} \oplus T_{X}$ as a finite index sublattice, we
obtain (see also $1.0 \mathrm{~A}-1.0 \mathrm{C}$ and 1.2):

$$
\begin{aligned}
2+\operatorname{rank} T_{X}+\operatorname{rank}\left(S_{X}\right)^{A_{5}} & =\operatorname{rank} H^{*}(X, \mathbf{Z})^{A_{5}} \\
& =\frac{1}{\left|A_{5}\right|} \sum_{a \in A_{5}} \chi_{\mathrm{top}}\left(X^{a}\right)=360 / 60=6 .
\end{aligned}
$$

Thus rank $S_{X}^{A_{5}}=2$. So the irreducible decomposition is of the following form, where a_{i} are non-negative integers:

$$
S(X) \otimes \mathbf{C}=2 \chi_{1} \oplus a_{2} \chi_{2} \oplus a_{3} \chi_{3} \oplus a_{4} \chi_{4} \oplus a_{5} \chi_{5} .
$$

As in 1.7 below, using the topological Lefschetz fixed point formula, the fact that $\operatorname{rank} T(X)=2$ and 1.0B, we have, for $a \in A_{5}$, that:

$$
\chi_{\mathrm{top}}\left(X^{a}\right)=4+\operatorname{Tr}\left(a^{*} \mid S(X)\right) .
$$

Running a through the five conjugacy classes and calculating both sides, using 1.2 and the character Table 1 in (2), we obtain the following system of equations:

$$
\begin{aligned}
& 20=2+3\left(a_{2}+a_{3}\right)+4 a_{4}+5 a_{5}, \\
& 4=2-\left(a_{2}+a_{3}\right)+a_{5}, \\
& 2=2+a_{4}-a_{5}, \\
& 0=2+\frac{1-\sqrt{5}}{2} a_{2}+\frac{1+\sqrt{5}}{2} a_{3}-a_{4}, \\
& 0=2+\frac{1+\sqrt{5}}{2} a_{2}+\frac{1-\sqrt{5}}{2} a_{3}-a_{4} .
\end{aligned}
$$

Now, we get the result by solving this system of Diophantine equations.
1.7. Note that $\operatorname{Aut}\left(A_{5}\right)=S_{5}$. For a group $G=A_{5} \cdot \mu_{I}($ and the map $\alpha)$ in 1.0 , we have the natural homomorphism below, which is injective (since its restriction on A_{5} is an injection onto $\left.A_{5} \times(1)\right)$, where $c_{x}: a \mapsto c_{x}(a)=x^{-1} a x$ is the conjugation map:

$$
\begin{aligned}
& G \longrightarrow \operatorname{Aut}\left(A_{5}\right) \times \mu_{I}=S_{5} \times \mu_{I}, \\
& x \mapsto\left(c_{x}, \alpha(x)\right) .
\end{aligned}
$$

Lemma. Suppose that $G=A_{5} \cdot \mu_{4}$ acts on a $K 3$ surface X (i.e., $G_{N}=A_{5}$ and $I(G)=4$). Then $G=A_{5}: \mu_{4}$, but $G \neq A_{5} \times \mu_{4}$. Our $G \rightarrow S_{5} \times \mu_{4}\left(x \mapsto\left(c_{x}, \alpha(x)\right)\right)$ is an injective homomorphism and the group structure of such G is unique up to isomorphisms.

Proof. By 1.1, we have $G=A_{5}: \mu_{4}$. Suppose the contrary $G=A_{5} \times \mu_{4}$. Write $\mu_{4}=$ $\langle g\rangle$. In the notation of 1.6 , the g either stabilizes χ_{i} or switches χ_{i} with $\chi_{i}^{\prime}(i=4$ or 5 ; then denoted as $\chi_{i} \stackrel{g}{\longleftrightarrow} \chi_{i}$, and $\left.\operatorname{Tr}\left(g^{*} \mid\left(\chi_{i} \oplus \chi_{i}^{\prime}\right)\right)=0\right)$). Since G stabilizes an ample line bundle (the pull back of an ample line bundle on X / G) and since G acts on $S_{X}^{A_{5}}$ (whose C-extension is $\chi_{1} \oplus \chi_{1}^{\prime}$), we may assume that $g^{*} \mid\left(\chi_{1} \oplus \chi_{1}^{\prime}\right)=\operatorname{diag}[1, \pm 1]$ w.r.t. a suitable basis. If χ_{i} is g-stable then $g^{*} \mid \chi_{i}$ is a scalar ζ_{4}^{c} with $\zeta_{4}=\exp (2 \pi \sqrt{-1} / 4)$, by Schur's lemma.

Let $a \in A_{5}$. Then $(g a)^{*}\left|T_{X}=g^{*}\right| T_{X}$ (see 1.0B) and the latter can be diagonalized as $\operatorname{diag}\left[\zeta_{4}, \zeta_{4}^{-1}\right.$] by [13, Theorem 0.1] and 1.1. Hence $\operatorname{Tr}(g a)^{*} \mid T_{X}=0$. By the topological Lefschetz fixed point formula and noting that $H^{2}(X, \mathbf{Z})$ contains $S_{X} \oplus T_{X}$ as a sublattice of finite index, we have $\chi_{\text {top }}\left(X^{g a}\right)=\oplus_{i=0}^{4} \operatorname{Tr}(g a)^{*}\left|H^{i}(X, \mathbf{Z})=2+\operatorname{Tr}(g a)^{*}\right| S_{X}+$ $\operatorname{Tr}(g a)^{*}\left|T_{X}=2+\operatorname{Tr}(g a)^{*}\right| S_{X}$. For $a=5 A$ (an order-5 element) in A_{5}, by 1.4 and Table 1 in 1.6 (and Schur's lemma), we have: $4=\chi_{\text {top }}\left(X^{g 5 A}\right)=2+\operatorname{Tr}\left(g^{*} \mid \chi_{1} \oplus \chi_{1}^{\prime}\right)+$ $\operatorname{Tr}(g 5 A)^{*} \mid\left(\chi_{4} \oplus \chi_{4}\right)+0$, so one of the following cases occurs (using Schur's lemma):
Case (i). $g^{*} \mid S_{X} \otimes \mathbf{C}=\operatorname{diag}\left[1,-1,-I_{4},-I_{4}, ?\right.$, ?],
Case (ii). $g^{*} \mid S_{X} \otimes \mathbf{C}=\operatorname{diag}\left[1,1, \chi_{4} \stackrel{g}{\longleftrightarrow} \chi_{4}, ?\right.$, ?],
Case (iii). $g^{*} \mid S_{X} \otimes \mathbf{C}=\operatorname{diag}\left[1,1, I_{4},-I_{4}, ?\right.$, ?],
Case (iv). $g^{*} \mid S_{X} \otimes \mathbf{C}=\operatorname{diag}\left[1,1, \zeta_{4} I_{4}, \zeta_{4}^{-1} I_{4}, ?\right.$, ?].
By 1.4, we have $\left(^{*}\right):-4 \leq \chi_{\text {top }}\left(X^{g}\right)=4\left(1+n_{g}\right)=0(\bmod 4)$ with $-2 \leq n_{g} \leq 4$. So $\chi_{\text {top }}\left(X^{g}\right)=4$ in Cases (ii), (iii) and (iv) (using Schur's lemma). Thus $n_{g}=0$ and $m_{g}=4+2 n_{g}=4$ by 1.4. Now A_{5} (commuting with g) acts on the four isolated points P_{i} in X^{g}, whence fixing these four points (see 1.8 below). So $A_{5}<S L\left(T_{X, P_{1}}\right)$, contradicting 1.0 C . In Case (i), by the fact (*) above and Schur's lemma, we have $\chi_{\text {top }}\left(X^{g}\right)=2+(1-1-4-4+5+5)=4$, which will lead to the same contradiction.

By the proof of 1.1 and the result in the above paragraph, we may assume that there is an order-4 element $g \in G$ such that $\alpha(g)$ is the generator of μ_{4}, so that $G=A_{5}:\langle g\rangle=$ $A_{5}: \mu_{4}$ and the conjugation map $c_{g}=c_{(12)}$ on A_{5}. Clearly, the group structure of G is unique. The lemma is proved.

The two results below are either easy or well known and will be frequently used in the arguments of the subsequent sections.

