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a b s t r a c t

A local C1 surface construction scheme is presented to preserve the shape of positive
scattered data arranged over a triangular grid. Each boundary curve of the triangle is
constructed by a rational cubic function with two free parameters, and this rational
function is also used for the side-vertex interpolation. The final surface patch is constructed
by taking the convex combination of three side-vertex interpolants. For each triangular
patch there are three boundary curves and three side-vertex interpolants. Simple sufficient
data dependent constraints are derived on these free parameters to preserve the shape of
the positive scattered data. The developed scheme is not only local and computationally
economical but visually pleasing as well.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Positivity is an important shape property. There are many physical situations where entities only have a meaning when
their values are positive. In mineral exploration, exploratory wells are drilled and depths of various layers are recorded.
Obviously, the depth of the surface cannot be negative. Pressure with derivatives is used to visualize the far-field pattern
of four-point sources. Other application areas include monthly rainfall amounts, levels of gas discharge in certain chemical
reactions, progress of an irreversible process, resistance offered by an electric circuit, volume, density, etc. This paper is
particularly concerned with the construction of interpolating surfaces that preserve the positivity of scattered data.
The problem of shape preservation of positive scattered data has been discussed by a number of authors. Asim, Mustafa

and Brodlie [1] visualized positive scattered data subject to global positivity constraints using a modified quadratic Shepard
method. Positivity was achieved by scaling the basis functions as far as was necessary. Chan and Ong [2] described a local
scheme for range restricted C1 interpolation of scattered data. The interpolating surface is a piecewise convex rational
combination of three cubic Bézier patches. Sufficient conditions for the non-negativity of a cubic Bézier trianglewere derived
and used as lower bounds on the Bézier ordinates. If the Bézier ordinates did not satisfy the derived lower bounds, then non-
negativity could be achieved by modifying the first-order partial derivatives at data sites. Kong, Ong and Saw [3] discussed
the problem of range restricted scattered data interpolation using triangles. Each triangle of the Delaunay triangulated
domain is split into three and each sub-triangle is interpolated using a cubic Bézier triangular patch. The non-negativity
is expressed as lower bounds to Bézier ordinates. In [3], if the Bézier ordinates fail to satisfy derived lower bounds for non-
negativity then these are rescaled by modifying the first-order partial derivatives at data sites to achieve non-negativity.
Mulansky and Schmidt [4] proposed a C1 non-negativity preserving scheme by using a quadratic spline interpolant on the
Powell–Sabin refinement of the Delaunay triangulation of the data sites. The non-negativity constraints give rise to a system
of linear inequalities with gradients as parameters. The selection of a suitable solution is based on theminimization of a thin
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Fig. 1. Locations of the vertices and edges of the triangle4V1V2V3 .

plate energy functional. In [2–4], constraints are derived on derivatives. So, whilst all these schemes are local, they will not
work if the data are given with the derivatives.
Ong and Wong [5] used the side-vertex method for interpolation on a triangle. Each triangular patch is a convex

combination of three side-vertex interpolants. A 1-parameter rational cubic function is used as a side-vertex interpolant.
The value of the free parameter that reduces the rational cubic function to a cubic Hermite is used in all the triangular
patches. If the Hermite triangular patches lose positivity, a global maximum value is assigned to all parameters of each
triangle interpolant to ensure that the resulting surface is non-negative. Hence, although this method works with both data
and derivatives, it is non-local.
Piah, Goodman andUnsworth [6] constructed the interpolating surfaces comprising cubic Bézier triangular patches. They

imposed sufficient conditions on the ordinates of the Bézier control net in each triangle to ensure positivity. The derivatives
at the data points are determined to be consistent with these conditions. The disadvantage of the scheme is that actual
derivatives cannot be supplied.
The problems of positive andmonotone curve data interpolation were discussed in [13] and [16] respectively. In [14,15],

the problem of scattered data interpolation was addressed.
This paper is concerned with positivity preserving triangle-based interpolation of scattered data using a C1 and local

side-vertex method that is applicable to data both with and without derivatives. The C1 piecewise rational cubic function is
used for both the boundary and the side-vertex interpolant. The rational function possesses two free parameters, yielding 12
free parameters over each triangular patch. Positivity is achieved by deriving simple sufficient data dependent constraints
on these free parameters. The developed scheme is demonstrated graphically.
The remainder of the paper is organized as follows. Section 2 describes the C1 side-vertex method for interpolation over

a triangle. Section 3 details the piecewise rational cubic function to be used. The positivity problem is discussed in Section 4
for the generation of a C1 positivity preserving scattered data interpolant. The surface scheme is demonstrated in Section 5.
Finally, Section 6 discusses some of the results from Section 4 and concludes the paper.

