Journal of Saudi Chemical Society (2015) 19, 465-470

King Saud University

Journal of Saudi Chemical Society

www.ksu.edu.sa www.sciencedirect.com

ORIGINAL ARTICLE

The hybridization of Ag_2CO_3 rods with $g-C_3N_4$ sheets with improved photocatalytic activity

Konglin Wu^{a,1}, Yanwei Cui^{a,1}, Xianwen Wei^{a,*}, Xinjie Song^{b,*}, Jiarui Huang^{a,c,*}

^a College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China

^b Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongbuk 712749, Republic of Korea ^c School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712749, Republic of Korea

Received 27 February 2015; revised 28 June 2015; accepted 3 July 2015 Available online 10 July 2015

KEYWORDS

Ag₂CO₃; g-C₃N₄; Composite; Visible-light; Photocatalysis Abstract A series of graphitic carbon nitride/silver carbonate (g-C₃N₄/Ag₂CO₃) rod-like composites with different weight contents of g-C₃N₄ have been prepared by a facile precipitation method. The g-C₃N₄/Ag₂CO₃ rod-like composites exhibited higher photocatalytic activity than pure Ag₂CO₃ toward degradation of rhodamine B (RhB) and methylene blue (MB) under visible-light irradiation. The photocatalytic reaction follows a pseudo-first-order reaction and the rate constants for the degradation of RhB and MB by 3.5% g-C₃N₄/Ag₂CO₃ are about 2 times and 1.7 times that of pure Ag₂CO₃, respectively. A possible photocatalytic mechanism was proposed based on the photoluminescence (PL) spectra and a series of radical trapping experimental analyses. The remarkably improved photocatalytic performance should be ascribed to the heterostructure between Ag₂CO₃ and g-C₃N₄, which greatly promoted the photoinduced charge transfer and inhibited the recombination of electrons and holes.

© 2015 King Saud University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

* Corresponding authors at: College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China (J. Huang). Tel.: +86 553 386 9301; fax: +86 553 386 9303. E-mail addresses: xwwei@mail.ahnu.edu.cn (X. Wei), jesse.song@

hotmail.com (X. Song), jrhuang@mail.ahnu.edu.cn (J. Huang). ¹ Equal contribution as the first author.

Peer review under responsibility of King Saud University.

Photocatalytic activity of the materials depends on the efficient separation of the photogenerated electrons and holes. The critical points for a good semiconductor photocatalysis are the high efficiency separation of photoexcited electron-hole pairs, the decrease of electron-hole recombination and good repeatability of photocatalysts. Recently, nanostructured materials have attracted considerable interest owing to their unique properties and potential applications [1–3]. Therefore, the decomposition of organic pollutants using various nanomaterials in the presence of sunlight has been a major topic. TiO_2 is one of the most effective photocatalysts for the degradation of organic pollutants as well as other toxic materials under

http://dx.doi.org/10.1016/j.jscs.2015.07.002

1319-6103 © 2015 King Saud University. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ultraviolet (UV) light irradiation. On the other hand, TiO_2 is a wide band gap semiconductor (3.02 eV for rutile and 3.18 eV for anatase) [4], which means that it can absorb only 5% of sunlight in the UV region, limiting its practical applications. Nanocomposites can improve the visible light photocatalytic activities of wide band gap semiconductors. For example, Cho et al. developed TiO₂ nanoparticles, Au@TiO₂ and Ag@TiO₂ nanocomposites for the catalytic degradation of dyes under visible light irradiation [5–7]. Therefore, a significantly efficient, stable, inexpensive, easily separable semiconductor material that works well with visible light is a major challenge in this field [8,9].

Silver carbonate (Ag₂CO₃), a narrow band gap semiconductor, has been widely used for photocatalytic degradation of organic contaminations (e.g., rhodamine B (RhB), methylene blue (MB), methyl orange (MO) dyes and phenol) and photocatalytic destruction of *Escherichia coli* under visiblelight illumination [10–12]. In general, photocatalytic activity can be improved by preparing silver-based compounds with different means, such as morphology control, size control, modification, and hybridization. More recently, graphene oxide-Ag₂CO₃ composite reported by our group showed higher visible-light photocatalytic activity than the bare Ag₂CO₃ under identical condition [13]. Here, graphene oxide used as a support can be replaced by other two dimensional materials.