Lemma 1.8. Let $f: A_{5} \rightarrow S_{r}(r \geq 2)$ be a homomorphism.
(1) If $r=2,3$, or 4 , then f is trivial.
(2) If $\operatorname{Im}(f)$ is a transitive subgroup of the full symmetry group S_{r} in r letters $\{1,2, \ldots, r\}$ (whence $r \geq 5$ by (1)), then $r\left|\left|A_{5}\right|\right.$ with $| A_{5} \mid / r$ equal to the order of the subgroup of A_{5} stabilizing the letter 1 , so $r \in\{5,6,10,12,15,20,30\}$.

Lemma 1.9. (1) Aut $\left(\mathbf{P}^{1}\right)$ includes A_{5} but not S_{5} [22, Theorem 6.17].
(2) If $\operatorname{id} \neq f \in \operatorname{Aut}\left(\mathbf{P}^{1}\right)$ is an automorphism of finite order, then f fixes exactly two points of \mathbf{P}^{1} (by the diagonalization of a lifting of f to $G L_{2}(\mathbf{C})$).
(3) If $f_{r}\left(r=2\right.$ or 3) is an order $-r$ automorphism of an elliptic curve E, then either f_{r} acts freely on E, or the fix locus satisfies $\left|X^{f_{r}}\right|=4($ resp. $=3)$ if $r=2$ (resp. $r=3$) (by the Hurwitz formula).
The examples below are to show the existence of the groups in Theorems A and B.
Example 1.10. (1) $G=G_{N} \cdot \mu_{I}=S_{5} \times \mu_{2}$ (with $G_{N}=S_{5}, I=2$) acts on a $K 3$.
Let $X=\left\{\sum_{i=1}^{5} X_{i}=\sum_{i=1}^{6} X_{i}^{2}=\sum_{i=1}^{5} X_{i}^{3}=0\right\} \subset \mathbf{P}^{5}$. We define the symplectic action of $\sigma \in S_{5}$ on X (the same as in [11, no 3]) and a non-symplectic involution g on X as follows (see [11, Lemma 2.1]):

$$
\begin{aligned}
& \sigma:\left[X_{1}: \cdots: X_{6}\right] \mapsto\left[X_{\sigma(1)}: \cdots: X_{\sigma(5)}:(\operatorname{sign} \sigma) X_{6}\right], \\
& g:\left[X_{1}: \cdots: X_{6}\right] \mapsto\left[X_{1}: \cdots: X_{5}:-X_{6}\right] .
\end{aligned}
$$

Let $G=\left\langle S_{5}, g\right\rangle$. Then $G=S_{5} \times\langle g\rangle$ is the required one.
(2) $G=G_{N} \cdot \mu_{I}=A_{5}: \mu_{2}=S_{5}$ (with $G_{N}=A_{5}, I=2$) acts on a $K 3$ surface.

Let $X=\left\{\sum_{i=1}^{6} X_{i}=\sum_{i=1}^{6} X_{i}^{2}=\sum_{i=1}^{6} X_{i}^{3}=0\right\} \subset \mathbf{P}^{5}$. We define the action of $\sigma \in S_{6}$ on X (the same as in [11, no 2]):

$$
\sigma:\left[X_{1}: \cdots: X_{6}\right] \mapsto\left[X_{\sigma(1)}: \cdots: X_{\sigma(6)}\right] .
$$

Since A_{6} is perfect, its action on X is symplectic 1.0A. If we let $\widetilde{G}=S_{6}$, then $\widetilde{G}=\widetilde{G}_{N} \cdot \mu_{2}$ with $\widetilde{G}_{N}=A_{6}$ and $I=2$ (see [11, Lemma 2.1]). Now a subgroup $G=S_{5}$ of \widetilde{G} is the required one.

2. The determination of some topological invariants

Let X be a $K 3$ surface with a faithful action by a group of the form $G:=A_{5} \cdot \mu_{4}$ as in 1.0. Then $G=A_{5}: \mu_{4}$ and the unique group structure of such G is given in 1.7.

We will use the notation in 1.6. Let g be a generator of $\mu_{4}<G$. We may also assume the following is true (after a change of g):

Lemma 2.1. (1) The conjugation action $c_{g}()=.c_{(12)}($.$) on A_{5} . S o\left\langle g^{2}\right\rangle$ is in the centre of G and $G \rightarrow \operatorname{Aut}\left(A_{5}\right)=S_{5}\left(x \mapsto c_{x}\right)$ induces an isomorphism $G /\left\langle g^{2}\right\rangle \cong S_{5}$.
(2) $g^{*} \omega_{X}=\zeta_{4} \omega_{X}$ with $\zeta_{4}=\exp (2 \pi \sqrt{-1} / 4)$.
(3) g^{2} is a non-symplectic involution on X and commutes with every element in A_{5}.
(4) Set $\sigma=(12)(34)$ and $\tau=(345)$. Then g commutes with every element in $\langle\sigma, \tau\rangle=S_{3}$. So $G=A_{5}: \mu_{4}>S_{3} \times \mu_{4}$.
(5) Set $\sigma=(12)(34), \gamma=$ (123). Then g normalizes $\langle\sigma, \gamma\rangle=A_{4}$. So $G=A_{5}: \mu_{4}>$ $A_{4}: \mu_{4}$. Set $\sigma_{1}=\sigma$ and $\sigma_{2}=(13)(24)\left(\right.$ all in $\left.A_{4}\right)$.
(6) g stabilizes both χ_{1} and χ_{1}^{\prime}; the restrictions $g^{*} \mid \chi_{1}=\mathrm{id}$ and $g^{*} \mid \chi_{1}^{\prime}= \pm \mathrm{id}$ (after a change of basis).
(7) g either stabilizes both χ_{4} and χ_{4}^{\prime} (so the restrictions of g^{*} on χ_{4} and χ_{4}^{\prime} are scalar multiplications), or switches χ_{4} with χ_{4}^{\prime}.
(8) g either stabilizes both χ_{5} and χ_{5}^{\prime} (so the restrictions of g^{*} on χ_{5} and χ_{5}^{\prime} are scalar multiplications), or switches χ_{5} with χ_{5}^{\prime}.
(9) Both $g^{2} \mid \chi_{i}$ and $g^{2} \mid \chi_{i}^{\prime}(i=4,5)$ are scalar multiplications.

Proof. (1) is from the last part of the proof of 1.7. (2) is true because g is a generator of $\mu_{4}<G=A_{5}: \mu_{4}$. (3), (4) and (5) follow from (1). (6) is true because $G=A_{5}:\langle g\rangle$ stabilizes one ample line bundle (the pull back of an ample line bundle on X / G) and g acts on $S_{X}^{A_{5}}$ (defined over \mathbf{Z}) whose \mathbf{C}-extension is $\chi_{1} \oplus \chi_{1}^{\prime}$. (7), (8) and (9) are from the form of the decomposition in 1.6 and Schur's lemma.

In the rest of the section, we will prove the Key result 2.2 below which will be used in the proof of Theorems A, B and C in Section 3 and is the consequence of 2.6-2.9 below. The representation theory (mainly on A_{5}) is fully applied. We divide into cases according to whether g stabilizes or switches $\chi_{i}(i=4,5)$.

Key Proposition 2.2. Suppose that $G=A_{5}: \mu_{4}$ acts on a $K 3$ surface X. Then with the notation in 2.1 and 1.4, $\left(n_{g}, m_{g} ; \chi_{\mathrm{top}}\left(X^{g}\right), \chi_{\mathrm{top}}\left(X^{g \tau}\right), \chi_{\mathrm{top}}\left(X^{g^{2} \tau}\right), \chi_{\mathrm{top}}\left(X^{g^{2}}\right)\right)$ is one of the following:

$$
(1,6 ; 8,2,6,0), \quad(0,4 ; 4,4,6,0), \quad(-1,2 ; 0,6,6,0)
$$

The result below is used in 2.4 to determine the representation of $S_{3} \times \mu_{4}<G$ there.
Lemma 2.3. (1) Suppose that g stabilizes χ_{4}. Then w.r.t. one and the same basis $\left\{v_{1}, \ldots, v_{4}\right\}$, we have the following matrix representation of $A_{4}: \mu_{4}$ on χ_{4} :

$$
\begin{array}{lll}
\sigma_{1}^{*}=\operatorname{diag}[1,1,-1,-1], & \sigma_{2}^{*}=[1,-1,1,-1], \\
\gamma^{*}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & \beta_{4} \\
0 & \beta_{2} & 0 & 0 \\
0 & 0 & \beta_{3} & 0
\end{array}\right), & g^{*}=\left(\begin{array}{cccc}
\alpha_{1} & 0 & 0 & 0 \\
0 & \alpha_{2} & 0 & 0 \\
0 & 0 & 0 & \alpha_{5} \\
0 & 0 & \alpha_{4} & 0
\end{array}\right) .
\end{array}
$$

