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This work describes an Internet accessible three-dimensional particle-in-cell simulation code,
which is capable of near first principles modeling of complete experimental sequences in
Fourier transform ion cyclotron resonance mass spectrometers. The graphical user interface is
a Java client that communicates via a socket stream connection over the Internet to the
computational engine, a server that executes the simulation and sends real-time particle data
back to the client for display. As a first demonstration, this code is applied to the problem of
the cyclotron motion of two very close mass to charge ratios at high ion density. The ion
populations in these simulations range from 50,000 to 350,000 coulombically interacting
particles confined in a cubic trap, which are followed for 100,000 time-steps. Image charge,
coherent cyclotron positions, and snapshots of the ion population are recorded at selected
time-steps. At each time-step in the simulation the potential (coulomb 1 image 1 trap) is
found by the direct solution of Poisson’s equation on a 64 3 64 3 64 computational grid.
Cyclotron phase locking is demonstrated at high number density. Simulations at different
magnetic fields confirm a B2 dependence for the minimum number density required to lock
cyclotron modes. (J Am Soc Mass Spectrom 1999, 10, 136–152) © 1999 American Society for
Mass Spectrometry

Arealistic three-dimensional (3D) many particle
simulation of a trapped ion mass spectrometer
should incorporate space charge effects (cou-

lomb and image charge interactions) for a sufficiently
large ion population, and correctly model all major
aspects of the experiment including trap boundary,
applied potentials, magnetic field, and neutral bath gas.
The purpose of this work is to describe the development
of such a three-dimensional many particle simulator
and to give a preliminary demonstration of this code by
applying it to the problem of cyclotron phase locking of
two closely spaced masses at high space charge condi-
tions [1–8].

A Fourier transform ion cyclotron resonance mass
spectrometer (FTICR) consists of a strong magnetic
field, which is directed parallel to the symmetry axis (z
axis) of the ICR trap [9–13]. The magnetic field confines
the ions radially while the trap [14–17] creates a poten-
tial well to confine the ions longitudinally. An ICR
weighs ions by measuring their cyclotron frequencies.
The simplest possible FTICR experiment consists of
successive steps of ion accumulation, cyclotron mode
excitation and image charge detection. Applying an

excitation at the ions’ cyclotron frequencies coherently
excites the cyclotron modes. The ions are subsequently
followed for a long detection period by monitoring the
image charge induced on selected trap electrodes. A
Fourier transform of this signal yields the individual
cyclotron frequencies.

Considerable progress has been made towards un-
derstanding how various pieces of an ICR experiment
perturb the three-dimensional motion of a single ion
[18]. In general there are many simultaneously confined
ions with one or more different mass/charge species.
Several models have been proposed [7, 19–23] to ac-
count for space charge induced cyclotron frequency
shifts, usually based on determining an average radial
force arising from an assumed charge distribution
which neither changes its shape nor its cyclotron radius
during detection. These simple models predict the
correct magnitude of the experimentally observed
downward shift under conditions that the average force
model is appropriate, namely relatively low number
density and wide cyclotron frequency separation be-
tween different species. As discussed below, at high
number density, low magnetic field, or closely spaced
cyclotron frequency separation the dynamics becomes
considerably more complicated than just a frequency
shift. One method to theoretically investigate the high
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space charge regime in FTICR is by a realistic computer
simulation.

Most simulation work to date in FTICR and ion trap
mass spectrometry has focused on studying the effects
of ion–neutral collisions or various external fields on
single particle trajectories [23–29]. simion is an example
of a popular general-purpose code for studying prob-
lems of this type [30]. In contrast few simulation studies
have been published on large populations of coulomb-
ically interacting particles in ICR or ion trap mass
spectrometers. Simple two-dimensional simulation pro-
grams have previously been used to investigate varied
phenomena related to coulomb interactions in FTICR [7,
8, 31–33]. Three-dimensional FTICR simulations involv-
ing a relatively small number of interacting particles
have also been carried out [8, 34–36]. Miluchihin, Miura
and Inoue developed a 3D parallel code to integrate the
equations of motion of up to 1024 interacting particles
for 50,000 time-steps using a 1024 processor computer
[34].

Recently [37], two-dimensional many particle simu-
lations of trapped ion mass spectrometers in Cartesian
and cylindrical confinement geometries have been car-
ried out utilizing the particle-in-cell algorithm with
Monte Carlo ion–neutral collisions [38–40]. The parti-
cle-in-cell method (PIC) is a computational algorithm
for efficiently solving the dynamics of very large pop-
ulations of coulombically interacting particles [38–40].
The computational effort increases approximately lin-
early in the number of interacting particles. Linear
scaling is achieved by solving Poisson’s equation on a
computational grid. Poisson’s equation is solved at each
simulation time-step with boundary conditions and
charge density appropriate for the particular electrode
geometry and ion population, respectively. Field quan-
tities are evaluated on the grid and interpolated to the
particles.

The primary advantage of the two-dimensional PIC
simulations is that the solution to Poisson’s equation,
which is calculated at every time-step, can be done
much faster than in three dimensions. Another advan-
tage of two-dimensional results is that the number of
independent variables is reduced compared to three-
dimensional allowing for a more thorough study of the
accessible parameter space. The principle criticism of
two-dimensional results is that the experimental appa-
ratus and the ion trajectories are three-dimensional
which means that two-dimensional results must be
supported by other information such as insight and
experimental data to justify the two-dimensionality of
the problem. On the other hand, an accurate fully 3D
simulation code, incorporating all major processes in a
first principles manner, should lead to near unambigu-
ous, quantitative results.

The present work describes a new three-dimensional
particle-in-cell code that is capable of modeling a com-
plete FTICR experiment at high space charge condi-
tions. This code, called pic3d, is applied to ion popula-
tions of up to 350,000 coulombically interacting

particles for 100,000 time-steps, while maintaining cor-
rect trap boundary conditions. These are the first real-
istic three-dimensional ICR simulations involving very
large ion populations. This code is sufficiently general
to handle almost any conceivable simulation sequence
and experimental parameters. After a short review of
the particle-in-cell algorithm, a description of the pic3d
client-server program is presented. As a first applica-
tion, pic3d is applied to cyclotron phase locking be-
tween two close masses at sufficiently high ion density.

Particle-in-cell Algorithm

The particle-in-cell algorithm [37–40] follows several
basic steps at each time-step in the simulation. Charge
density is interpolated from the continuous particle
positions to the discrete grid points on the computa-
tional grid by using volume weighting, which is the
three-dimensional extension of area weighting de-
scribed in earlier work [37–40]. Using this charge den-
sity with the correct trap boundary conditions, the
potential is obtained on the computational grid using a
direct Poisson solver. The electric fields at the particle
positions are calculated by interpolation from the grid
electric fields using volume weighting. The particle
positions and velocities are advanced in time for one
time-step by the second-order leap-frog integrator. Elas-
tic ion-neutral collisions are implemented by the Monte
Carlo method. Any particles, which have left the con-
finement geometry, are removed. This procedure is
repeated for the next time-step.