In 2009, a great breakthrough was made by Wang and co-workers, who reported a new use of graphitic carbon nitride (g-C₃N₄) semiconductor, which can produce hydrogen from water under visible-light irradiation [14]. After that, numerous g-C₃N₄/silver-based semiconductor hybrid photocatalysts have been extensively reported, such as the composites of g-C₃N₄/Ag₃VO₄ [15], g-C₃N₄/Ag₃PO₄ [16], g-C₃N₄/Ag₂O [17], and $g-C_3N_4/Ag_2CO_3$ composites [18–21]. The g-C_3N_4 partly modified with Ag₃VO₄, Ag₃PO₄, Ag₂O, and Ag₂CO₃ exhibited remarkably enhanced photocatalytic performances. Herein, a facile precipitation method was developed to prepare a series of g-C₃N₄/Ag₂CO₃ rod-like composites for the first time. Compared with the pure Ag_2CO_3 , the novel g-C₃N₄/Ag₂CO₃ hybrid photocatalysts possessed higher photocatalytic activity toward the degradation of RhB and MB under visible-light irradiation.

2. Experimental section

2.1. Synthesis of $g-C_3N_4$

The g-C₃N₄ powder was synthesized according to the literature [22]. Typically, 10 g of melamine was put into an alumina crucible with a cover and heated at a rate of 20 °C min⁻¹ to 550 °C in a muffle furnace and then kept at this temperature for 4 h. All the experiments were performed under air conditions. The resulting yellow product was collected and ground into powder for further use.

2.2. Synthesis of $g-C_3N_4/Ag_2CO_3$ composites

Typically, 20 mL g-C₃N₄ dispersions with different concentrations (0.1, 0.25, 0.35, 0.5 and 1 mg/mL) were treated with ultrasonic for 2 h, then 5 mL aqueous solution of AgNO₃ (0.2 M) was added under magnetic stirring, and then kept stirring for another 1 h in the dark. At last, 5 mL aqueous solution of NaHCO₃ (0.1 M) was added dropwise into the above mixture under magnetic stirring, and then kept stirring for additional 12 h in the dark. The final products were collected by centrifugation, washed with de-ionized water and absolute ethanol several times and dried in vacuum at room temperature for 24 h. For convenience, the as-prepared composites with different weight contents of g-C₃N₄ were labeled by 1.4% g-C₃N₄/Ag₂CO₃, 3.5% g-C₃N₄/Ag₂CO₃, 4.8% g-C₃N₄/Ag₂CO₃, 6.8% g-C₃N₄/Ag₂CO₃ and 12.7% g-C₃N₄/Ag₂CO₃, respectively. The pure Ag₂CO₃ was synthesized via a parallel process but without g-C₃N₄.

2.3. Characterization

Structure and morphology of the products were characterized by X-ray powder diffraction (XRD, Philips X'Pert PRO), scanning electron microscopy (SEM, Hitachi S-4800), and high-resolution transmission electron microscopy (TEM, JEOL-2010 TEM with an acceleration voltage of 200 kV), respectively. UV–visible diffuse reflectance spectra (DRS) were recorded by a Shimadzu UV-2450 spectrometer using MgO (light) as a standard at room temperature. The photoluminescence (PL) spectra for solid samples dispersed in absolute ethanol were investigated with an excitation wavelength of 320 nm on a Hitachi F-4500 fluorescence spectrophotometer.

2.4. Photocatalytic evaluation

The optical system for the photocatalytic reaction was composed of a 500 W Xe lamp (Shanghai Jiguang Special Light, China) and a cutoff filter ($\lambda > 400$ nm). RhB or MB aqueous solution (30 mL, 10 mg/L) containing 20 mg of catalyst was put in a sealed glass beaker and first ultrasonicated for several minutes, and then stirred in the dark for 1 h to ensure absorption-desorption equilibrium. After visible-light illumination at regular time intervals, the absorbance of dye solution was monitored by a Hitachi U-3010 UV-vis spectrophotometer.