We have exactly the same kind of matrix representation of $A_{4}: \mu_{4}$ w.r.t. one and the same basis $\left\{v_{1}^{\prime}, \ldots, v_{4}^{\prime}\right\}$ of χ_{4}^{\prime}. But we use β_{i}^{\prime} and α_{i}^{\prime} for $\gamma^{*} \mid \chi_{4}^{\prime}$ and $g^{*} \mid \chi_{4}^{\prime}$ instead.
(2) Suppose g stabilizes χ_{5}. Then w.r.t. one and the same basis $\left\{y_{1}, \ldots, y_{5}\right\}$, we have the following matrix representation of $A_{4}: \mu_{4}$ on χ_{5}, where η_{3} is a primitive 3 rd root of 1 :

$$
\begin{array}{ll}
\sigma_{1}^{*}=\operatorname{diag}[1,1,1,-1,-1], & \sigma_{2}^{*}=[1,1,-1,1,-1], \\
\gamma^{*}=\left(\begin{array}{ccccc}
\eta_{3} & 0 & 0 & 0 & 0 \\
0 & \eta_{3}^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & b_{5} \\
0 & 0 & b_{3} & 0 & 0 \\
0 & 0 & 0 & b_{4} & 0
\end{array}\right), \quad g^{*}=\left(\begin{array}{ccccc}
0 & a_{2} & 0 & 0 & 0 \\
a_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & a_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & a_{5} \\
0 & 0 & 0 & a_{4} & 0
\end{array}\right) .
\end{array}
$$

We have exactly the same kind of matrix representation of $A_{4}: \mu_{4}$ w.r.t. one and the same basis $\left\{y_{1}^{\prime}, \ldots, y_{5}^{\prime}\right\}$ of χ_{5}^{\prime}. But we use b_{i}^{\prime} and a_{i}^{\prime} for $\gamma^{*} \mid \chi_{5}^{\prime}$ and $g^{*} \mid \chi_{5}^{\prime}$ instead.

Proof. This follows from the character Table 1 in 1.6 and the fact that the conjugation c_{g} fixes σ_{1}, and exchanges σ_{2} with $\sigma_{1} \sigma_{2}$ and γ with γ^{-1}.

Lemma 2.4. (1) Suppose that g stabilizes χ_{4}. Then w.r.t. one and the same basis $\left\{u_{1}, \ldots, u_{4}\right\}$, we have the following matrix representation of $S_{3} \times \mu_{4}$ on χ_{4}, where η_{3} is a primitive 3 rd root of 1 . Moreover, $d_{3}= \pm d_{1}$ and $\left(g^{2}\right)^{*} \mid \chi_{4}=d_{1}^{2} \mathrm{id}$:

$$
\begin{aligned}
& \tau^{*}=\left[1,1, \eta_{3}, \eta_{3}^{2}\right], \\
& \sigma^{*}=\operatorname{diag}\left[1,-1,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right] .
\end{aligned}
$$

We have exactly the same kind of matrix representation of $S_{3} \times \mu_{4}$ w.r.t. one and the same basis $\left\{u_{1}^{\prime}, \ldots, u_{4}^{\prime}\right\}$ of χ_{4}^{\prime}. But we use d_{i}^{\prime} for $g^{*} \mid \chi_{4}^{\prime}$ instead.
(2) Suppose that g stabilizes χ_{5}. Then w.r.t. one and the same basis $\left\{x_{1}, \ldots, x_{5}\right\}$, we have the following matrix representation of $S_{3} \times \mu_{4}$ on χ_{5}, where η_{3} is a primitive 3 rd root
of 1. Moreover, $e_{2}= \pm e_{1},\left(g^{2}\right)^{*} \mid \chi_{5}=e_{1}^{2} \operatorname{id}$ (and e_{1} equals a_{3} in 2.3):

$$
\begin{aligned}
\tau^{*} & =\operatorname{diag}\left[1, \eta_{3}, \eta_{3}^{2}, \eta_{3}, \eta_{3}^{2}\right], \quad g^{*}=\left[e_{1}, e_{2}, e_{2},-e_{2},-e_{2}\right], \\
\sigma^{*} & =\operatorname{diag}\left[1,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right] .
\end{aligned}
$$

We have exactly the same kind of matrix representation of $S_{3} \times \mu_{4}$ w.r.t. one and the same basis $\left\{x_{1}^{\prime}, \ldots, x_{5}^{\prime}\right\}$ of χ_{5}^{\prime}. But we use e_{i}^{\prime} for $g^{*} \mid \chi_{5}^{\prime}$, instead.

Proof. (1) follows from the character Table 1 in 1.6 and the fact that g commutes with both σ, τ, if we claim only $g^{*} \mid \chi_{4}=\operatorname{diag}\left[d_{1}, d_{2}, d_{3}, d_{3}\right]$ instead. It suffices to show that $d_{2}=-d_{3}$. On the one hand, over the eigenspace $V_{4}(\sigma=-1) \subset \chi_{4}$ of σ corresponding to the eigenvalue -1 , we have $g^{*} \mid V_{4}(\sigma=-1)=\operatorname{diag}\left[d_{2}, d_{3}\right]$. On the other hand, by 2.3, $g^{*} \mid V_{4}(\sigma=-1)=\operatorname{diag}\left[\sqrt{\alpha_{4} \alpha_{5}},-\sqrt{\alpha_{4} \alpha_{5}}\right]$. Thus $d_{2}=-d_{3}$. Now $d_{1}= \pm d_{3}$ follows from the fact that $\left(g^{2}\right)^{*} \mid \chi_{i}$ is a scalar.
(2) is similar, except the determination of e_{i} in $g^{*}=\operatorname{diag}\left[e_{1}, e_{2}, e_{2}, e_{4}, e_{4}\right]$. Indeed, comparing the diagonalization in 2.3 and here we see also that diag $\left[e_{2}, e_{4}\right]=g^{*} \mid V_{5}(\sigma=$ $-1)=\operatorname{diag}\left[\sqrt{a_{4} a_{5}},-\sqrt{a_{4} a_{5}}\right]$, whence $e_{4}=-e_{2}$. Taking the trace in 2.3 and here, we obtain $a_{3}=\operatorname{Tr}\left(g^{*} \mid \chi_{5}\right)=e_{1}$.

Lemma 2.5. (1) Suppose that g switches χ_{4} with χ_{4}^{\prime}. Then w.r.t. one and the same basis $\left\{u_{1}, \ldots, u_{8}\right\}$, we have the following matrix representation of $S_{3} \times \mu_{4}$ on $\chi_{4} \oplus \chi_{4}^{\prime}$, where η_{3} is a primitive 3 rd root of 1 . Moreover, $\left(g^{2}\right)^{*} \mid \chi_{4}=\left(d_{1} d_{5}\right)$ id $=\left(g^{2}\right)^{*} \mid \chi_{4}^{\prime}$:

$$
\begin{aligned}
\tau^{*} & =\left[1,1, \eta_{3}, \eta_{3}^{2}, 1,1, \eta_{3}, \eta_{3}^{2}\right] \\
\sigma^{*} & =\operatorname{diag}\left[\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right], \\
g^{*} & =\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & d_{5} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & d_{6} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & d_{7} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & d_{8} \\
d_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & d_{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d_{4} & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