The potential, including space charge is determined
by a direct solution of the three-dimensional Poisson
equation at each simulation time-step. Since the poten-
tial is solved at each time-step and the trap boundaries
coincide with the boundary conditions used in solving
Poisson’s equation, the potential is also correct at the
trap walls which allow a first-principles evaluation of
the image charge and, hence, the ICR detected signal.
The 3D PIC algorithm used in the present work is the
three-dimensional extension of a two-dimensional Car-
tesian PIC described in detail elsewhere [37]. A few of
the important components of the pic3d computational
engine are outlined below.

Three-dimensional Poisson Solver

The interior of the tetragonal ICR trap is divided into a
uniform computational grid. The finite difference form
of Poisson’s equation is solved on this grid using a
direct 3D Poisson solver based on the three dimensional
fast Fourier transform (3D-FFT) solution of Poisson’s
equation [38, 39] with Dirichlet boundary conditions.
The charge density used in Poisson’s equation is calcu-
lated by interpolating charge from the continuous par-
ticle positions to the eight nearest neighbor grid points
using a volume weighting scheme. The potential ob-
tained in this manner contains self-consistent contribu-
tions from the applied trap potentials, image charge
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induced on the electrodes and the coulomb interaction
between charged particles. The resulting potential is
correct everywhere within the trap including at the trap
walls. Interpolating charge at the continuous particle
positions to the discrete grid points on which Poisson’s
equation is solved implicitly replaces point particles
with finite sized particles (diameter on the order of the
distance between neighboring grid points). The electric
fields at the particle positions are interpolated from the
potential at the discrete grid points using the same
volume weighting scheme as used for the charge den-
sity. In the current implementation the user specifies
applied potentials to the six trap plates. Any conceived
static or time-dependent potential can be applied. The
code described below is applied to a system of .105

coulombically interacting particles for 105 time-steps
using a 64 3 64 3 64 computational mesh.

The direct Poisson solver is very efficient. For exam-
ple, a 500 MHz Dec/Alpha workstation running the
Linux operating system solves Poisson’s equation to
double precision on 323, 643, and 1283 grids in 0.06, 0.64,
and 6.8 s, respectively. Each factor of 8 in the number of
grid points increases the time for solving the potential
by an order of magnitude. While this FFT Poisson
solver is most efficient if the number of grid points is a
power of 2, this is not a restriction in the code. For
example, a 1003 grid requires 2.7 s of CPU time. Also,
the number of grid points in each dimension can be
different (e.g., a 64 3 64 3 128 grid can be used to
study an elongated trap whose length is two times the
trap width). It is also possible, though not done in the
current implementation, to use the direct Poisson solver
for any arrangement of trap electrodes, and hence any
complex trap geometry or arrangement of interior trap
electrodes, by use of the capacitance matrix method [37,
39]. The capacitance matrix method requires solving
Poisson’s equation twice per time-step.

Particle Push

The particles’ positions and velocities are advanced
forward in time for one time-step by the second-order
explicit leap-frog algorithm [36–40]. The leap-frog inte-
grator is absolutely stable when the product of the
time-step and the fastest angular frequency present in
the system is less than two.

Ion–Neutral Collisions

When a neutral bath gas is present, ion–neutral elastic
collisions are implemented by the Monte Carlo algo-
rithm [28, 34, 37, 38]. Given the neutral gas mass,
temperature, pressure, neutral polarizability, and/or
hard sphere cross section, ion–neutral Langevin and/or
hard sphere collisions are accurately treated by this
method. At the beginning of a simulation run a random
sample of about 104 neutral collision gas speeds are
taken from the Maxwell-Boltzmann distribution and
stored in an array. In addition an array of about 105

points on a unit radius sphere (unit vectors) are accu-
mulated. At each time-step for each particle in the
simulation, a neutral gas velocity vector is chosen by
randomly selecting a speed from the Maxwell-Boltz-
mann distribution and multiplying this speed by a
random unit vector. The probability of a collision is
calculated and compared with a random number to
determine whether an elastic collision occurs. If a colli-
sion occurs, the particle’s center of mass velocity is
given a random direction (isotropic scattering) and then
transformed back to the lab frame.

PIC3D: A Distributed 3D Particle-in-cell
Code

pic3d is an Internet accessible three-dimensional parti-
cle-in-cell code developed by the author. The graphical
user interface (client) and computational engine (server)
reside on different computers and communicate over
the Internet using a socket stream connection.

The graphical user interface is written entirely in
Java (v1.1) allowing the client to run on any computing
platform or appliance that the Java virtual machine has
been ported. Java is an object oriented programming
language developed by Sun Microsystems which has
powerful network programming capabilities and al-
lows for cross-platform software development. Since
the graphical user interface is the most platform specific
part of almost any program, writing the user interface
entirely in Java has the advantage of portability across
most platforms. For example, the pic3d client has been
ported to Win95/NT, Intel Linux, Dec/Alpha Linux,
and Sun Sparc Solaris. These are the only platforms
tested. The pic3d client should be able to run on any
Java supported platform with minimal, if any, code
modification.

The most CPU and memory critical part of pic3d is
the portion of the code that computes the particle-in-cell
algorithm. The particle-in-cell algorithm is computed
by the server, which resides on a different computer
than the Java client. The pic3d server is written entirely
in C and communicates with the remote Java client over
the Internet using a socket stream connection (TCP/IP
sockets). The pic3d server has been compiled with the
GNU C compiler (gcc) on Intel Linux, Dec/Alpha
Linux, and Sun Sparc Solaris platforms. The basic
portability requirement for the server is that the plat-
form has a sockets library. The server runs in the
background, listening for requests from a remote client.
If a request is made, the server forks a new process
depending on the type of client making the request. If
the request is from the Java client, the server initiates a
new many particle simulation. If an HTTP client (web
browser) makes a request to the IP address and port
that the pic3d server listens, then the pic3d server
emulates a web server. The server creates an ensemble
snapshot of an on-going simulation and sends these
snapshots, GIF images created on the fly, back to the
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requesting web browser. In this manner the real-time
status of a simulation in progress, perhaps requiring
several days of CPU time, can be remotely queried at
any time from a web browser.

A major advantage gained in separating the compu-
tational engine, which executes the particle-in-cell algo-
rithm, from the user interface is that the server can
communicate with any privileged remote client. This
client-server architecture provides an efficient means to
incorporate future code extensions as computing tech-
nology evolves without having to remain rooted in one
specific platform. Hence, pic3d is highly extensible,
modular, and portable without having to sacrifice the
performance of the computational engine.