3. Results and discussion

The structure information of the as-prepared products was collected by XRD. Fig. 1(I) shows a typical XRD pattern of pure Ag_2CO_3 . All the diffraction peaks can be well-indexed to a monoclinic crystalline phase Ag_2CO_3 (JCPDS No. 12-0766). The XRD pattern of pure g-C₃N₄ is displayed in Fig. 1(VII), the strongest peak at 27.5° corresponding to the (002) plane arising from the stacking of the conjugated aromatic system and the other peak at 13.1° corresponding to the (100) plane are associated with interlayer stacking [16–18]. We also found that the XRD patterns of g-C₃N₄/Ag₂CO₃ composites were similar to those of pure Ag_2CO_3 (Fig. 1(II)–(IV)), but with the increasing weight contents of g-C₃N₄, the characteristic peak of g-C₃N₄ gradually appears (Fig. 1(V) and (VI)). Therefore, the formation of g-C₃N₄/Ag₂CO₃ composites has been proved.

The morphology of the products was studied by SEM. Fig. 2(a) shows a SEM image of pure Ag_2CO_3 , which was composed of straight and smooth rod with ca. 500 nm in diameter and 2 μ m in length. The SEM image of g-C₃N₄ sheets is also given in Fig. S1 (see ESI). From Fig. 2(b)–(f), we can

see that Ag₂CO₃ rods are randomly deposited on the g-C₃N₄ sheets. We believe that the hybridization of Ag₂CO₃ with g-C₃N₄ is beneficial to the synergistic interaction between Ag₂CO₃ rods and g-C₃N₄ sheets. The morphology of the g-C₃N₄/Ag₂CO₃ composite was also investigated by TEM. Fig. S2 (see ESI) shows the TEM images of the 3.5%

 $g\text{-}C_3N_4/Ag_2CO_3$ sample. From the TEM image of $g\text{-}C_3N_4/Ag_2CO_3$ sample, it can be seen that $g\text{-}C_3N_4$ was successfully dispersed on the surface of Ag_2CO_3 and the heterostructure between $g\text{-}C_3N_4$ and Ag_2CO_3 was formed in the $g\text{-}C_3N_4/Ag_2CO_3$ composite.

The optical absorbance of the as-obtained samples was measured by UV-vis diffuse reflectance spectroscopy (Fig. S3(a)). The absorption spectrum of Ag_2CO_3 extends from UV to visible region (480 nm). After being modified by g-C₃N₄, the color of the g-C₃N₄/Ag₂CO₃ composites changed from dark yellow to bright yellow (inset Fig. S3(a)) and there is an enhanced absorbance in the visible-light region ranging from 480 to 800 nm. Fig. S3(b) shows the plots of the transformed Kubelka–Munk function of light energy $(\alpha hv)^{1/2}$ versus energy (hv) for the as-prepared samples. Ag₂CO₃ belongs to indirect band gap semiconductor and its band gap is estimated to be 2.34 eV, which is close to the values in the previous reports [10–12]. The band gaps of g-C₃N₄/Ag₂CO₃ composites are also calculated to be 2.18, 2.12, 2.17, 2.23, 2.29 eV, respectively, as displayed in Table 1. This indicates a band gap narrowing of the semiconductor Ag₂CO₃ due to the introduction of g-C₃N₄ into the matrix of Ag₂CO₃, which can be attributed to the synergistic interaction between semiconductor and $g-C_3N_4$ support. Furthermore, the absorption edge of the pure $g-C_3N_4$ is at about 470 nm, which originates from its band gap

Figure 2 SEM images of (a) Ag_2CO_3 , (b) 1.4% g- C_3N_4/Ag_2CO_3 , (c) 3.5% g- C_3N_4/Ag_2CO_3 , (d) 4.8% g- C_3N_4/Ag_2CO_3 , (e) 6.8% g- C_3N_4/Ag_2CO_3 , (e) 6.8% g- C_3N_4/Ag_2CO_3 , (f) 12.7% g- C_3N_4/Ag_2CO_3 .

Table 1 The band gaps (Eg) and first-order rate constants (*k*) of the as-prepared samples.