(2) Suppose that g switches χ_{5} with χ_{5}^{\prime}. Then w.r.t. one and the same basis $\left\{x_{1}, \ldots, x_{10}\right\}$, we have the following matrix representation of $S_{3} \times \mu_{4}$ on $\chi_{5} \oplus \chi_{5}^{\prime}$, where η_{3} is a primitive 3 rd root of 1 . Moreover, $\left(g^{2}\right)^{*}\left|\chi_{5}=\left(e_{1} e_{6}\right) \mathrm{id}=\left(g^{2}\right)^{*}\right| \chi_{5}^{\prime}$:

$$
\begin{aligned}
& \tau^{*}=\left[1, \eta_{3}, \eta_{3}^{2}, \eta_{3}, \eta_{3}^{2}, 1, \eta_{3}, \eta_{3}^{2}, \eta_{3}, \eta_{3}^{2}\right], \\
& \sigma^{*}=\operatorname{diag}\left[1,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), 1,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right],
\end{aligned}
$$

$$
g^{*}=\left(\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & e_{6} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & e_{7} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{7} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{9} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{9} \\
e_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & e_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & e_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & e_{4} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & e_{4} & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Proof. The proof is similar to 2.4 .
To prove 2.2, we consider first the case where both χ_{4} and χ_{5} are g-stable:
Lemma 2.6. Suppose that both χ_{4} and χ_{5} are g-stable.
(1) We have the following, where by $\sum d_{1}$, etc. we mean $d_{1}+d_{1}^{\prime}$, etc.:

$$
\begin{aligned}
& \chi_{\text {top }}\left(X^{g^{ \pm}}\right)=2+\operatorname{Tr}\left(g^{*} \mid \chi_{1} \oplus \chi_{1}^{\prime}\right)+\sum\left(d_{1}+d_{3}+e_{1}\right), \\
& \chi_{\text {top }}\left(X^{g^{-1} \tau^{\mp}}\right)=\chi_{\text {top }}\left(X^{g^{ \pm}}\right)=2+\operatorname{Tr}\left(g^{*} \mid \chi_{1} \oplus \chi_{1}^{\prime}\right)+\sum\left(d_{1}-2 d_{3}+e_{1}\right), \\
& \chi_{\text {top }}\left(X^{g^{2}}\right)=2+\sum\left(4 d_{1}^{2}+5 e_{1}^{2}\right), \\
& \chi_{\text {top }}\left(X^{g^{2} \tau^{ \pm}}\right)=2+\sum\left(d_{1}^{2}-e_{1}^{2}\right) .
\end{aligned}
$$

(2) We have $d_{1}^{4}=e_{1}^{4}=\left(d_{1}^{\prime}\right)^{4}=\left(e_{1}^{\prime}\right)^{4}=1$ and $d_{3} \in\left\{ \pm d_{1}\right\}, d_{3}^{\prime} \in\left\{ \pm d_{1}^{\prime}\right\}$.
(3) Among six 4 th roots of $1: e_{1}, e_{1}^{\prime}, d_{i}, d_{i}^{\prime}(i=1,3)$, either all six of them are primitive, or exactly e_{1}, e_{1}^{\prime} are primitive, or exactly the $d_{i}, d_{i}^{\prime}(i=1,3)$ are primitive 4 th roots of 1 .
(4) 2.2 holds.

Proof. (1) and (2) follow from 2.4. For (3), the formula for $\chi_{\text {top }}\left(X^{g^{2}}\right)$ in (1) and its upper bound 18 in 1.2 imply that at least one of the six 4 th roots of 1 in (3) is primitive. Now (3) is a consequence of (2) and the description of $\chi_{\text {top }}\left(X^{g}\right)$ and $\chi_{\text {top }}\left(X^{g \tau}\right)$ in (1) and the difference (i.e., $3 \sum d_{3}=3\left(d_{3}+d_{3}^{\prime}\right)$) of which must be real numbers (indeed, integers).

To prove (4), we apply (3). If exactly these four: $d_{i}, d_{i}^{\prime}(i=1,3)$ are primitive 4th roots of 1 , then $\chi_{\text {top }}\left(X^{g^{2} \tau}\right)=2+(-2)-2<0$, contradicting 1.4. If all these six in (3) are primitive 4 th roots of 1 , then $\chi_{\text {top }}\left(X^{g}\right)$ and $\chi_{\text {top }}\left(X^{g \tau}\right)$, given in (1) and being real numbers, must all be equal to $2+\operatorname{Tr}\left(g^{*} \mid \chi_{1} \oplus \chi_{1}^{\prime}\right)$; hence they are all equal to 4 - the only possible common value of these two, by 1.4 ; but then $\chi_{\text {top }}\left(X^{g^{2} \tau}\right)=2+(-2)-(-2)=2<4=$ $\chi_{\text {top }}\left(X^{g \tau}\right)$, a contradiction to 1.4.

Thus, exactly e_{1}, e_{1}^{\prime} are primitive 4th roots of 1 , while $d_{i}, d_{i}^{\prime} \in\{ \pm 1\}(i=1,3)$. So (*): $-2 \leq \chi_{\text {top }}\left(X^{g}\right) \leq 8$. Also $\chi_{\text {top }}\left(X^{g^{2}}\right)=2+4 \times 2+5 \times(-2)=0$ and $\chi_{\text {top }}\left(X^{g^{2} \tau^{ \pm}}\right)=$ $2+2-(-2)=6$. Now (1) implies that $\chi_{\text {top }}\left(X^{g \tau^{ \pm}}\right)+3 \sum d_{3}=\chi_{\text {top }}\left(X^{g}\right)=0(\bmod 4)$ by 1.4, and also $\sum d_{3}=d_{3}+d_{3}^{\prime} \in\{0, \pm 2\}$ and $\chi_{\text {top }}\left(X^{g \tau^{ \pm}}\right) \in\{2,4,6\}$ by 1.4. These and $\left({ }^{*}\right)$ above infer that the cases in 2.2 occur. The lemma is proved.

The first two assertions below are consequences of 2.4 and 2.5 and an argument similar to 2.6 .

Lemma 2.7. Suppose that g switches χ_{4} with χ_{4}^{\prime} but keeps χ_{5} (and χ_{5}^{\prime}) stable.
(1) We have the following, where $\delta \in S_{3}=\langle\sigma, \tau\rangle$ and by $\sum e_{1}$ etc. we mean $e_{1}+e_{1}^{\prime}$ etc.:

$$
\begin{aligned}
& \chi_{\mathrm{top}}\left(X^{g^{-1} \delta^{-1}}\right)=\chi_{\mathrm{top}}\left(X^{g \delta}\right)=2+\operatorname{Tr}\left(g^{*} \mid \chi_{1} \oplus \chi_{1}^{\prime}\right)+\sum e_{1}, \\
& \chi_{\mathrm{top}}\left(X^{g^{2}}\right)=2+8 d_{1} d_{5}+5 \sum e_{1}^{2} \\
& \chi_{\mathrm{top}}\left(X^{g^{2} \tau^{ \pm}}\right)=2+2 d_{1} d_{5}-\sum e_{1}^{2} .
\end{aligned}
$$

(2) We have $e_{1}^{4}=\left(e_{1}^{\prime}\right)^{4}=\left(d_{1} d_{5}\right)^{2}=1$. Either $\left\{e_{1}, e_{1}^{\prime}\right\}=\{ \pm \sqrt{-1}\}$, or $e_{1}, e_{1}^{\prime} \in\{ \pm 1\}$.
(3) 2.2 holds.

Proof. To prove (3), by (1) $\chi_{\mathrm{top}}\left(X^{g}\right)(=0 \bmod 4)$ and $\chi_{\mathrm{top}}\left(X^{g \tau}\right)(\in\{2,4,6\})$ are equal (see 1.4). Hence they are all equal to 4 . If both e_{1}, e_{1}^{\prime} are in $\{ \pm 1\}$, then $\chi_{\operatorname{top}}\left(X^{g^{2} \tau}\right)=$ $2+2 d_{1} d_{5}-2 \leq 2<4=\chi\left(X^{g \tau}\right)$, contradicting 1.4. Thus, $\left\{e_{1}, e_{1}^{\prime}\right\}=\{ \pm \sqrt{-1}\}$. By 1.4, we have $4=\chi_{\text {top }}\left(X^{g \tau}\right) \leq \chi_{\text {top }}\left(X^{g^{2} \tau}\right)=2+2 d_{1} d_{5}+2$, whence the latter equals 6 and $d_{1} d_{5}=1$. Now $\chi_{\text {top }}\left(X^{g^{2}}\right)=2+8+5 \times(-2)=0$. Therefore, the second case in 2.2 occurs. This proves the lemma.