Two versions of the Java client have been developed;
a standalone application and an applet. An applet
requires a Java enabled web browser to run while the
standalone application runs independent of a web
browser. The standalone application is more efficient
and powerful compared to the applet version of the
client. Among the advantages of the standalone appli-
cation are its ability to run simulations on several
different computers, simultaneously, and its ability to
access local system resources. The standalone applica-
tion is also much faster in both execution speed and in
reading data over the network, possibly since the Java
bytecodes is compiled using a high quality just-in-time
compiler for the standalone and does not have the
overhead of a web browser to deal with.

A user initiates a simulation by opening a number of
windows from the pic3d Java client including windows
for specifying ICR simulation parameters, initial condi-
tions, displayed diagnostics and network information.
Once the simulation begins running, the user views
various diagnostics such as particle positions for a
representative sample population in real-time and the
complete trajectories of a few particles. Figure 1 is a
screen shot of the primary pic3d client window of a
simulation in progress. This window displays real-time
particle data for a subset of the total ion population
including snapshots of the current particle positions in
x–y (upper left in Figure 1) and y–z (lower left) per-
spective. Also displayed is the complete 3D trajectory of
one ion inside the cubic trap. This simulation consisted
of four sequence steps: ion accumulation, collisional
cooling, cyclotron excitation, and detection. The 3D box
can be rotated and resized by the mouse allowing for a
close inspection of individual ion trajectories. At user
specified time intervals various diagnostics are stored
on the server including snapshots (GIF images) of the
particle ensemble, image charge induced on selected
electrodes, and coherent cyclotron positions for each
species. In addition, the energy (total, kinetic, electro-
static), canonical angular momentum about the z axis
(total, magnetic, mechanical), and number of simulation
particles are recorded.

The current implementation of pic3d permits the
user to set up multiple sequence simulations similar to
an actual laboratory experiment. The user opens the

sequence window and fills out parameters for a simu-
lation that may require up to five different simulation
steps. For example, separate sequence steps consisting
of ion accumulation, collisional cooling, dipolar excita-
tion and detection can be specified in one simulation
run. The time-step can be different for each sequence
step. The user interface is sufficiently flexible to allow
any combination of static or time-dependent potential
on any of the six trap walls. A single frequency or
frequency sweep excitation can be applied to any trap
wall. In addition the client and server can easily be
extended to accommodate more complicated trap and
excitation schemes such as various segmented electrode
configurations.

The remote user can remain connected to the pic3d
server for the complete simulation. However, there are
situations when a user would like to run a simulation
without remaining connected to the server. These cases
may include a simulation requiring several hours or
days of CPU time, freeing up resources for some other
application, or to use the pic3d client to initiate a second
simulation on a different machine. The client can dis-
connect from the server without stopping execution of
the simulation. Once this occurs, in the present imple-

Figure 1. Screenshot of the main pic3d Java client window. At
user specified time intervals the pic3d server sends selected
particle position data back to the client for real-time display.
Particle positions at the current time-step are plotted in xy
perspective (upper left) and zy perspective (lower left). The
complete three-dimensional trajectory (right) of one particle is
plotted inside of the cubic trap, which can be rotated with the
mouse. At the beginning of a simulation the user opens various
windows to specify simulation conditions using the menu bar.
Clicking on the “Connect” button initiates an Internet connection
with the server. The “Start” button causes the client to send
simulation parameters to the server. The server then begins the
simulation. The “Break” button disconnects client-server commu-
nication with the simulation continuing to run on the server. The
“Quit” button disconnects client-server communication and ends
the on-going simulation.
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mentation the user cannot connect back to the server
using the pic3d client. However, the status of the
simulation at any time is viewable by a web browser,
even when the pic3d server host computer does not
have a web server. This is because the pic3d server
listens on a specified port for incoming requests. These
requests can be any client, which specifies the IP
address of the host computer and the pic3d server port
address, including the pic3d Java client or an ordinary
web browser. The pic3d server recognizes different
types of clients and takes appropriate response. Direct
requests from a web browser cause the server to create
a snapshot (GIF images are created on the fly) of the
current time-step ion population and to send these
images back to the requesting web browser. Figure 2
shows a screen shot of using a web browser to inquire
the status of an on-going simulation. A request from an
HTTP client to port 9876 (the port which the pic3d
server is listening in Figure 2) causes the pic3d server to
create a snapshot of an on-going simulation.

The simulations described below were carried out
using the Java standalone application for the pic3d
client on a Win95 PC platform with a 166 MHz Intel
CPU and 32 MB RAM. The pic3d server was executed
on a Linux platform with a 500 MHz Dec/Alpha CPU
and 128 MB RAM. A single simulation run with 50,000
interacting particles, 100,000 time-steps and a 643 com-
putational grid for Poisson’s equation required 1 day of
CPU time. A 350,000 particle, 100,000 time-step, 643 grid
simulation required 4 days of CPU time.

Application to Cyclotron Phase Locking
at High Space Charge Conditions

Below, pic3d is applied to the computationally inten-
sive problem of following the dynamics of up to several

hundred thousand coulombically interacting ions con-
fined in a FTICR mass spectrometer. In this series of
simulations two close masses 100.0 and 100.3 u are
used. These species are given equal relative abundance
and are singly charged. A four-step sequence is used in
the simulations with various parameters listed in Table
1. To summarize a cubic ICR trap (width 2.5 cm) is in a
uniform magnetic field (1 T) directed parallel to the z
axis. The unperturbed cyclotron frequencies are close to
153 kHz and the cyclotron frequency difference be-
tween the two different masses is about 459 Hz. This
indicates that if these two masses have a substantial
coherent cyclotron radius that they should pass each
other every 2.2 ms. At sufficiently high number density
the ion cloud, after cyclotron mode excitation, may not
separate completely into two different mass ion clouds,
each with a different cyclotron frequency, but rather
remain locked together. Several different research
groups have observed experimentally [1–5] and studied
theoretically [2, 6–8] this phenomenon called cyclotron
phase locking (or peak coalescence).

Figure 2. Real-time status of a simulation via an HTTP client. A
popular web browser is used to query the pic3d server on the
status of an on-going simulation. The server responds by forking
a new process that creates GIF images of the current time-step
simulation, and sends this data back to the requesting web
browser. The particle positions are plotted in xy (left) and zy
(right) perspective.