Samples	Eg (eV)	$k (\min^{-1})$	
		RhB	MB
Ag ₂ CO ₃	2.34	0.04413	0.06703
1.4% g-C ₃ N ₄ /Ag ₂ CO ₃	2.18	0.05675	0.06968
3.5% g-C ₃ N ₄ /Ag ₂ CO ₃	2.12	0.08603	0.11112
4.8% g-C ₃ N ₄ /Ag ₂ CO ₃	2.17	0.07328	0.09177
6.8% g-C ₃ N ₄ /Ag ₂ CO ₃	2.23	0.04144	0.04941
12.7% g-C ₃ N ₄ /Ag ₂ CO ₃	2.29	0.03058	0.02871
g-C ₃ N ₄	2.63	0.00579	0.00722

of $\sim 2.63 \text{ eV}$ and is consistent with the reported results [16,17,22].

photocatalytic performance of Ag₂CO₃, The $g-C_3N_4/Ag_2CO_3$ composites and $g-C_3N_4$ is evaluated by the degradation of RhB and MB under visible-light irradiation. As shown in Figs. 3, S4 and S5, the degradation efficiency of RhB and MB follows the order 3.5% g-C₃N₄/ $Ag_2CO_3 > 4.8\%$ $g-C_3N_4/Ag_2CO_3 > 1.4\%$ $g-C_3N_4/$ $Ag_2CO_3 > Ag_2CO_3 > 6.8\%$ $g\text{-}C_3N_4/Ag_2CO_3\,>\,12.7\%$ $g-C_3N_4/Ag_2CO_3 > g-C_3N_4$. Obviously, the addition of an appropriate amount of g-C₃N₄ can enhance the photocatalytic activity effectively. However, superfluous g-C₃N₄ will decrease photocatalytic performance, indicating a synergistic interaction between g-C₃N₄ sheets and Ag₂CO₃ rods is required in order to improve the photoactivity of semiconductor Ag_2CO_3 rods. The optimal weight content of $g-C_3N_4$ in this study is 3.5%. Assuming that the photocatalytic reaction follows a pseudo-first-order reaction due to low concentration of the dye solutions, the relevant equations are listed as follows: $-\ln(C_t/C_0) = kt$, where C_0 and C_t are the concentrations of reactant at time 0 and t, respectively, and k is the first-order reaction rate constant [23,24]. The corresponding first-order rate constants are shown in Fig. S6 and listed in Table 1. It is noted that the degradation rate constants for MB by g-C₃N₄/Ag₂CO₃ composites are higher than those for RhB on the general trend, which indicates that MB is more easily degraded under the same conditions. Significantly, the first-order rate constants for the degradation of RhB and MB by 3.5% g-C₃N₄/Ag₂CO₃ are 0.08603 and 0.11112 min⁻¹, respectively, which are about 2 times and 1.7 times that of pure Ag₂CO₃ (0.04413 and 0.06703 min⁻¹).

As is known to all, the behavior of photogenerated charge carriers is a key factor to determine the performance of photocatalysts [25]. The separation and lifetime of photogenerated electron-hole pairs can be confirmed by the PL spectra. The PL intensity with higher value means more recombination of electron-hole pairs and lower photocatalytic activity [15]. As displayed in Fig. S7, under excitation wavelength of 320 nm, for g-C₃N₄ sheets, a strong emission peak at about 465 nm is detected. The PL peak intensity of 3.5% g-C₃N₄/Ag₂CO₃ composite is close to pure Ag₂CO₃, but dramatically decreases compared with g-C₃N₄. However, the band gap of 3.5% $g-C_3N_4/Ag_2CO_3$ composite is narrower than Ag_2CO_3 as well as g-C₃N₄, leading to a more light harvest, thus further improving its photoactivity. As a result, both the band gap of photocatalyst and the separation of electron-hole pairs have an influence on the performance of the photocatalyst.

Figure 3 Photocatalytic activities of as-prepared photocatalysts for degradation of (a) RhB and (b) MB under visible-light irradiation.

In the photodegradation process, some active species including holes (h⁺), hydroxyl radicals (OH) and superoxide radicals (O_2^-) were formed by light irradiation. O_2^- was formed by direct reduction of O_2 with electron [19,21]. The OH was obtained by the direct hole oxidation or photogenerated electron induced multistep reductions of O_2^- . Furthermore, holes could directly react with organic compounds if the photocatalyst has moderate redox potential. Therefore, in order to understand the interaction between Ag₂CO₃ and g-C₃N₄, the active species generated during the photodegradation process over g-C₃N₄, Ag₂CO₃ and g- C_3N_4/Ag_2CO_3 can be identified by active species scavenging experiments. In the previous report, the trapping experiments of free radicals and holes were carried out by Li etc. to investigate the main reactive species for degradation of MO and RhB by g-C₃N₄/Ag₂CO₃ composite [21]. They found that the degradation rate of MO decelerated obviously after the addition of disodium ethylenediaminetetraacetate (EDTA) or 1,4benzoquinone (BQ). However, the degradation rate showed almost no change in the presence of tert-butyl alcohol (t-BuOH), suggesting that the holes and O_2^- are the main reactive species for degradation of MO. For the degradation of RhB, the photocatalytic activity decreased slightly after the addition of t-BuOH. However, it is inhibited greatly in the presence of EDTA and BQ, indicating that the holes and O_2^- also play a major role in the degradation of RhB [19-21].