Lemma 2.8. Suppose that χ_{4} (and χ_{4}^{\prime} are) is g-stable but g switches χ_{5} with χ_{5}^{\prime}.
(1) We have the following, where by $\sum d_{1}$ etc. we mean $d_{1}+d_{1}^{\prime}$ etc.:

$$
\begin{aligned}
& \chi_{\mathrm{top}}\left(X^{g^{ \pm}}\right)=2+\operatorname{Tr}\left(g^{*} \mid \chi_{1} \oplus \chi_{1}^{\prime}\right)+\sum\left(d_{1}+d_{3}\right), \\
& \chi_{\mathrm{top}}\left(X^{g^{-1} \tau^{\mp}}\right)=\chi_{\mathrm{top}}\left(X^{g \tau^{ \pm}}\right)=2+\operatorname{Tr}\left(g^{*} \mid \chi_{1} \oplus \chi_{1}^{\prime}\right)+\sum\left(d_{1}-2 d_{3}\right), \\
& \chi_{\mathrm{top}}\left(X^{g^{2}}\right)=2+4 \sum d_{1}^{2}+10 e_{1} e_{6}, \\
& \chi_{\mathrm{top}}\left(X^{g^{2} \tau^{ \pm}}\right)=2+\sum d_{1}^{2}-2 e_{1} e_{6} .
\end{aligned}
$$

(2) We have $d_{1}^{4}=\left(d_{1}^{\prime}\right)^{4}=\left(e_{1} e_{6}\right)^{2}=1$ and $d_{3} \in\left\{ \pm d_{1}\right\}, d_{3}^{\prime} \in\left\{ \pm d_{1}^{\prime}\right\}$.
(3) Either the four 4 th roots of $1: d_{i}, d_{i}^{\prime}(i=1,3)$ are all in $\{ \pm \sqrt{-1}\}$, or these four are all in $\{ \pm 1\}$ (so $e_{1} e_{6}=-1$ and $\chi_{\text {top }}\left(X^{g^{2}}\right)=0$ by 1.2).
(4) 2.2 holds.

Proof. (1)-(2) are consequences of 2.5 and 2.6 , while the proof of (3)-(4) are similar to the argument for the case of 2.6. Indeed, if the first (resp. second) situation in (3) occurs, then a contradiction (resp. 2.2 holds). This proves the lemma.

Lemma 2.9. Suppose that g switches χ_{4} with χ_{4}^{\prime} and χ_{5} with χ_{5}^{\prime}. Then 2.2 holds.
To be precise, we have the following, where δ is in $S_{3}=\langle\sigma, \tau\rangle$, where $\left(d_{1} d_{5}\right)^{2}=$ $\left(e_{1} e_{6}\right)^{2}=1$:

$$
\begin{aligned}
& \chi_{\mathrm{top}}\left(X^{g^{-1} \delta^{-1}}\right)=\chi_{\mathrm{top}}\left(X^{g \delta}\right)=2+\operatorname{Tr}\left(g^{*} \mid \chi_{1} \oplus \chi_{1}^{\prime}\right), \\
& \chi_{\mathrm{top}}\left(X^{g^{2}}\right)=2+8 d_{1} d_{5}+10 e_{1} e_{6} \\
& \chi_{\mathrm{top}}\left(X^{g^{2} \tau^{ \pm}}\right)=2+2 d_{1} d_{5}-2 e_{1} e_{6} .
\end{aligned}
$$

Proof. The formulae or equalities are consequences of 2.4 and 2.5. As in 2.7, the formulae in (1) and 1.4 imply that $\chi_{\text {top }}\left(X^{g}\right)=\chi_{\text {top }}\left(X^{g \tau}\right)=4$. The formula for $\chi_{\text {top }}\left(X^{g^{2} \tau}\right)$ and its lower bounder $4=\chi_{\text {top }}\left(X^{g \tau}\right)$ by 1.4 infer that it equals 6 and $d_{1} d_{5}=1, e_{1} e_{6}=-1$. This proves the lemma. The proof of 2.2 is completed.

3. The proofs of Theorems A-C

In this section we shall prove Theorems A-C. We first prove the result below which is a consequence of 3.2-3.8 below.

Theorem 3.1. (1) There is no faithful group action of the form $A_{5} \cdot \mu_{4}$ (see 1.0) on a $K 3$ surface.
(2) If $A_{5} \cdot \mu_{I}$ acts faithfully on a $K 3$ surface, then $I=1$, or 2 .
(2) follows from (1), 1.1 and [26, Theorem 3.1]. Let us prove 3.1 (1). Suppose the contrary that $G:=A_{5} \cdot \mu_{4}$ acts on a $K 3$ surface X. Then $G=A_{5}: \mu_{4}$ and the unique group structure of such G is given in 1.7. We use the notation in 2.1 and 2.2. First, we need:

Proposition 3.2. Suppose that $G=A_{5}: \mu_{4}$ acts on a $K 3$ surface X. Then with the notation in 2.1, the fixed locus $X^{g^{2}}=C \coprod_{i=1}^{6} D_{i}$ is a disjoint union of a genus-7 curve C (hence $C^{2}=12$) and six smooth rational curves. Both C and $\sum_{i=1}^{6} D_{i}$ are G-stable.

Proof. We apply 2.2. Then we always have $\chi_{\text {top }}\left(X^{g^{2}}\right)=0$. Also 1.4 implies that $X^{g^{2}} \supseteq$ $X^{g} \neq \emptyset$, so either $X^{g^{2}}=\coprod_{i=1}^{s} E_{i}$ with $1 \leq s \leq 10$ (by 1.2) is a disjoint union of a few smooth elliptic curves E_{i} (so $X_{1-\mathrm{dim}}^{g}$ is, if not empty, a disjoint union of some of the E_{i} 's, and hence $n_{g}=0$ in the notation of 1.4), or $X^{g^{2}}=C \coprod_{i=1}^{S} D_{i}$ is a disjoint union of a smooth curve C and s smooth rational curves D_{i} with $9 \geq s=g(C)-1 \geq 1$ (see 1.2).

Consider the case where $X^{g^{2}}=\coprod_{i=1}^{s} E_{i}$. Then $n_{g}=0$ and $\left(n_{g}, m_{g} ; \chi_{\text {top }}\left(X^{g}\right)\right.$, $\left.\chi_{\text {top }}\left(X^{g \tau}\right), \chi_{\text {top }}\left(X^{g^{2} \tau}\right), \chi_{\text {top }}\left(X^{g^{2}}\right)\right)=(0,4 ; 4,4,6,0)$. Note that $\left|X_{\text {isol }}^{g}\right|=m_{g}=4$. We may assume that E_{1} contains an isolated g-fixed point. Since the restriction $g \mid E_{1}$ is now of order 2 , this E_{1} contains all four isolated g-fixed points by 1.9 . Now g commutes with every element of $\langle\sigma, \tau\rangle=S_{3}$ as mentioned in 2.1, and hence there is a natural homomorphism $S_{3} \rightarrow S_{4}$ (= the full symmetry group of the 4-point set $X_{\text {isol }}^{g}$). By 1.2 and 1.9 , the restriction $\tau \mid X_{\text {isol }}^{g} \neq$ id. So the image of this homomorphism equals one of the four 1-point (say P_{1}) stabilizer subgroups ($\cong S_{3}$) in S_{4}. This leads to that $S_{3}<S L\left(T_{X, P_{1}}\right)$, contradicting 1.0C.

Next we consider the case where $X^{g^{2}}=C \coprod_{i=1}^{s} D_{i}$. We claim that $s=1,5,6$. Since g^{2} is in the centre of G by 2.1 , our G acts on $X^{g^{2}}$ and hence stabilizes C and permutes D_{i} 's. Note that C and the A_{5}-orbits of $\left\{D_{1}, \ldots, D_{s}\right\}$ will give linearly independent classes in $S_{X}^{A_{5}} \otimes \mathbf{Q}$. Since the latter is of rank 2 by 1.6 , this A_{5} acts transitively on the set $\left\{D_{1}, \ldots, D_{s}\right\}$ and hence the image of the natural homomorphism $A_{5} \rightarrow S_{s}$ is a transitive subgroup of S_{s}. Now the claim follows from 1.8.

We assert that C is not g-fixed. Indeed, let $\delta=(13)(24)$, then $c_{\delta}(g)=g \sigma$ with $\sigma=(12)(34)$ (because $c_{g}=c_{(12)}$ on $\left.A_{5}\right)$. Hence $X^{g \sigma}=\delta\left(X^{g}\right)$. So $\delta(C)$ is contained in $X^{g \sigma} \subseteq X^{g^{2}}$ (noting that $(g \sigma)^{2}=g^{2}$), whence it equals the unique curve C of genus ≥ 2
in $X^{g^{2}}$. Thus $C=\delta(C)$ is pointwise $g \sigma$-fixed. However, C is also pointwise g-fixed, whence it is pointwise σ-fixed. This contradicts 1.2. So the assertion is proved.