Table 1. Parameters for simulations at 1 T

Parameter

Trap potential 1.0 V
Magnetic field 1.0 T
Cubic trap width 2.5 cm
Initial cloud radius 1.0 or 1.5 mm
Initial cloud length 2.2 cm
Grid size 64 3 64 3 64
Number of simulation particles 50,000–350,000
Ion masses 100.0 and 100.3 u
Ion charge 1 e
Super (number of ions per

simulation particle)
1

1. Accumulation sequence duration 0.7 ms
Accumulation time-step 0.70 ms
Number of ions injected

per time-step
50–350

Number of accumulation
sequence time-steps

1000

2. Collision sequence duration 2.0 ms
Collision time-step 0.70 ms
He neutral mass, pressure,

temperature
4 u, 1.5 mtorr, 300 K

Number of collision
sequence time-steps

2800

3. Excitation sequence duration 44.6 ms
Excitation time-step 0.030 ms
Excitation potential (Vpp) 10.0 V
Excitation frequency 153.4 kHz
Number of excitation

sequence time-steps
1488

4. Detection sequence duration 6.5 ms
Detection time-step 0.065 ms
Number of detect

sequence time-steps
100,000
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The cubic trap [14–17] has static potentials of 1 V on
the z plates and ground on the plates parallel to the
magnetic field. During the cyclotron excitation simula-
tion step, two opposing trap electrodes (y plates) have
applied rf potentials with opposite phase set up for
single frequency dipolar excitation. The Poisson equa-
tion boundary conditions are exact for the cubic trap
with applied static and excitation potentials. The simu-
lation sequence follows successive stages of ion accu-
mulation, collisional cooling, dipolar cyclotron excita-
tion then image charge detection. The individual steps
are described in detail below.

The first two sequence steps are to load the ions into
the trap then to create a thermal equilibrium. In step 1
ions were injected into the trap for 1000 time-steps at a
constant current at random positions within an on-axis
cylindrical volume of length 2.2 cm (88% of the trap
length) and radius of either 1.0 or 1.5 mm. This step
results in a nonthermal distribution but with a density
whose symmetry axis coincides with the trap z axis. The
second stage of the simulation, step 2 in Table 1, creates
a thermal equilibrium (300 K) ion population. This is
accomplished by allowing the ions to equilibrate with a
300 K Maxwell-Boltzmann distribution He bath gas at
1.5 mtorr pressure for 2 ms through elastic ion–neutral
collisions.

Three different simulation runs are described and
compared in detail. These represent low, medium, and
high number density simulations, each with unique
dynamical behavior. The total ion populations are 50 3
103, 150 3 103, and 350 3 103 numbers of ions. These
are the numbers of particles used in the simulations
(each simulation particle corresponds to exactly one
ion). For simplicity, the different simulations will be
referred to as 50k, 150k, and 350k, respectively. Two
different initial cloud radii are used. The initial cloud
radius is a simulation parameter that gives the radius of
the cylindrical volume used to inject ions during the ion
accumulation step of the simulation, step 1 in Table 1.
The 50k, 150k, and 350k simulations have initial cylin-
drical radii of 1.5, 1.0 and 1.0 mm, respectively. Ion–
neutral collisions with He reduce the z amplitudes and
expand the cloud radially. After ion–neutral collisions,
the ions are in a 300 K thermal distribution. Radial and
axial density profiles are shown in Figure 3 immedi-
ately after the collisional cooling event. The distribution
aspect ratios (distribution length divided by diameter)
are in the range of 2.5–3.5 with the largest aspect ratio
occurring for the largest ion population simulation. The
central number densities after collisional cooling for the
50k, 150k, and 350k simulations are 1.1 3 1012, 4.9 3
1012, and 6.8 3 1012 m23 with an uncertainty of 60.2 3
1012 m23. The density limit for an ion cloud consisting
of 100 u ions in a 1 T magnetic field is 2.66 3 1013 m23,
the Brillouin limit [41, 42] nB 5 «0B2/2m. Therefore,
the low, medium, and high ion populations used in the
simulations correspond to distributions with central
densities that are 4%, 18%, and 26% of the trap density
limit before cyclotron mode excitation.

Step 3 is the cyclotron mode excitation sequence. The
cyclotron modes of the ions are excited by a single
frequency dipolar excitation (Vpp 5 10.0 V) applied at a
frequency of 153.4 kHz for 44.6 ms. Using the familiar
relation for the coherent cyclotron radius of a single ion
initially at the trap center and excited by a linear
excitation (Rc 5 ETex/2B > 0.72VppTex/2Bd, for a
cubic trap) [16], the predicted coherent cyclotron radius
is 0.64 cm for a single ion. It turns out that this model
prediction is surprisingly close (within 0.02 cm) to the
coherent cyclotron radii obtained from the pic3d simu-
lation for all initial distributions using these excitation
parameters. It should be remembered that the simula-
tions involve large numbers of coulombically interact-
ing ions, which have three-dimensional spatial distri-
butions and that the excitation used in the simulations
is exact for the cubic trap. On the other hand, the simple
calculation is for a single ion initially at the trap center
and excited by a linear excitation.

Figure 3. Density profiles immediately after the ion-neutral
collision sequence, in the radial direction (top) and along the z axis
(bottom).
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The detection phase of the simulation is step 4. The
ions are followed for 100,000 time-steps, corresponding
to 6.5 ms detection time. This time is sufficient to
elucidate whether cyclotron phase locking occurs since
the cyclotron frequency difference between the two
different species of about 459 Hz corresponds to a
cyclotron beat period of 2.2 ms. Neglecting coulomb
interactions two different mass species with a substan-
tial coherent cyclotron mode separate into two different
ion clouds with different cyclotron frequency.

If the two ion clouds are locked together, indicating
the same detected cyclotron frequency, there are clear
signatures in the simulation results to this effect. The
most reliable method to detect cyclotron phase locking
is probably to view a movie of the ion ensemble over
the complete simulation. The signature of a phase
locked pair of ion clouds with different mass to charge
ratios is that the two clouds will not separate into two
different ion clouds with different cyclotron frequency
[2, 6–8]. A second direct method to detect cyclotron
phase locking in two coherent ion clouds which have
coherent cyclotron radii larger than their cloud radii is
to calculate the separation distance between their coher-
ent cyclotron positions. The separation distance for an
unlocked pair varies with time from close to zero to a
maximum separation of twice the cyclotron radius. A
phase locked pair of ion clouds will have a separation
distance less than the cyclotron radius. A third, less
reliable, signature for cyclotron phase locking is to
Fourier transform the detected signal to obtain the
frequency spectrum.