Based on the above analyses and the related literature reports, the possible mechanism of the enhanced photocatalytic activity of the $g-C_3N_4/Ag_2CO_3$ composites was proposed and shown in Fig. 4. Under visible light irradiation, both $g-C_3N_4$ and Ag_2CO_3 could absorb visible light and were all

Figure 4 Band structure diagram and electron-hole separation of $g-C_3N_4/Ag_2CO_3$ composite.

excited to generate electron and hole pairs. The holes on the surfaces of g-C₃N₄ and Ag₂CO₃ could directly decompose the RhB molecules into the intermediates. g-C₃N₄ has a more negative potential of the conduction band (CB) and valence band (VB) than that of Ag₂CO₃. Therefore, the excited electrons on g-C₃N₄ could directly be injected into the CB of Ag₂CO₃, meanwhile the holes could migrate from the VB of Ag₂CO₃ to that of g-C₃N₄, which promotes the effective separation of photoexcited electrons and holes. As a result, the enriched electrons on the CB of Ag₂CO₃ will react with oxygen to generate O_2^- . The O_2^- active species together with the holes on the VB of g-C₃N₄ are responsible for the degradation of organic pollutants.

The stability and reusability of catalysts are very important issues for practical applications. The $g-C_3N_4/Ag_2CO_3$ composite could be readily recycled by simple centrifugation after reaction. The stability and reusability of the 3.5% $g-C_3N_4/Ag_2CO_3$ composite were examined by repetitive use of the catalyst. As shown in Fig. S8 (see ESI), the catalyst exhibited a little loss of activity after three photodegradation cycles of RhB. However, it still kept high photocatalytic activity after three photodegradation cycles of RhB. However, it still value in environmental purification. $g-C_3N_4$ possesses a conjugated π structure, which has been proven to effectively suppress photocorrosion during the $g-C_3N_4$ based photocatalytic reaction [26].

The photocatalyst after the reusability experiments was further analyzed by SEM and XRD to study the photostability of 3.5% g-C₃N₄/Ag₂CO₃ composite. The SEM image of the spent sample (Fig. S9, see ESI) was found to be the same morphologies as those of the fresh sample. Fig. S10 (see ESI) shows the XRD patterns of 3.5% g-C₃N₄/Ag₂CO₃ composite before and after degradation of RhB. After three catalytic runs, the peak positions had no obvious changes. However, the XRD analysis of the sample (three cycling runs) indicated that the intensity of recycled 3.5% g-C₃N₄/Ag₂CO₃ sample decreased and the diffraction peak at 2θ values 38.1° was assigned to the (111) lattice plane of Ag nanoparticles [18,19,27,28]. In order to further confirm the existence of Ag after the photodegradation, Shi etc. checked the spent g-C₃N₄/Ag₂CO₃ composite by X-ray photoelectron spectroscopy (XPS). Compared with the fresh g-C₃N₄/Ag₂CO₃ composite, Ag 3d peak showed a larger full width at half maximum. And Ag $3d_{5/2}$ and $3d_{3/2}$ peak could be further divided into two different peaks. The peaks at 368.9 and 374.8 eV were assigned to metallic Ag (0). The results suggested that partial Ag₂CO₃ was reduced to Ag in the process of photocatalytic reaction [19,21]. So during the photocatalytic reaction, the $g-C_3N_4/Ag_2CO_3$ system was transformed to be $g-C_3N_4/Ag_2CO_3$ Ag/Ag₂CO₃ system. There are two reasons to explain the decreasing photocatalytic activity of the g-C₃N₄/Ag₂CO₃ composite after three cycling runs. One reason is that the Ag nanoparticles gradually formed on the Ag₂CO₃ surface under the photocatalytic reaction process, which prevents the light absorption of Ag₂CO₃. Another reason is that the formed Ag nanoparticles also serve as the capture center of the electrons and holes.