We claim that $s=1$ is impossible. Consider the case $s=1$. Then $G=A_{5}:\langle g\rangle$ acts on the set $\left\{C, D_{1}\right\}$ and hence stabilizes both C and D_{1}. If D_{1} is pointwise g-fixed, then as above, D_{1} would be pointwise ($g \sigma$ and hence) σ-fixed, a contradiction. So the restriction $g \mid D_{1}$ is not identity. We consider the natural homomorphism $f: S_{5}=A_{5}:\langle\bar{g}\rangle=$ $G /\left\langle g^{2}\right\rangle \rightarrow \operatorname{Aut}\left(D_{1}\right)$ (see 2.1), where \bar{g} is the coset in $\langle g\rangle /\left\langle g^{2}\right\rangle$ containing g. Clearly, the restriction $f \mid A_{5}$ is an injection by 1.2. Hence $|\operatorname{Ker}(f)| \leq 2$ and $\operatorname{Ker}(f)$ is normal in S_{5}. So $\operatorname{Ker}(f)=(1)$ and $S_{5} \cong f\left(S_{5}\right)<\operatorname{Aut}\left(\mathbf{P}^{1}\right)$, contradicting 1.9.

We still have to rule out the case $s=5$. Since C is not pointwise g-fixed as proved above, $X_{1-\mathrm{dim}}^{g}$ is (if not empty) a disjoint union of $n_{g} / 2(\geq 0)$ of D_{i} 's. If $\tau=$ (345) stabilizes some D_{j} then τ fixes exactly two points on D_{j} by 1.2 and 1.9. Since $\left|X^{\tau}\right|=6$, this τ stabilizes at most three D_{j} 's. Thus we may assume that τ permutes D_{1}, D_{2}, D_{3} while it stabilizes D_{4}, D_{5}. Now the commutability of g with τ implies that g stabilizes each D_{i} ($i=1,2,3$); also none of $D_{i}(i=1,2,3)$ is pointwise g-fixed, for otherwise all these three D_{i} (forming one τ-orbit) are pointwise g-fixed, whence $n_{g} \geq 3$, contradicting 2.2. Thus, $m_{g}=\left|X_{\text {isol }}^{g}\right| \geq \sum_{i=1}^{3}\left|D_{i}^{g}\right|=6$. So the first case in 2.2 occurs and $n_{g}=1, m_{g}=6$. Here $n_{g}=1$ implies that (after switching D_{4} with D_{5} if necessary) D_{5} is pointwise g-fixed, and D_{4} is g-stable but not g-fixed. This leads to $6=\left|X_{\text {isol }}^{g}\right| \geq \sum_{i=1}^{4}\left|D_{i}^{g}\right|=8$, a contradiction. So 3.2 is proved. Indeed, for the last part, note that g^{2} is in the centre of G by 2.1 and hence G acts on $X^{g^{2}}$.

We continue the proof of 3.1 (1). In the notation of 3.2 , we set $D=\sum_{i=1}^{6} D_{i}$ and $L_{0}:=\mathbf{Z}[C, D]$. Then we have:

Lemma 3.3. Suppose that $G=A_{5}: \mu_{4}$ acts on a $K 3$ surface X.
(1) L_{0} is a sublattice (with intersection form $\operatorname{diag}[12,-12]$) of $S_{X}^{A_{5}}$ of finite index d_{1}. In particular, $S_{X}^{G}=S_{X}^{A_{5}}$, i.e., $g^{*} \mid S_{X}^{A_{5}}=\mathrm{id}$.
(2) If $d_{1}>1$, then $d_{1}=2$ and $S_{X}^{A_{5}}$ equals $\mathbf{Z}\left[u_{1}, u_{2}\right]$ with $u_{1}=\frac{1}{2}(C+D)$ and $u_{2}=\frac{1}{2}(C-D)$ and with the intersection form $U(6)$, i.e., $u_{i}^{2}=0$ and $u_{1} \cdot u_{2}=6$.
Proof. (1) Clearly, $S_{X}^{A_{5}} \supseteq S_{X}^{G} \supseteq L_{0}$ by 3.2. Now (1) follows from the fact that rank $S_{X}^{A_{5}}=$ 2 by 1.6.
(2) Suppose that $d_{1}>1$. Let $\theta=\frac{1}{12}(a C+b D)$ be in $S_{X}^{A_{5}} \subseteq L_{0}^{\vee}=\operatorname{Hom}\left(L_{0}, \mathbf{Z}\right)=$ $\mathbf{Z}[C / 12, D / 12]$ but not in L_{0}. Since $-2 b / 12=\theta \cdot D_{1} \in \mathbf{Z}$, we have $6 \mid b$. This and $\left(a^{2}-b^{2}\right) / 12=\theta^{2} \in \mathbf{Z}$ imply that 12 divides a^{2}, whence $6 \mid a$. So modulo L_{0}, our $\theta=C / 2$, or $D / 2$ or $(C+D) / 2$. Since $\theta^{2} \in 2 \mathbf{Z}$, we have $\theta=(C+D) / 2$ and hence $S_{X}^{A_{5}}=\mathbf{Z}[C,(C+D) / 2]=\mathbf{Z}[(C+D) / 2,(C-D) / 2]$. The lemma is proved.

Set $L=H^{0}(X, \mathbf{Z})$ which contains $S_{X} \oplus T_{X}$ as a sublattice of finite index. Also $L^{A_{5}}$ contains $S_{X}^{A_{5}} \oplus T_{X}$ as a sublattice of finite index d by 1.0A and 1.0B.

Lemma 3.4. The quotient $L^{A_{5}} /\left(S_{X}^{A_{5}} \oplus T_{X}\right)$ is 2-elementary of order d and isomorphic to (0) $(d=1), \mathbf{Z} /(2)(d=2)$ or $(\mathbf{Z} /(2))^{\oplus 2}(d=4)$.

Proof. For a lattice M, we denote by $M^{\vee}=\operatorname{Hom}(M, \mathbf{Z})$ the dual and $A_{M}=M^{\vee} / M$ the discriminant group. Then we have, where ι is the inclusion:

$$
\begin{aligned}
& S_{X}^{A_{5}} \oplus T_{X} \subseteq L^{A_{5}} \subseteq\left(L^{A_{5}}\right)^{\vee} \subseteq\left(S_{X}^{A_{5}}\right)^{\vee} \oplus T_{X}^{\vee} \\
& \iota: L^{A_{5}} /\left(S_{X}^{A_{5}} \oplus T_{X}\right) \rightarrow A_{S_{X}^{A_{5}}} \oplus A_{T_{X}}
\end{aligned}
$$

Let $p r_{1}$ and $p r_{2}$ be the projections from $A_{S_{X}^{A_{5}}} \oplus A_{T_{X}}$ to its first and second summands, respectively. Since $S_{X}^{A_{5}}$ and T_{X} are primitive in $L^{A_{5}}$, both compositions $p r_{i} \circ \iota$ are injective. In particular, the quotient group in 3.4 is regarded as a subgroup of a bigger group $A_{T_{X}}$, whence it is generated by 2 elements because the same is true for the bigger group (since rank $T_{X}=2$ by 1.1). We still have to show that this quotient group is 2 -elementary.

Take a coset $\bar{\theta}$ from the quotient group in 3.4. In the notation of 1.5 , we write

$$
\theta=u+\frac{1}{2 m}\left(a t_{1}+b t_{2}\right) \in\left(S_{X}^{A_{5}}\right)^{\vee} \oplus T_{X}^{\vee}
$$

Regarding $\bar{\theta}$ as an element of $A_{S_{X}^{A_{5}}}$ via the injection $p r_{1} \circ \iota$, we have by 3.3, modulo $S_{X}^{A 5} \oplus T_{X}$, that

$$
0=g^{*} \theta-\theta=\frac{1}{2 m}\left[a\left(g^{*} t_{1}-t_{1}\right)+b\left(g^{*} t_{2}-t_{2}\right)\right]=\frac{1}{2 m}\left[-(a+b) t_{1}+(a-b) t_{2}\right] .
$$

So $2 m$ divides $a+b, a-b$ (and hence $2 a$ and $2 b$) because T_{X} is primitive in L. Thus m divides a and b and we write $a=m a^{\prime}$ and $b=m b^{\prime}$ so that $\theta=u+\frac{1}{2}\left(a^{\prime} t_{1}+b^{\prime} t_{1}\right)$. Therefore, modulo T_{X}, we have $2 u=2 \theta \in 2 L^{G_{N}} \subset L^{G_{N}}$, whence $2 u \in L \cap\left(S_{X}^{A_{5}}\right)^{\vee}=S_{X}^{A_{5}}$ (because the latter is primitive in L). So $2 \bar{\theta}=0$. The lemma is proved.