2. C1 side-vertex method for interpolation over a triangle

Let {(xi, yi, Fi), i = 1, 2, 3, . . . , n} be the given scattered data arranged over the triangular grid.
For a non-degenerate triangle T = 4V1V2V3, with vertices {Vi = (xi, yi), i = 1, 2, 3} and barycentric coordinates u, v

andw, any point V = (x, y) on the triangle can be expressed as (Fig. 1)

V = uV1 + vV2 + wV3, (1)

where

u+ v + w = 1 and u, v, w ≥ 0. (2)

In this paper we used a C1 interpolant [7] over each triangular patch, defined by the following convex combination:

P(u, v, w) =
v2w2P1 + u2w2P2 + u2v2P3
v2w2 + u2w2 + u2v2

, (3)

where the Pi’s are the radial curves connecting vertices Vi’s with a point on the opposite boundary edge. The interpolant (3)
not only interpolates data values at the vertices but the first-order derivative at the boundary edges as well.
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At the vertices of the triangle4V1V2V3 where two of the barycentric coordinates are simultaneously zero, the interpolant
(3) is defined as

P(u, v, w) = F1 when v = w = 0,
P(u, v, w) = F2 when u = w = 0,
P(u, v, w) = F3 when v = u = 0,

where Fi, i = 1, 2, 3 are the ordinate values at the vertices Vi = (xi, yi), i = 1, 2, 3.

3. Rational cubic function

In this paper we use the rational cubic function of [8] and adopt the approach of [9] in describing it.
Let (xi, fi), i = 0, 1, 2, . . . , n be a given set of data points, where x0 < x1 < · · · < xn. A piecewise rational cubic function

is defined over each interval Ii = [xi, xi+1] as

S(x) =
pi (θ)
qi (θ)

, (4)

where

pi (θ) = (1− θ)3 ηifi + (1− θ)2 θ {(2ηiχi + ηi) fi + ηihidi} + (1− θ) θ2 {(2ηiχi + χi) fi+1 − χihidi+1} + θ3χifi+1,
qi (θ) = (1− θ)2 ηi + 2 (1− θ) θηiχi + θ2χi,

θ =
x− xi
hi

, hi = xi+1 − xi.

The rational cubic (4) has the following properties:

S(xi) = fi, S(xi+1) = fi+1, S(1)(xi) = di, S(1)(xi+1) = di+1.

S(1)(x) denotes the derivative with respect to x and di denotes derivative values (given or estimated by some method) at
knot xi. S(x) ∈ C1[x0, xn] has ηi and χi as free parameters in the interval Ii = [xi, xi+1]. It is noted that in each interval Ii,
when ηi = 1 and χi = 1, the piecewise rational cubic function reduces to the standard cubic Hermite.
Hussain and Ali in [10] developed the following result:

Theorem 1. The piecewise rational cubic function (4) preserves positivity if the free parameters ηi and χi satisfy the following
condition in each interval [xi, xi+1]:

ηi > Max
{
0,
hidi+1
2fi+1

}
and χi > Max

{
0,−

hidi
2fi

}
.

4. The C1 positivity preserving scattered data interpolation

The positivity preserving scattered data interpolation problem is described as follows.
Let {(xi, yi, Fi), i = 1, 2, 3, . . . , n} be the given positive scattered data points, i.e. Fi > 0, i = 1, 2, 3, . . . , n. The conditions

for S(x, y) being positive over the whole domain D are

S (xi, yi) = Fi, i = 1, 2, . . . , n
S (x, y) > 0, ∀ (x, y) ∈ D.

4.1. Triangulation

The domain is triangulated by the Delaunay triangulation method [11] such that the data Fi are lying at the vertices
Vi = (xi, yi) , i = 1, 2, 3, . . . , n of the triangles.