Image Charge Detection of Coherent Cyclotron
Motion

The ICR time domain signal is calculated from first
principles during the course of the simulation [37].
Since the total potential is found at each time-step, the
induced charge at a particular electrode point (a trap
wall contains 64 3 64 electrode points) is proportional
to the normal electric field at the electrode wall by
Gauss’s Law. Figure 4 plots ICR transients for the three
different ion populations. These transients are the dif-
ference in total charge between two opposing trap walls
that are parallel to the magnetic field as a function of
time (i.e., differential detection). If coulomb interactions
are negligible, then one expects to see three beat periods
in the 6.5 ms transient corresponding to the number of
times the two different masses pass each other due to
their 459 Hz cyclotron frequency difference. A maxi-
mum in the transient occurs when the two ion clouds
are in-phase (overlapping ion clouds) while a minimum
occurs when they are at opposite sides of the trap. An
inspection of Figure 4a shows the expected three beats
for lowest ion population; however, slightly less than
three beats are seen in Figure 4b (150k) and no clear
beats are visible in Figure 4c (350k). Furthermore, the
50k transient decays in time while the higher popula-

tion transients maintain their coherence to a much
greater extent over the 6.5 ms detection time. This signal
decay in Figure 4a arises from dephasing of the coher-
ent cyclotron motion owing to differences in cyclotron
frequency across the ion cloud [8, 34, 35]. Energy is well
conserved in this simulation. The maximum variation
in total energy for the detection period in Figure 4a is a
fractional change of 5 3 1024. No ions are lost to the
walls during detection for the 50k simulation. On the
other hand, the higher ion population simulations (150k
and 350k) had a considerable loss of ions to the radial
walls. Furthermore, almost all of the ions lost to the
walls were of just the higher cyclotron frequency spe-
cies. The origin of this loss is discussed below.

Figure 5 displays Fourier transform magnitude spec-
tra for the simulation time domain signals. At low
density (Figure 5a) there are two cyclotron frequencies
with nearly equal relative intensity. This is the expected
coulomb interactions are negligible since the two differ-
ent masses have equal relative abundance and are
excited to the same coherent cyclotron radius. At higher
density, Figure 5b, two mass peaks are still visible;
however, the higher cyclotron frequency peak is con-
siderably more intense than the lower frequency peak.

Figure 4. ICR time domain signals for the 6.5 ms detection time.
(a) 50000, (b) 150,000, and (c) 350,000 ion simulations.
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At the highest number density, Figure 5c, there is only
one frequency present indicating indirectly that cyclo-
tron phase locking has occurred. The peak amplitudes
are proportional to the number of ions in each mass

peak. There are seven times more ions in the 350k
simulation compared to the 50k simulation. Adding
together the intensities of the two prominent peaks in
Figure 5a yields about 0.3, which is about 1/7 the height
of the single frequency peak in Figure 5c. This is the
kind of information that a typical FTICR experiment
routinely measures. The simulation has the advantage
of visualizing directly the ion population.

Since the mass peaks are partially overlapping in
Figure 5a, b, the actual peak positions may be shifted
from their true location due to the non-additivity prop-
erty of magnitude spectra [43, 44]. An alternative
method is employed below to extract the cyclotron
frequency from the simulation trajectories.

Evolution of the Ion Ensemble

Snapshots of the ion population are presented below at
different stages of the simulation. Figure 6 displays
particle positions in xy (left side of Figure 6) and zy
(right side) perspective at a late time (;5 ms) in the
detection event for the three different initial ion popu-
lations. The top, middle, and bottom frames in Figure 6
are snapshots from the 50k, 150k, and 350k simulations,
respectively. Each simulation represents a qualitative
change in the ion cloud evolution for these conditions.
Starting with the 50k ion simulation (Figure 6a), the two

Figure 5. Fourier transform magnitude spectra of the transients
from Figure 4.

Figure 6. Snapshots in xy perspective (left) and zy perspective
(right) at a late time during the detection period. (a) 50,000, (b)
150,000, and (c) 350,000 ions. The two masses have locked cyclo-
tron modes in (c). The cubic trap boundary is indicated as the
surrounding box.
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ion clouds, corresponding to the two different masses,
lose cyclotron mode coherence over their trajectory. In
contrast the two ion clouds for the 150k simulation
(Figure 6b) maintain their coherence. Finally, at 350k
only a single distribution is visible indicating that the
two ion clouds have locked cyclotron modes. The
particular time of the snapshots was selected to show
two well-separated ion clouds if cyclotron phase lock-
ing does not occur. The two masses in Figure 6c for the
350k particle simulation are indistinguishable by FTICR
image charge detection.

Inspection of the yz perspectives (parallel to the
magnetic field) show that at the highest number den-
sity, Figure 6c, the ion cloud maintains an ellipsoidal
shape with a distinctive symmetry axis parallel to the
magnetic field. In other words, neither the trap poten-
tial anharmonicity nor excitation potential nonlinearity
have affected the shape of the ion cloud substantially.
At medium number density, Figure 6b, the ion clouds
are slightly distorted by the excitation nonlinearity but
largely unaffected by trap anharmoncity. In Figure 6a,
corresponding to the lowest number density, the trap
anharmoncity results in a loss of cyclotron mode coher-
ence over time while the excitation potential nonlinear-
ity results in different z-amplitude ions receiving a
different cyclotron radius resulting in a distortion of the
pre-excitation ellipsoidal shape.

A more detailed visualization of the ion cloud evo-
lution is depicted in Figures 7, 8, and 9 which are xy
perspectives of the ion distribution at different times
during the 6.5 ms detection period. Snapshots are
created on the fly by the pic3d server as GIF images. At
low number density (50k simulation) the individual ion
clouds gradually lose cyclotron mode coherence as seen
in Figure 7. At a sufficiently high number density (the
150k simulation in Figure 8) the two ion clouds main-
tain their coherence over the detection period; however,
the lower cyclotron frequency (higher mass) ion cloud
is more coherent than the higher frequency ion cloud.
This disparity is due to the higher frequency cloud
experiencing a greater time-averaged cyclotron radius
than the lower frequency cloud as a result of the mutual
coulomb interaction between the two clouds [7, 8].
Furthermore, as seen in Figure 8, the higher frequency
ion cloud has a sufficiently large cyclotron radius at
particular times (e.g., at 1.56 ms) to actually contact the
radial trap wall resulting in ion and coherence loss.
Finally, in Figure 9 corresponding to the highest density
simulation, cyclotron phase locking is unambiguously
observed since the two mass species do not separate
completely into two ion clouds each with a different
cyclotron frequency but rather remain locked together.
It turns out that there are two partially overlapping
distributions corresponding to the two different mass
species in the single locked cloud in Figure 9. The
higher mass maintains a near constant separation from
the lower mass cloud, which is on the order of the
individual cloud radius. Also, as seen in Figure 10 the
higher mass species has a smaller coherent cyclotron

radius than the lower mass cloud by this separation
distance.