4. Conclusions

In summary, we have developed a simple precipitation method for the preparation of $g-C_3N_4/Ag_2CO_3$ composites with different weight contents of $g-C_3N_4$. The 3.5% $g-C_3N_4/Ag_2CO_3$ photocatalyst exhibited higher photocatalytic activity for RhB and MB degradation under visible light irradiation than bare Ag_2CO_3 rods. The enhanced photocatalytic activity should be attributed to the efficient separation of photoinduced charge carriers resulted from effective fabrication of $g-C_3N_4/Ag_2CO_3$ heterojunction, as confirmed by the PL spectra. This work might provide a simple and high-efficient approach for removal of organic pollutants by using solar energy.

Acknowledgements

This work is supported financially by the National Natural Science Foundation (Nos. 21071005, 21271006) of P. R. China, the Research Culture Funds (Nos. 2011rcpy038, 2014xmpy13), the Innovation Funds (No. 2014cxjj13), and the Undergraduate Innovation Training Plans (Nos. 201410370198, 201410370199) of Anhui Normal University.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jscs.2015.07.002.

References

- [1] J.R. Huang, H.B. Ren, K.K. Chen, J.J. Shim, Controlled synthesis of porous Co₃O₄ micro/nanostructures and their photocatalysis property, Superlattices Microstruct. 75 (2014) 843–856.
- [2] J.R. Huang, G.J. Fu, C.C. Shi, X.Y. Wang, M.H. Zhai, C.P. Gu, Novel porous CuO microrods: synthesis, characterization, and their photocatalysis property, J. Phys. Chem. Solids 75 (2014) 1011–1016.
- [3] J.R. Huang, H.B. Ren, P.P. Sun, C.P. Gu, Y.F. Sun, J.H. Liu, Facile synthesis of porous ZnO nanowires consisting of ordered nanocrystallites and their enhanced gas-sensing property, Sens. Actuator B-Chem. 188 (2013) 249–256.

- [4] S.H. Xu, W.F. Shangguan, J. Yuan, J.W. Shi, M.X. Chen, Photocatalytic properties of bismuth titanate Bi₁₂TiO₂₀ prepared by co-precipitation processing, Mater. Sci. Eng. B 137 (2007) 108–111.
- [5] M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, Band gap engineered TiO₂ nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. A 2 (2014) 637–644.
- [6] M.M. Khan, J. Lee, M.H. Cho, Au@TiO₂ nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect, J. Ind. Eng. Chem. 20 (2014) 1584–1590.
- [7] M.M. Khan, S.A. Ansari, M.I. Amal, J. Lee, M.H. Cho, Highly visible light active Ag@TiO₂ nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach, Nanoscale 5 (2013) 4427–4435.
- [8] S. Kumar, T. Surendar, B. Kumar, A. Baruah, V. Shanker, Synthesis of a novel and stable $g-C_3N_4-Ag_3PO_4$ hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation, J. Mater. Chem. A 1 (2013) 5333–5340.
- [9] J. Fu, B.B. Chang, Y.L. Tian, F.N. Xi, X.P. Dong, Novel C₃N₄-CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism, J. Mater. Chem. A 1 (2013) 3083–3090.
- [10] C.W. Xu, Y.Y. Liu, B.B. Huang, H. Li, X.Y. Qin, X.Y. Zhang, Y. Dai, Preparation, characterization, and photocatalytic properties of silver carbonate, Appl. Surf. Sci. 257 (2011) 8732–8736.
- [11] G.P. Dai, J.G. Yu, G. Liu, A new approach for photocorrosion inhibition of Ag₂CO₃ photocatalyst with highly visible-lightresponsive reactivity, J. Phys. Chem. C 116 (2012) 15519–15524.
- [12] H.J. Dong, G. Chen, J.X. Sun, C.M. Li, Y.G. Yu, D.H. Chen, A novel high-efficiency visible-light sensitive Ag₂CO₃ photocatalyst with universal photodegradation performances: simple synthesis, reaction mechanism and first-principles study, Appl. Catal. B: Environ. 134–135 (2013) 46–54.
- [13] C. Dong, K.L. Wu, X.W. Wei, X.Z. Li, L. Liu, T.H. Ding, J. Wang, Y. Ye, Synthesis of graphene oxide–Ag₂CO₃ composites with improved photoactivity and anti-photocorrosion, CrystEngComm 16 (2014) 730–736.
- [14] X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8 (2009) 76–80.
- [15] S.M. Wang, D.L. Li, C. Sun, S.G. Yang, Y. Guan, H. He, Synthesis and characterization of g-C₃N₄/Ag₃VO₄ composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation, Appl. Catal. B: Environ. 144 (2014) 885–892.