4.2. Estimation of derivatives

Partial derivatives at the vertices Vi, i = 1, 2, 3 are estimated by the derivative estimation technique proposed in [12].

4.3. The C1 positive triangular patch

Let4V1V2V3 be the given triangle having edges ei, i = 1, 2, 3 opposite to the vertices Vi, i = 1, 2, 3, respectively.
The radial curve P1 connecting a vertex V1 to the point S1 on the opposite edge e1 is defined as

P1 =
P1n
P1d
, (5)
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where

P1n =
{
(1− u)3 βi + (1− u)2uA2

}
F(S1)+ αiF1 + vD1 + wD2 + v2D3

+ vwD4 + w2D5 + v3D6 + v2wD7 + vw2D8 + w3D9, (6)

P1d = αiu2 + 2αiβi (1− u) u+ βi (1− u)2 , (7)
D1 = −3αiF1 + A1F1 + αiR3,
D2 = −3αiF1 + A1F1 + αiR4,
D3 = 3αiF1 − 2A1F1 − βiR1 − 2αiR3,
D4 = 6αiF1 − 4A1F1 − βiR1 − βiR2 − 2αiR3 − 2αiR4,
D5 = 3αiF1 − 2A1F1 − βiR2 − 2αiR4,
D6 = −αiF1 + A1F1 + βiR1 + αiR3,
D7 = −3αiF1 + 3A1F1 + 2βiR1 + βiR2 + 2αiR3 + αiR4,
D8 = −3αiF1 + 3A1F1 + βiR1 + 2βiR2 + αiR3 + 2αiR4,
D9 = −αiF1 + A1F1 + βiR2 + αiR4,

R1 = (x2 − x1)
∂F
∂x
(S1)+ (y2 − y1)

∂F
∂y
(S1) , R2 = (x3 − x1)

∂F
∂x
(S1)+ (y3 − y1)

∂F
∂y
(S1) ,

R3 = (x2 − x1)
∂F
∂x
(V1)+ (y2 − y1)

∂F
∂y
(V1) , R4 = (x3 − x1)

∂F
∂x
(V1)+ (y3 − y1)

∂F
∂y
(V1) ,

A1 = (2αiβi + αi) , A2 = (2αiβi + βi) ,

F (S1) =
γ1F2r3 + {(2γ1δ1 + γ1) F2 + γ1d3} r2r1 + {(2γ1δ1 + δ1) F3 − δ1d4} rr21 + δ1F3r

3
1

γ1r2 + 2γ1δ1rr1 + δ1r21
, (8)

d3 = (x3 − x2)
∂F
∂x
(V2)+ (y3 − y2)

∂F
∂y
(V2) , d4 = (x3 − x2)

∂F
∂x
(V3)+ (y3 − y2)

∂F
∂y
(V3) ,

r =
v

v + w
, r1 =

w

v + w
.

Similarly, the radial curves P2 and P3 connecting the vertices V2 and V3 to the points S2 and S3 on the opposite edges e2 and
e3 are defined as

P2 =
P2n
P2d
, (9)

where

P2n =
{
(1− v)3 βj + (1− v)2vB2

}
F(S2)+ αjF2 + uE1 + wE2 + u2E3

+ uwE4 + w2E5 + u3E6 + u2wE7 + uw2E8 + w3E9, (10)

P2d = αjv2 + 2αjβj (1− v) v + βj (1− v)2 , (11)

where

E1 = −3αjF2 + B1F2 + αjR7,
E2 = −3αjF2 + B1F2 + αjR8,
E3 = 3αjF2 − 2B1F2 − βjR5 − 2αjR7,
E4 = 6αjF2 − 4B1F2 − βjR5 − βjR6 − 2αjR7 − 2αjR8,
E5 = 3αjF2 − 2B1F2 − βjR6 − 2αjR8,
E6 = −αjF2 + B1F2 + βjR5 + αjR7,
E7 = −3αjF2 + 3B1F2 + 2βjR5 + βjR6 + 2αjR7 + αjR8,
E8 = −3αjF2 + 3B1F2 + βjR5 + 2βjR6 + αjR7 + 2αjR8,
E9 = −αjF2 + B1F2 + βjR6 + αjR8,

R5 = (x1 − x2)
∂F
∂x
(S2)+ (y1 − y2)

∂F
∂y
(S2) , R6 = (x3 − x2)