Figure 10 is a plot of the coherent cyclotron radius for
each mass species (100.0 and 100.3 u) for the excitation and
detection periods of all three simulations. Immediately
after the excitation event, both masses have virtually the
same coherent cyclotron radius and that this radius is the
same for all three simulations. At the lowest number
density (50k) the cyclotron radii modulate with a period
near 2.2 ms and gradually decrease owing to loss of
coherence. The medium density simulation (150k) main-
tains coherence with substantial modulation amplitude
for the coherent cyclotron radii. As mentioned above, the
higher frequency cloud (100.0 u) has a larger time-aver-
aged cyclotron radius than the lower frequency ion cloud
(100.3 u). Finally, at the highest number density simula-
tion (350k) the two individual ion clouds have locked
cyclotron modes resulting in a single detected cyclotron
frequency. However, there is still a nonzero separation
distance between cloud centers.

Figure 11 plots separation distance between the two
centers of coherent cyclotron motion after cyclotron
mode excitation. When the ion clouds are not locked
(either 50,000 or 150,00 ions), the separation distance
oscillates with a period close to the difference in cyclo-
tron periods for the individual species, with an ampli-
tude close to twice the cyclotron radius. On the other
hand, when the clouds lock cyclotron modes (350,000
ions) the separation distance is about 0.1 cm, which is
close to the cloud radius and much less than cyclotron
radius of 0.6 cm. The realistic three-dimensional simu-
lations show that the cyclotron separation distance for
two phase locked ion clouds is nearly constant. This is
in contrast to rigid ion cloud models that predict an
oscillatory separation distance with relatively high fre-
quency [2, 7, 8].

Comparison with a Stability Model

The three simulations at different number density n
(number of ions per unit volume) depict qualitatively
different evolutions. At lowest number density (with
central density before excitation, n/nB 5 0.04) the two
ion clouds dephase over the 6.5 ms detection period. At
medium number density (n/nB 5 0.18) the clouds are
coherent throughout the detection period and are not
phase locked. At high number density (n/nB 5 0.26)
the two ion clouds are coherent and phase locked.
While hardly a complete survey of all possible dynam-
ics, these results are explainable within the context of a
relatively simple model.

A stability theory, developed by Peurrung and
Kouzes [6], for a single mass to charge ratio ion cloud
with a coherent cyclotron mode predicts that the ion
cloud is more stable, meaning a longer lasting ICR
transient, the higher the number density. This model
explains qualitatively why an ion cloud in a relatively
anharmonic trap such as the cubic trap can have de-
tected signals lasting more than 106 cyclotron periods.
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Stability conditions were deduced using dimensional
and numerical analysis for a single test charge interact-
ing with a rigid ion cloud that has a different cyclotron
frequency than the test charge [6]. This cyclotron fre-
quency difference can be due to any physical process
such as trap potential anharmonicity or magnetic field

inhomogeneity, or due to a mass difference between
test ion and ion cloud. Basic approximations of this
stability model include that the ion cloud has a constant
density, circular cross section and a cyclotron radius
much greater than the cloud radius. The same param-
eter dependencies are found in computer simulations

Figure 7. Snapshots of ion xy positions for the 50,000 ion simulation at selected times during the
detection period. The cubic trap boundary is indicated.
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on the dynamics of two similar mass rigid ion clouds [7,
8]. Peurrung and Kouzes originally derived the stability
condition as a minimum required plasma frequency
divided by cyclotron frequency ratio [6]. Rewriting their
stability condition in terms of a minimum required
number density to Brillouin density yields

n
nB

.
18

a~a!
SRc

rc
DSDvc

vc
D < 13SRc

rc
DSDvc

vc
D (1)

where n is the number density and nB 5 «0B2/2m is
the maximum achievable trap number density. Rc, rc,

Figure 8. Snapshots of ion xy positions for the 150,000 ion simulation at selected times during the
detection period.
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vc, and Dvc are the cyclotron radius, cloud radius,
cyclotron frequency, and difference in cyclotron fre-
quency, respectively. The a(a) is a dimensionless num-
ber dependent of the cloud aspect ratio [6]. Constant
density spherical and infinitely long cylindrical clouds
have a(a) equal to 1 and 1.5, respectively [6]. The factor

of 13 in eq 1 is derived from earlier simulation work on
two interacting rigid cylindrical ion clouds [8]. The
stability condition is that n/nB must be greater than the
right hand side of eq 1 in order for the ion cloud to
remain coherent or locked. One should note that the
minimum number density n to achieve stability is

Figure 9. Snapshots of ion xy positions for the 350,000 ion simulation at selected times during the
detection period.
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proportional to B2 since nB is proportional to B2. The
advantage of defining the stability condition eq 1 in
terms of n/nB is that n/nB is limited from a minimum
of zero to a maximum of exactly one.

In the three simulations the ratio of cyclotron radius
to cloud radius is Rc/rc > 5. For cyclotron phase
locking, the difference in cyclotron frequency is due to
the mass difference between the two ion clouds, which
gives Dvc/vc 5 Dm/m 5 0.003. Using these parame-
ters in eq 1 yields a minimum number density required
for cyclotron phase locking of n/nB > 0.20 6 0.05.
This compares well with the simulation results using
the number density before cyclotron mode excitation.

The ion clouds are locked in the 350k simulation but not
locked in the 150k simulation where the number den-
sity ratios n/nB immediately before excitation are 0.26
and 0.18, respectively. These are the central densities.

Additional simulations were carried out at several
other number densities in order to constrain the phase
locking threshold. Phase locking occurs when 200,000
ions were used, which yielded n/nB 5 0.20 for the
central density just before cyclotron excitation.

Equation 1 also provides a partial explanation of the
different evolutions observed for the low (Figure 7) and
medium (Figure 8) number density simulations. As-
suming that the predominant mechanism to dephase an
ion cloud at low ion populations is from the cubic trap
potential anharmonicity, then Dvc can be estimated
from the frequency shift due to the fourth-order trap
potential [8]

dvc 5
3VtD4

2Bd4 ~22 Az
2 1 2 Rm

2 1 Rc
2! (2)