Lemma 3.5. One of the following cases occurs.
(1) We have $m=5$. Both the quotients $S_{X}^{A_{5}} / L_{0}$ and $L^{A_{5}} /\left(S_{X}^{A_{5}} \oplus T_{X}\right)$ are isomorphic to $\mathbf{Z} /(2)$. Moreover, the discriminant form of $\left(L^{A_{5}}\right)^{\vee} / L^{A_{5}} \cong(\mathbf{Z} /(30))^{\oplus 2}$ is given in [26, Theorem 2.1] (corresponding to the matrix M_{1} there) and generated by the cosets $\bar{\varepsilon}_{i}$ with $\varepsilon_{1}=e_{1}^{*}, \varepsilon_{2}=e_{2}^{*}+e_{3}^{*}+e_{4}^{*}$ and the intersection form (note that $\bar{\varepsilon}_{i}^{2}$ is in $\mathbf{Q} / 2 \mathbf{Z}$ while $\bar{\varepsilon}_{1} . \bar{\varepsilon}_{2}$ is in $\left.\mathbf{Q} / \mathbf{Z}\right)$:

$$
\left(\bar{\varepsilon}_{i} \cdot \bar{\varepsilon}_{j}\right)=\left(\begin{array}{cc}
-23 / 30 & -1 / 5 \\
-1 / 5 & -35 / 30
\end{array}\right) .
$$

(2) We have $m=10, S_{X}^{A_{5}} / L_{0} \cong \mathbf{Z} /(2)$ and $L^{A_{5}} /\left(S_{X}^{A_{5}} \oplus T_{X}\right) \cong(\mathbf{Z} /(2))^{\oplus 2}$.
(3) We have $m=5, L_{0}=S_{X}^{A_{5}}$ and $L^{A_{5}} /\left(S_{X}^{A_{5}} \oplus T_{X}\right) \cong(\mathbf{Z} /(2))^{\oplus 2}$.

Proof. In the notation of 3.3 and 3.4, we have $-\left(12^{2}\right)\left(4 m^{2}\right)=\left|L_{0}\right|\left|T_{X}\right|=d_{1}^{2} d^{2}\left|L^{A_{5}}\right|$. On the other hand, $-\left|L^{A_{5}}\right|=30^{2}, 3 \times 10^{2}, 20^{2}, 3 \times 20^{2}, 3 \times 40^{2}$ by the calculation in [26, Theorem 2.1]. Then the lemma follows easily.

Lemma 3.6. The case (3) in 3.5 does not occur.

Proof. Consider the case (3) in 3.5 . Let θ be an element in $L^{A_{5}}$ but not in the smaller set $S_{X}^{A_{5}} \oplus T_{X}$. We claim that $\theta^{2} \in 2 \mathbf{Z}$ implies that modulo this smaller set, our θ equals some θ_{j} below, where $u_{1}:=C, u_{2}:=D$ and $T_{X}=\mathbf{Z}\left[t_{1}, t_{2}\right]$ as in 1.5. Here $\theta_{j}:=\frac{1}{2}\left(t_{1}+t_{2}\right)+\frac{1}{2} u_{j}$.

Indeed, since the quotient group in 3.5(3) is 2-elementary, we can write, modulo the smaller set, that $\theta=\frac{1}{2}\left(a_{1} t_{1}+a_{2} t_{2}+b_{1} u_{1}+b_{2} u_{2}\right)$ with a_{i}, b_{j} in $\{0,1\}$ but not all zero. Indeed, $\left(a_{1}, a_{2}\right) \neq(0,0) \neq\left(b_{1}, b_{2}\right)$ because both $S_{X}^{A_{5}}$ and T_{X} are primitive in L. Now modulo $2 \mathbf{Z}$, we have the following, so the claim follows:

$$
\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}\right)+b_{1}^{2}+b_{2}^{2}=\frac{2 m}{4}\left(a_{1}^{2}+a_{2}^{2}\right)+\frac{12}{4}\left(b_{1}^{2}-b_{2}^{2}\right)=\theta^{2}=0 .
$$

Since $\theta_{1}-\theta_{2}$ is not in $L^{A_{5}}$ (not in L at all, by the primitivity of $S_{X}^{A_{5}}$ in L), at most one of θ_{j} is in $L^{A_{5}}$. So $L^{A_{5}} /\left(S_{X}^{A_{5}} \oplus T_{X}\right)$ is of order ≤ 2, a contradiction.

We start anew. By 3.3 and 3.6, the lattice $S_{X}^{A_{5}}$ equals $\mathbf{Z}\left[u_{1}, u_{2}\right]$ with $u_{1}=\frac{1}{2}(C+D)$ and $u_{2}=\frac{1}{2}(C-D)$, and has the intersection form $U(6)$.

Lemma 3.7. The case (2) in 3.5 is impossible.
Proof. Take θ in $L^{A_{5}}$ but not in the smaller set $S_{X}^{A_{5}} \oplus T_{X}$. As in 3.6, $\theta^{2} \in 2 \mathbf{Z}$ implies that modulo the smaller set, our θ is one of the following:

$$
\theta^{i}=\frac{1}{2} t_{i}+\frac{1}{2}\left(u_{1}+u_{2}\right), \quad \theta_{j}=\frac{1}{2}\left(t_{1}+t_{2}\right)+\frac{1}{2} u_{j} .
$$

Since $\theta^{1}-\theta^{2}$ is not in $L^{A_{5}}$ (not in L at all), not both θ^{i} are in $L^{A_{5}}$. By the same reasoning not both θ_{j} are in $L^{A_{5}}$. Since $L^{A_{5}} /\left(S_{X}^{A_{5}} \oplus T_{X}\right) \cong(\mathbf{Z} /(2))^{\oplus 2}$ is generated by two elements, one of $\theta^{i}(i=1,2)$ and one of $\theta_{j}(j=1,2)$ are in $L^{A_{5}}$. But $\theta^{i} . \theta_{j}=\frac{2 m}{4}+\frac{6}{4}=\frac{13}{2}$, which is not an integer. This is a contradiction.

Lemma 3.8. Suppose the case (1) in 3.5 occurs. Then we have:
(1) $L^{A_{5}}$ is generated by S_{X}, T_{X} and $\theta=\frac{1}{2}\left(t_{1}+t_{2}+u_{1}+u_{2}\right)$.
(2) The discriminant group $A_{L^{A_{5}}}=\left(L^{A_{5}}\right)^{\vee} / L^{A_{5}}$ (with the dual $\left(L^{A_{5}}\right)^{\vee}=\operatorname{Hom}\left(L^{A_{5}}, \mathbf{Z}\right)$) is generated by the cosets $\bar{\delta}_{j}(j=1,2)$ which (together with the intersection form) is given as follows (where $t_{i}^{*} \cdot t_{j}=\delta_{i j}$, and $u_{i}^{*} \cdot u_{j}=\delta_{i j}$ in Kronecker's symbol):

$$
\begin{aligned}
& \delta_{1}=t_{2}^{*}+u_{1}^{*}+2 u_{2}^{*}=\frac{1}{10} t_{2}+\frac{1}{6}\left(2 u_{1}+u_{2}\right), \quad \delta_{2}=t_{1}^{*}+u_{1}^{*}=\frac{1}{10} t_{1}+\frac{1}{6} u_{2}, \\
& \left(\bar{\delta}_{i} \cdot \bar{\delta}_{j}\right)=\left(\begin{array}{cc}
23 / 30 & 1 / 3 \\
1 / 3 & 1 / 10
\end{array}\right) .
\end{aligned}
$$

Proof. (1) can be proved as in 3.6 , by making use of that $\theta_{1}^{2} \in 2 \mathbf{Z}$ for every θ_{1} in $L^{A_{5}}$.
(2) Since $\delta_{i} . \theta, \delta_{i} . t_{j}$ and $\delta_{i} . u_{j}$ are all in \mathbf{Z} by a direct calculation, we see that both δ_{i} are in $\left(L^{A_{5}}\right)^{\vee}$. One checks easily that the subgroup $\left\langle\bar{\delta}_{1}, \bar{\delta}_{2}\right\rangle$ of the discriminant group in (2) is isomorphic to $(\mathbf{Z} /(30))^{\oplus 2}$, whence this subgroup is indeed the whole discriminant group in (2) (because the latter is of order 30^{2} by 3.5). This proves the lemma.