∂F
∂x
(S2)+ (y3 − y2)

∂F
∂y
(S2) ,

R7 = (x1 − x2)
∂F
∂x
(V2)+ (y1 − y2)

∂F
∂y
(V2) , R8 = (x3 − x2)

∂F
∂x
(V2)+ (y3 − y2)

∂F
∂y
(V2) ,

B1 =
(
2αjβj + αj

)
, B2 =

(
2αjβj + βj

)
,
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F (S2) =
γ2F3s31 + {(2γ2δ2 + γ2) F3 + γ2d5} s

2
1s+ {(2γ2δ2 + δ2) F1 − δ2d6} s1s

2
+ δ2F1s3

γ2s21 + 2γ2δ2s1s+ δ2s2
, (12)

d5 = (x1 − x3)
∂F
∂x
(V3)+ (y1 − y3)

∂F
∂y
(V3) , d6 = (x1 − x3)

∂F
∂x
(V1)+ (y1 − y3)

∂F
∂y
(V1) ,

s1 =
w

u+ w
, s =

u
u+ w

.

P3 =
P3n
P3d
, (13)

where

P3n =
{
(1− w)3 βk + (1− w)2wC2

}
F(S3)+ αkF3 + uG1 + vG2

+ u2G3 + uvG4 + v2G5 + u3G6 + u2vG7 + uv2G8 + v3G9, (14)

P3d = αkw2 + 2αkβk (1− w)w + βk (1− w)2 , (15)

where

G1 = −3αkF3 + C1F3 + αkR11,
G2 = −3αkF3 + C1F3 + αkR12,
G3 = 3αkF3 − 2C1F3 − βkR9 − 2αkR11,
G4 = 6αkF3 − 4C1F3 − βkR9 − βkR10 − 2αkR11 − 2αkR12,
G5 = 3αkF3 − 2C1F3 − βkR10 − 2αkR12,
G6 = −αkF3 + C1F3 + βkR9 + αkR11,
G7 = −3αkF3 + 3C1F3 + 2βkR9 + βkR10 + 2αkR11 + αkR12
G8 = −3αkF3 + 3C1F3 + βkR9 + 2βkR10 + αkR11 + 2αkR12,
G9 = −αkF3 + C1F3 + βkR10 + αkR12,

R9 = (x1 − x3)
∂F
∂x
(V3)+ (y1 − y3)

∂F
∂y
(V3) , R10 = (x2 − x3)

∂F
∂x
(V3)+ (y2 − y3)

∂F
∂y
(V3) ,

R11 = (x1 − x3)
∂F
∂x
(S3)+ (y1 − y3)

∂F
∂y
(S3) , R12 = (x2 − x3)

∂F
∂x
(S3)+ (y2 − y3)

∂F
∂y
(S3) ,

C1 = (2αkβk + αk) , C2 = (2αkβk + βk) ,

F (S3) =
γ3F1t31 + {(2γ3δ3 + γ3) F1 + γ3d1} t

2
1 t + {(2γ3δ3 + δ3) F2 − δ3d2} t1t

2
+ δ3F2t3

γ3t21 + 2γ3δ3t1t + δ3t2
, (16)

d1 = (x2 − x1)
∂F
∂x
(V1)+ (y2 − y1)

∂F
∂y
(V1) , d2 = (x2 − x1)

∂F
∂x
(V2)+ (y2 − y1)

∂F
∂y
(V2) ,

t1 =
u

u+ v
, t =

v

u+ v
.

From (5), P1 > 0 if P1n > 0 and P1d > 0.
From (6), P1n > 0 if αi > 0, βi > 0, F (S1) > 0 and Di > 0, i = 1, 2, 3, . . . , 9.
From (7), P1d > 0 if αi > 0 and βi > 0.
From Theorem 1, F (S1) > 0 if γ1 > Max

{
0, d42F3

}
and δ1 > Max

{
0,− d3

2F2

}
.

Di > 0, i = 1, 2, 3, . . . , 9 if αi > Max
{
0,−

R1
2F1

,−
R2
2F1

}
and

βi > Max
{
0,
(2F1 − R3)
2F1

,
(2F1 − R4)
2F1

,
−αiR3

(2αiF1 + R1)
,
−αiR4

(2αiF1 + R2)

}
.