where Az and Rm are the z amplitude and magnetron
radius of a single ion, respectively. For a cubic trap,
D4 5 1.02. Following the same procedure described in
earlier work [8], Dvc from the trap anharmonicity is
approximately the difference in cyclotron frequency
between an ion located at the cloud center (Az 5 0) and
an ion which traverses the entire cloud length (Az > 0.5
cm). Using these values along with the simulation
parameters listed in Table 1 in eq 2 yields a frequency
spread of Dvc > (2p) 30 Hz across the ion cloud. In the
absence of coulomb interactions the ion cloud dephases
in ;30 ms. Figure 7 shows that the ion clouds dephase
in a time ;10 ms indicating that coulombic effects may
be important as well as trap anharmonicity in this lower
density simulation. Along with the other simulation
parameters in eq 1, the minimum number density
required to achieve stability against trap potential an-
harmonicity is n/nB > 0.013 6 0.003. This is the
predicted minimum number density required to stabi-
lize cyclotron mode coherence in each ion cloud. Before
cyclotron mode excitation, the ion population consists
of a single cloud containing both mass species aligned
along the trap axis. After cyclotron excitation, the ion
clouds separate into different lower density ion clouds
with densities dependent upon the relative abundance
of each species. For all simulations, two mass species
are present in equal relative abundance. Before cyclo-
tron excitation, the central (maximum) number densi-
ties for the 50k and 150k simulations were measured as
n/nB 5 0.04 and 0.18, respectively. Therefore, after
cyclotron excitation the single ion cloud separates into
two individual ion clouds each with densities of
n/nB 5 0.02 and 0.09 for the 50k and 150k particle
simulations, respectively. Since the 50k simulation (Fig.
7) result of n/nB 5 0.02 for each cloud is greater than
the predicted stability requirement of n/nB > 0.013 6

Figure 10. Evolution of the coherent cyclotron radii during the
detection period for the two masses. (a) 50,000, (b) 150,000, and (c)
350,000 ion simulations. The 100.0 and 100.3 u mass species are
plotted as solid and broken lines, respectively.

Figure 11. The separation distance between the centers of coher-
ent cyclotron motion for the two masses for the 50,000, 150,000,
and 350,000 ion simulations.
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0.003, the stability model described by eq 1 with eq 2 is
only qualitatively correct in this case.

Frequency Shifts

A FTICR experiment determines mass to charge ratio by
measuring cyclotron frequency. This section reports
simulation results for the frequency of coherent cyclo-
tron motion at 1 T for the 100.0 and 100.3 u mass
species. Five different simulation runs were carried out
including the 50k, 150k, and 350k simulations described
above, as well as simulations with 250,000 and 500,000
ions. The 500,000 ion simulation actually used 250,000
simulation particles with each simulation particle rep-
resenting two single ions (super 5 2, see Table 1). A
precise determination of the cyclotron frequency shift is
obtained from the simulation results, not by Fourier
transforming the detected image charge, but rather by
counting the number of times the position of coherent
cyclotron motion revolves around the trap center dur-
ing the detection time. This approach also eliminates
the uncertainty in peak position for closely spaced
magnitude peaks due to nonadditivity of magnitude
spectra [43, 44].

The algorithm to count the number of cyclotron
cycles that each mass species executes during the 6.5 ms
detection period relies first on determining the cyclo-
tron position (xc, yc) from the ion perpendicular veloc-
ity components (vx and vy) calculated during the sim-
ulation. The radial motion position vector is the sum of
the cyclotron and guiding center (magnetron) position
vectors. For the simulation conditions, after the excita-
tion event resulting in a substantial coherent cyclotron
radius, the magnitude of the cyclotron velocity is much
larger than the drift (magnetron) velocity by a factor on
the order of one thousand. Furthermore, taking an
average over all ions of a particular mass automatically
removes the velocity contribution due to coulomb in-
duced internal cloud rotation [6, 37], leaving just the
center of mass motion. Therefore, the ion perpendicular
velocity components, vx and vy, are approximately
equal to the cyclotron velocity components, and

xc >
2vy

vc
and yc >

1vx

vc
(3)

Taking an average of eq 3 over all simulation particles
of a particular mass gives the coherent cyclotron posi-
tion Xc, Yc. The small difference between vc and the
actual shifted (perturbed) cyclotron frequency results in
an error of about 1% in the location of the true coherent
cyclotron position. Once Xc and Yc are found, the
coherent cyclotron radius is Rc 5 (Xc

2 1 Yc
2)0.5 and the

coherent cyclotron phase fc 5 tan21(Yc/Xc). The error
in calculating Rc is the same as for determining Xc and
Yc, namely equal to the error between vc and the actual
shifted cyclotron frequency. However, this error does
not affect the phase since the ratio Yc/Xc depends only

on the ratio of ion perpendicular velocity components.
If the coherent cyclotron frequency does not change
appreciably during the detection period, a plot of
cyclotron phase fc versus time results in a straight line
fit whose slope equals the shifted cyclotron frequency.
Furthermore, the standard deviation (s) in the fitted
slope from linear regression gives an error estimate for
the uncertainty in the measured coherent cyclotron
frequency.

Figure 12 is a plot of the perturbed cyclotron fre-
quencies for five simulation runs with total number of
ions ranging from 50,000 to 500,000. The cyclotron
frequencies are calculated from the slope of a straight-
line least squares fit of the coherent cyclotron phase
versus time. The 2s uncertainty in these fits is less than
62 Hz, which is taken as the uncertainty in the calcu-
lated cyclotron frequencies. While the absolute frequen-
cies obtained from the particle-in-cell simulations using
the leap-frog integrator with finite time-step does not
give the absolute cyclotron frequency to an accuracy of
62 Hz, differences in cyclotron frequency are much
more precise.

In order to demonstrate that this algorithm gives
correct results for calculated frequencies, a comparison
was made with the usual FT method on the detected
time domain signal. The time domain signal shown in
Figure 4c for the 350,000 ion simulation was used for
this purpose. This time domain signal was zero filled a
sufficient number of times to give 8 Hz difference
between frequency domain points. A quadratic fit to the
magnitude spectrum peak centroid gave a peak location
of 151,922.4 Hz. This is within uncertainty to the result

Figure 12. The frequency of coherent cyclotron motion, for the
two species m1 (100.0 u) and m2 (100.3 u), as a function of the total
number of confined ions. Results for five different simulations are
shown with number of ions ranging from 50,000 to 500,000.
Cyclotron phase locking occurs when the two masses have the
same detected cyclotron frequency. The uncertainty is 62 Hz. The
lines are only meant to guide the eye. Other simulation parameters
are listed in Table 1.

149J Am Soc Mass Spectrom 1999, 10, 136–152 REALISTIC ICR SIMULATION



of 151,921 6 2 Hz, displayed in Figure 12 for the
350,000 ion simulation, confirming the validity of the
cyclotron phase algorithm for calculating the frequency
of coherent cyclotron motion.