Here comes the punch line. By $3.5-3.8$, there is an isometry $\varphi:\left\langle\bar{\varepsilon}_{1}, \bar{\varepsilon}_{2}\right\rangle \longrightarrow\left\langle\bar{\delta}_{1}, \bar{\delta}_{2}\right\rangle$, so for some integers a, b, c, d, we can write $\left(\varphi\left(\bar{\varepsilon}_{1}\right), \varphi\left(\bar{\varepsilon}_{2}\right)\right)=\left(\bar{\delta}_{1}, \bar{\delta}_{2}\right)\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$. Thus,

$$
\begin{aligned}
& -23 / 30=\varepsilon_{1}^{2}=\varphi\left(\varepsilon_{1}\right)^{2}=\left(a \delta_{1}+b \delta_{2}\right)^{2}=\frac{1}{30}\left(23 a^{2}+3 b^{2}+20 a b\right)(\bmod 2 \mathbf{Z}), \\
& -23=23 a^{2}+3 b^{2}+20 a b(\bmod 60 \mathbf{Z}) .
\end{aligned}
$$

The congruence above implies that modulo 4 , we have $1=-a^{2}-b^{2}$, which is impossible. This completes the proof of 3.1 (1) and also the whole of 3.1.

We now prove Theorems A-C in the introduction. In Theorem C, we have $H \leq G_{N}$ by 1.0 A ; so H is either one of $A_{5}, L_{2}(7), A_{6}$ and $M_{20}=C_{2}^{\oplus 4}: A_{5}$, by [24, the list]; if $H=L_{2}(7)$ then $G_{N}=H$ by [11] and Theorem C follows from [18, Main Theorem].

Therefore, we may assume that in all three theorems, G is a finite group containing A_{5} and acting faithfully on a $K 3$ surface X. Write $G=G_{N} \cdot \mu_{I}$ as in 1.0. By 1.0A the A_{5} in G is contained in G_{N}. So G_{N} is either one of A_{5}, S_{5}, A_{6} and $M_{20}=C_{2}^{\oplus 4}: A_{5}$, by [24, the list].

Consider the case $G_{N}=A_{5}$. Then $I=1,2$, by 1.1, [26, Theorem 3.1] and 3.1. If $I=1$, then $G=A_{5}$. If $I=2$, let $\rho: G \rightarrow S_{5} \times \mu_{2}\left(x \mapsto\left(c_{x}, \alpha(x)\right)\right)$ be the injection as in 1.7 so that $\rho\left(A_{5}\right)=A_{5} \times\langle 1\rangle$; if the projection $p r_{1}: S_{5} \times \mu_{2} \rightarrow S_{5}$ maps $\rho(G)$ to A_{5} (resp. to S_{5}), then $G \cong \rho(G)=A_{5} \times \mu_{2}\left(\right.$ resp. $G \cong \rho(G) \cong p r_{1}(\rho(G))=S_{5}$, by comparing the orders); see the argument below. Thus Theorems A-C are true.

Consider the case $G_{N}=S_{5}$. Let g be in G such that $\alpha(g)$ is a generator of μ_{I}. Since $\operatorname{Aut}\left(S_{5}\right)=S_{5}$ and $x \mapsto c_{x}$ gives rise to an isomorphism $S_{5} \rightarrow \operatorname{Aut}\left(S_{5}\right)$, we see that the map $G \rightarrow \operatorname{Aut}\left(S_{5}\right)=S_{5}\left(x \mapsto c_{x}\right)$ is surjective, and the conjugation maps $c_{g}=c_{s}$ on S_{5}, for some $s \in S_{5}$. Replacing g by $g s^{-1}$, we may assume that g commutes with every element in $G_{N}=S_{5}$. So $g^{I} \in \operatorname{Ker}(\alpha)=G_{N}$ is in the centre of $G_{N}=S_{5}$ (which is (1)), whence $\operatorname{ord}(g)=I$, while $\alpha(g)$ is a generator of μ_{I}. Thus $G=S_{5} \times \mu_{I} \geq A_{5} \times \mu_{I}$. So $I=1,2$ by 1.1, [26, Theorem 3.1] and 3.1. Hence Theorems A-C are true.

Consider the case where $G_{N}=A_{6}$ or $G_{N}=M_{20}=C_{2}^{4}: A_{5}$. Then G_{N} does not contain an A_{5} as a normal subgroup (otherwise, in the latter case, $M_{20}=C_{2}^{4} \times A_{5}$, absurd). So A_{5} is also not normal in G. Thus Theorems A and B are void this time. Now Theorem C follows from [9] and [6].

Acknowledgements

This work was done during the author's visits to Hokkaido University, University of Tokyo and Korea Institute for Advanced Study in the summer of 2004. The author would like to thank the institutes and Professors I. Shimada, K. Oguiso and J. Keum for the support and warm hospitality.

References

[1] M.F. Atiyah, G.B. Segal, The index of elliptic operators. II, Ann. of Math. 87 (1968) 531-545.
[2] M.F. Atiyah, I.M. Singer, The index of elliptic operators. III, Ann. of Math. 87 (1968) 546-604.
[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Oxford University Press. Reprinted 2003 (with corrections).
[4] J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed., in: Grundlehren der Mathematischen Wissenschaften, vol. 290, Springer-Verlag, New York, 1999.
[5] A. Ivanov, K. Oguiso, D.-Q. Zhang, The monster and $K 3$ surfaces (in preparation).
[6] J. Keum, K. Oguiso, D.-Q. Zhang, The alternating group of degree 6 in geometry of the Leech lattice and K3 surfaces, Proc. London Math. Soc. 90 (2005) 371-394.
[7] J. Keum, K. Oguiso, D.-Q. Zhang, Extensions of the alternating group of degree 6 in geometry of K3 surfaces, European J. Combinatorics: Special issue on Groups and Geometries (in press). math.AG/0408105.
[8] S. Kondo, Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of $K 3$ surfaces, Duke Math. J. 92 (1998) 593-598.
[9] S. Kondo, The maximum order of finite groups of automorphisms of $K 3$ surfaces, Amer. J. Math. 121 (1999) 1245-1252.
[10] N. Machida, K. Oguiso, On K3 surfaces admitting finite non-symplectic group actions, J. Math. Sci. Univ. Tokyo 5 (1998) 273-297.
[11] S. Mukai, Finite groups of automorphisms of $K 3$ surfaces and the Mathieu group, Invent. Math. 94 (1988) 183-221.
[12] S. Mukai, Lattice-theoretic construction of symplectic actions on K3 surfaces, Duke Math. J. 92 (1998) 599-603. As the Appendix to [8].
[13] V.V. Nikulin, Finite automorphism groups of Kahler K3 surfaces, Trans. Moscow Math. Soc. 38 (1980) 71-135.
[14] V.V. Nikulin, Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. Algebrogeometric applications, J. Soviet Math. 22 (1983) 1401-1475.
[15] V.V. Nikulin, Integer symmetric bilinear forms and some of their applications, Math. USSR Izvestija 14 (1980) 103-167.
[16] K. Oguiso, A characterization of the Fermat quartic $K 3$ surface by means of finite symmetries, Compositio Math. 141 (2005) 404-424. math.AG/0308062.
[17] K. Oguiso, D.-Q. Zhang, On the most algebraic $K 3$ surfaces and the most extremal log Enriques surfaces, Amer. J. Math. 118 (1996) 1277-1297.
[18] K. Oguiso, D.-Q. Zhang, The simple group of order 168 and $K 3$ surfaces, in: Complex Geometry (Gottingen, 2000), Collection of Papers Dedicated to Hans Grauert, Springer, Berlin, 2002, pp. 165-184.
[19] I. Shimada, Rational double points on supersingular K3 surfaces, Math. Comp. 73 (2004) 1989-2017.
[20] I. Shimada, Lattices of algebraic cycles on Fermat varieties in positive characteristics, Proc. London Math. Soc. 82 (2001) 131-172.
[21] I. Shimada, On elliptic K3 surfaces, Michigan Math. J. 47 (2000) 423-446.
[22] M. Suzuki, Group Theory. I, in: Grundlehren der Mathematischen Wissenschaften, vol. 247, SpringerVerlag, Berlin, New York, 1982, Translated from the Japanese by the author.
[23] E.B. Vinberg, The two most algebraic $K 3$ surfaces, Math. Ann. 265 (1983) 1-21.
[24] G. Xiao, Galois covers between $K 3$ surfaces, Ann. Inst. Fourier (Grenoble) 46 (1996) 73-88.
[25] D.-Q. Zhang, Quotients of $K 3$ surfaces modulo involutions, Japan. J. Math. (N.S.) 24 (1998) 335-366.
[26] D.-Q. Zhang, Niemeier lattices and K3 groups, in: J. Keum (Ed.), Proc. Intern. Conf. Alg. Geom. in honour of Prof. Dolgachev, Contemporary Amer. Math. Soc. (in press) math.AG/0408106.

[^0]: E-mail address: matzdq@math.nus.edu.sg.