Similarly, P2 > 0 if γ2 > Max
{
0, d62F1

}
, δ2 > Max

{
0,− d5

2F3

}
,

αj > Max
{
0,−

R5
2F2

,−
R6
2F2

}
and

βj > Max

{
0,
(2F2 − R7)
2F2

,
(2F2 − R8)
2F2

,
−αjR7(

2αjF2 + R5
) , −αjR8(
2αjF2 + R6

)} .



462 M.Z. Hussain, M. Hussain / Computers and Mathematics with Applications 59 (2010) 457–467

Similarly, P3 > 0 if γ3 > Max
{
0, d22F2

}
, δ3 > Max

{
0,− d1

2F1

}
,

αk > Max
{
0,−

R9
2F3

,−
R10
2F3

}
and

βk > Max
{
0,
(2F3 − R11)
2F3

,
(2F3 − R12)
2F3

,
−αkR11

(2αkF3 + R9)
,
−αkR12

(2αkF3 + R10)

}
.

Theorem 2. The C1 triangular patch P, defined over the triangular domainD, in (3), is positive if the following sufficient conditions
are satisfied:

αi > Max
{
0,−

R1
2F1

,−
R2
2F1

}
, αj > Max

{
0,−

R5
2F2

,−
R6
2F2

}
, αk > Max

{
0,−

R9
2F3

,−
R10
2F3

}
,

βi > Max
{
0,
(2F1 − R3)
2F1

,
(2F1 − R4)
2F1

,
−αiR3

(2αiF1 + R1)
,
−αiR4

(2αiF1 + R2)

}
,

βj > Max

{
0,
(2F2 − R7)
2F2

,
(2F2 − R8)
2F2

,
−αjR7(

2αjF2 + R5
) , −αjR8(
2αjF2 + R6

)} ,
βk > Max

{
0,
(2F3 − R11)
2F3

,
(2F3 − R12)
2F3

,
−αkR11

(2αkF3 + R9)
,
−αkR12

(2αkF3 + R10)

}
,

γ1 > Max
{
0,
d4
2F3

}
, γ2 > Max

{
0,
d6
2F1

}
, γ3 > Max

{
0,
d2
2F2

}
,

δ1 > Max
{
0,−

d3
2F2

}
, δ2 > Max

{
0,−

d5
2F3

}
, δ3 > Max

{
0,−

d1
2F1

}
.

The above constraints can be rearranged as

αi = l1 +Max
{
0,−

R1
2F1

,−
R2
2F1

}
,

αj = l2 +Max
{
0,−

R5
2F2

,−
R6
2F2

}
,

αk = l3 +Max
{
0,−

R9
2F3

,−
R10
2F3

}
, βi = l4 +Max

{
0,
(2F1 − R3)
2F1

,
(2F1 − R4)
2F1

,
−αiR3

(2αiF1 + R1)
,
−αiR4

(2αiF1 + R2)

}
,

βj = l5 +Max

{
0,
(2F2 − R7)
2F2

,
(2F2 − R8)
2F2

,
−αjR7(

2αjF2 + R5
) , −αjR8(
2αjF2 + R6

)} ,
βk = l6 +Max

{
0,
(2F3 − R11)
2F3

,
(2F3 − R12)
2F3

,
−αkR11

(2αkF3 + R9)
,
−αkR12

(2αkF3 + R10)

}
,

δ1 = l7 +Max
{
0,−

d3
2F2

}
, δ2 = l8 +Max

{
0,−

d5
2F3

}
, δ3 = l9 +Max

{
0,−

d1
2F1

}
,

γ1 = l10 +Max
{
0,
d4
2F3

}
, γ2 = l11 +Max

{
0,
d6
2F1

}
, γ3 = l12 +Max

{
0,
d2
2F2

}
,

where li > 0, i = 1, 2, . . . , 12.

5. Demonstration

In this section, we shall illustrate the positivity preserving interpolating scheme developed in Section 4.

5.1. First example

We take the following function from [3]:

F1 (x, y) = sin x cos y+ 0.91.

The positive data points are generated from the above function with the restriction of the domain as [−3, 3]× [−3, 3].
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Fig. 2. Triangulation of the domain for F1 (x, y).
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Fig. 3. Linear interpolation of the data generated from F1 (x, y).
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Fig. 4. Hermite triangular surface.