Starting with the 50,000 ion simulation, from Figure
12 the difference in shifted cyclotron frequency between
m1 (100.0 u) and m2 (100.3 u) is 473 6 4 Hz, which
compares reasonably well with the difference in unper-
turbed cyclotron frequencies Dvc 5 (2p) 459 Hz. In-
creasing the number of ions to 150,000, m1 has a lower
cyclotron frequency compared to the 50k simulation by
65 Hz, while there is no change in the cyclotron fre-
quency for m2. This constancy of cyclotron frequency
for m2 with increasing number of ions, before phase
locking occurs, is explainable by a simple model. Figure
10 shows that for the 150,000 ion simulation the coher-
ent cyclotron radius for the higher cyclotron frequency
species (m1) is greater than the lower frequency species
(m2). Earlier work [7], using a line charge model for the
charge distribution, has shown that when the cyclotron
radii are different, the smaller radius species receives
zero average coulomb force from the larger radius
species. The large downward shift for m1 of 65 Hz in
going from 25,000 ions in each mass (i.e., 50,000 total
ions) to 75,000 ions comes from at least two sources; the
coulomb interaction from m2, and the image charge
interaction.

Both mass species have the same shifted cyclotron
frequency, hence are phase locked, when the total
number of ions is at least 200,000. The three largest ion
population simulations in Figure 12 correspond to
250,000, 350,000, and 500,000 ions. In going from
250,000 to 500,000 ions there is a linear downward shift
of 38 6 4 Hz. This shift is attributable to the image
charge interaction acting on the phase locked ion cloud.
Gorshkov et al. [22] derived the image charge frequency
shift dvc for a line charge with linear charge density
Nq/L inside a cylindrical trap (length L, radius rtrap)

dvc 5
2Nq

2p«0LB~rtrap
2 2 Rc

2!
. (4)

Using eq 4 with N 5 250,000, q 5 e, L 5 0.025 m,
B 5 1 T, rtrap 5 0.0125 m, and Rc 5 0.006 m, corre-
sponding to simulation conditions after phase locking
has been reached, gives an image charge frequency shift
of dvc 5 2(2p) 38 Hz. The exact agreement between
eq 4 and the simulation result is somewhat fortuitous
since the trap used in the simulations is cubic while eq
4 is based on an infinitely long cylinder. Also, eq 4 is
based on a line charge approximation for the distribu-
tion while the simulation distributions were ellipsoidal
and did not extend the entire trap length. Nonetheless,
the model calculation demonstrates the most of the
frequency shift after cyclotron phase locking is due to
the image charge interaction.

Finally, the frequency at phase locking for the
250,000 ion simulation of 938 Hz (1151 kHz) is not a

simple average of the two unperturbed cyclotron fre-
quencies. The lowest number density simulation (50,000
ions) has an average frequency of 0.5(1217 1 744) 5
980 Hz, which is 42 6 4 Hz higher than the frequency at
phase locking when there are 250,000 ions. Most of this
difference between average frequency at very low den-
sity and the frequency just after phase locking occurs is
accountable from the expected downward shift of '30
Hz due to image charge interaction.

Magnetic Field Dependence

The magnetic field, cyclotron radius and mass depen-
dencies of the minimum number density required to
cause two close mass peaks to lock cyclotron modes are
of considerable importance to analytical FTICR-MS,
especially at high molecular mass [8]. Earlier simulation
work [8] predicts a B2 (magnetic field squared) depen-
dence for the minimum number density required to
lock cyclotron modes between two close masses in
agreement with eq 1. pic3d is applied at three different
magnetic fields (0.5, 1.0, and 2.0 T) in order to test the
n } B2 prediction under realistic conditions. At 1 T, the
same simulation parameters listed in Table 1 are em-
ployed except the number of simulation particles are
varied in different simulation runs in order to constrain
the minimum n/nB required to cause cyclotron phase
locking. It is found that when n/nB 5 0.20 the two
masses (100.0 and 100.3 u) locked modes; however,
when n/nB 5 0.18 phase locking did not occur. The
density n is measured as the maximum density in the
distribution (the central density) just before cyclotron
mode excitation.

At a magnetic field of 2 T, the trap potential was
increased from 1 to 2 V in order to confine a sufficient
number of ions to cause cyclotron phase locking. At 1 V
the trap (width 2.5 cm) filled to capacity with ions
before cyclotron phase locking between the 100.0 and
100.3 u mass ions occurred. In addition, by increasing
the trap potential the cloud aspect ratio was similar to
the 1 T simulation run. The time-step, excitation fre-
quency, and excitation voltage were appropriately
modified to attain equivalent excitation and detection
conditions as for the 1 T simulations. With these param-
eters, phase locking occurred when n/nB 5 0.18 but
not when n/nB 5 0.17. Finally, at a magnetic field of
0.5 T, the trap potential was reduced to 0.5 V in order to
have a comparable cloud aspect ratio as for the other
two magnetic field values. At 0.5 T, the masses locked
cyclotron modes when n/nB 5 0.22 but not when
n/nB 5 0.20.

Since n/nB is practically constant at all three mag-
netic fields and the density limit nB is directly propor-
tional to B2, the minimum number density n required to
cause phase locking is proportional to B2 in agreement
with earlier work. Figure 13 is a plot of the pic3d results
for the three different magnetic fields. These results are
compared in Figure 13 to three different assumed
magnetic field dependencies demonstrating that n } B2
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is a much better fit than either n } B1 or n } B3, for the
minimum number density required to lock cyclotron
modes.

Conclusions

pic3d is a versatile, fully three-dimensional many par-
ticle simulation code for modeling complete experimen-
tal sequences in ion cyclotron mass spectrometers. The
pic3d Java client is the graphical user interface, which
sets up, controls and views in a real-time, a simulation
running on a different computer that runs the pic3d
server. The pic3d server is the computational engine
that executes the three-dimensional particle-in-cell al-
gorithm and communicates with requesting clients such
as the pic3d Java client. For long running simulations,
the remote user disconnects the client-server socket
communication; however, the real-time status of a sim-
ulation in progress is viewable at anytime by using an
ordinary web browser.

As a first application, pic3d is applied to the problem
of coherent cyclotron motion of two close masses at
high ion population. Each simulation run involves
solving Poisson’s equation on a 64 3 64 3 64 grid at
each time-step for more than 100,000 time-steps. Pois-
son’s equation is solved with the exact cubic trap
boundary conditions with user specified static and/or
time-dependent potentials. The ion population range
from 50,000 to 350,000 coulombically interacting parti-
cles confined in a cubic ICR trap. A four step simulation
sequence is carried out consisting of sequential steps of
ion loading into the trap, collisional cooling, cyclotron
mode excitation and image charge detection. These are

the most realistic simulations to date of large numbers
of interacting ions in an ICR trap. At low ion density the
ion clouds lose coherence owing to differences in cyclo-
tron frequency across the cloud. At medium density the
clouds remain coherent and are not locked. At high
number density the two clouds lock cyclotron modes.
Simulations at different magnetic fields show a B2

dependence for the minimum density required to lock
cyclotron modes. Future work will address the mass
and cyclotron radius dependencies of cyclotron phase
locking.
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