- [16] P.Z. He, L.M. Song, S.J. Zhang, X.Q. Wu, Q.W. Wei, Synthesis of g-C₃N₄/Ag₃PO₄ heterojunction with enhanced photocatalytic performance, Mater. Res. Bull. 51 (2014) 432–437.
- [17] M. Xu, L. Han, S.J. Dong, Facile fabrication of highly efficient g-C₃N₄/Ag₂O heterostructured photocatalysts with enhanced visible-light photocatalytic activity, ACS Appl. Mater. Interfaces 5 (2013) 12533–12540.
- [18] H. Xu, Y.X. Song, Y.H. Song, J.X. Zhu, T.T. Zhu, C.B. Liu, D.X. Zhao, Q. Zhang, H.M. Li, Synthesis, characterization of g-C₃N₄/Ag₂CO₃ with enhanced visible-light photocatalytic activity for the degradation of organic pollutants, RSC Adv. 4 (2014) 34539–34547.
- [19] L. Shi, L. Liang, F.X. Wang, M.S. Liu, J.M. Sun, Enhanced visible-light photocatalytic activity and stability over g-C₃N₄/ Ag₂CO₃ composites, J. Mater. Sci. 50 (2015) 1718–1727.
- [20] N. Tian, H.W. Huang, Y. He, Y.X. Guo, Y.H. Zhang, Organicinorganic hybrid photocatalyst g-C₃N₄/Ag₂CO₃ with highly efficient visible-light-active photocatalytic activity, Colloids Surf. A: Physicochem. Eng. Aspects 467 (2015) 188–194.
- [21] Y.F. Li, L. Fang, R.X. Jin, Y. Yang, X. Fang, Y. Xing, S.Y. Song, Preparation and enhanced visible light photocatalytic activity of novel g-C₃N₄ nanosheets loaded with Ag₂CO₃ nanoparticles, Nanoscale 7 (2015) 758–764.
- [22] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C₃N₄ fabricated by directly heating melamine, Langmuir 25 (2009) 10397–10401.
- [23] P.Y. Dong, Y.Y. Wang, B.C. Cao, S.Y. Xin, L.N. Guo, F.H. Li, Ag₃PO₄/reduced graphite oxide sheets nanocomposites with highly enhanced visible light photocatalytic activity and stability, Appl. Catal. B: Environ. 132–133 (2013) 45–53.
- [24] V.A. Sakkas, I.M. Arabatzis, I.K. Konstantinou, A.D. Dimou, T.A. Albanis, P. Falaras, Metolachlor photocatalytic degradation using TiO₂ photocatalysts, Appl. Catal. B: Environ. 49 (2004) 195–205.
- [25] L. Han, P. Wang, S.J. Dong, Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst, Nanoscale 4 (2012) 5814–5825.
- [26] S. Kumar, T. Surendar, A. Baruah, V. Shanker, Synthesis of a novel and stable g-C₃N₄-Ag₃PO₄ hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation, J. Mater. Chem. A 1 (2013) 5333–5340.
- [27] B.Z. Tian, R.F. Dong, J.M. Zhang, S.Y. Bao, F. Yang, J.L. Zhang, Sandwich-structured AgCl@Ag@TiO₂ with excellent visible-light photocatalytic activity for organic pollutant degradation and *E. coli* K12 inactivation, Appl. Catal. B: Environ. 158–159 (2014) 76–84.
- [28] Y.X. Yang, W. Guo, Y.N. Guo, Y.H. Zhao, X. Yuan, Y.H. Guo, Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C₃N₄ with enhanced visible-light photocatalytic activity, J. Hazard. Mater. 271 (2014) 150–159.