Fig. 2 is the Delaunay triangulation of the domain. Fig. 3 is the linear interpolation of the positive scattered data generated
from the function F1 (x, y). Fig. 4 is produced from (3) for the values of the free parameters γi = δi = 1, i = 1, 2, 3,
αi = αj = αk = βi = βj = βk = 1. For these values of the free parameters the boundary and radial curves reduce to a
standard cubic Hermite. From Fig. 4 it is clear that some part of the surface is lying below the plane Z = 0. Fig. 5 is another
view of Fig. 4. Fig. 6 is generated from Theorem 2 with li = 0.9, i = 1, . . . , 12. From Fig. 6 it is clear that the shape of the
positive data is preserved in a pleasing way. Fig. 7 is obtained after the rotation of Fig. 6.

5.2. Second example

We take the following function from [5]:

F2 (x, y) = 5
(
1+ 2 exp

(
−3

((
x2 + y2

) 1
2 − 6.7

)))− 12
.

The positive data points are generated from the above function with the restriction of the domain as [1, 9]× [1, 9].
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Fig. 5. Another view of Fig. 4.
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Fig. 6. The positive surface generated from Theorem 2 with li = 0.9, i = 1, . . . , 12.
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Fig. 7. Rotation of Fig. 6.

Figs. 8 and 9 are the Delaunay triangulation of the domain and linear interpolation of scattered data generated from
the function F2(x, y), respectively. Fig. 10 is the Hermite triangular surface, produced from (3) for the values of the free
parameters ηi = γi = 1, i = 1, 2, 3, αi = αj = αk = βi = βj = βk = 1. From Fig. 10 it is clear that, for these values of
the free parameters, (3) failed to preserve the positive shape of the data. Fig. 10 is rotated to Fig. 11 to make it more visible.
Fig. 12 is generated from Theorem 2 with li = 0.4, i = 1, . . . , 12. From Fig. 12 it is clear that the shape of the positive data
is preserved using Theorem 2, and it is visually pleasing as well. Fig. 13 is another view of Fig. 12.
It is interesting to note that, in both the above examples, although the functions are provided, the derivatives are

calculated from the derivative approximation scheme defined in [12] to test the ability of the positivity preserving scheme
when derivatives are not provided.

6. Conclusion

A C1 local side-vertex scheme is developed to preserve the shape of positive scattered data. The C1 rational cubic function
is used as both the side-vertex interpolant and the boundary curve interpolant. This rational cubic function involves two free
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Fig. 8. Triangulation of the domain for F2 (x, y).
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Fig. 9. Linear interpolation of the data generated from F2 (x, y).
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Fig. 10. Hermite triangular surface.

parameters in its construction, yielding 12 free parameters in each triangular patch. Data dependent sufficient conditions
are derived on these free parameters to preserve the shape of the positive scattered data. The domain is triangulated by
the Delaunay triangulation method. The partial derivatives at the vertices of triangles are estimated by the local derivative
estimation scheme. But, in general, the choice of the derivative is left to the decision of the user as well. Thus the method is
equally applicable to data with and without derivatives. The proposed scheme is demonstrated over different data sets.
The scheme of this paper has many advantageous features over existing schemes. The schemes developed in [2–4,6]

were not applicable to data with derivatives, whereas the scheme developed in this paper is applicable to data both with
and without derivatives. In this paper the derivatives are estimated by the derivative estimation scheme proposed in [12].
In [5], a 1-parameter rational cubic function was used as a side-vertex, boundary interpolant and the value of the parameter
that reduced the rational cubic function to a cubic Hermite was used in all the triangular patches. If the Hermite triangular
patches lost positivity, a global maximum value was assigned to all these parameters of each triangle interpolant to ensure
that the resulting surface was non-negative. The method developed in [5] is not local whereas our scheme is local.
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Fig. 11. Another view of Fig. 10.
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Fig. 12. The positive surface generated from Theorem 2 with li = 0.4, i = 1, . . . , 12.
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Fig. 13. Another view of Fig. 12.

Surface construction schemes involving shape parameters are suitable to data having singularities, whereas ordinary
polynomials are not.
The development of monotonicity and convexity preservation schemes for the scattered data is an interesting task. The

authors are in the process of completing this in a subsequent paper.
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