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Motivation: The identification of events such as protein–protein interactions (PPIs) from the scientific lit-
erature is a complex task. One of the reasons is that there is no formal syntax to denote such relations in
the scientific literature. Nonetheless, it is important to understand such relational event representations
to improve information extraction solutions (e.g., for gene regulatory events).

In this study, we analyze publicly available protein interaction corpora (AIMed, BioInfer, BioCreAtIve II)
to determine the scope of verbs used to denote protein interactions and to measure their predictive
capacity for the identification of PPI events. Our analysis is based on syntactical language patterns. This
restriction has the advantage that the verb mention is used as the independent variable in the experi-
ments enabling comparability of results in the usage of the verbs. The initial selection of verbs has been
generated from a systematic analysis of the scientific literature and existing corpora for PPIs.

We distinguish modifying interactions (MIs) such as posttranslational modifications (PTMs) from non-
modifying interactions (NMIs) and assumed that MIs have a higher predictive capacity due to stronger
scientific evidence proving the interaction. We found that MIs are less frequent in the corpus but can
be extracted at the same precision levels as PPIs. A significant portion of correct PPI reportings in the Bio-
CreAtIve II corpus use the verb ‘‘associate”, which semantically does not prove a relation.

The performance of every monitored verb is listed and allows the selection of specific verbs to improve
the performance of PPI extraction solutions. Programmatic access to the text processing modules is avail-
able online (www.ebi.ac.uk/webservices/whatizit/info.jsf) and the full analysis of Medline abstracts will
be made through the Web pages of the Rebholz group.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Since the innovative approach of Blaschke et al. [1], a number of
solutions for the identification of binary relations such as protein–
protein interactions (PPIs) have been proposed. Until today, no
solution is yet publicly available that at the same time identifies
from the scientific literature the protein and gene names (PGNs),
links them to the concept id (CID) in the biomedical data resources
(e.g., to the accession number in UniProtKb) and reads out the rela-
tion between two PGNs at a high precision rate (precision = # cor-
rectly identified results/all identified results). Several solutions
have been proposed (see Section 1.1), including the one that is
best-known and called iHOP [2], but none of them offers a compre-
hensive approach.

Molecular biologists invest a significant portion of their re-
search work to achieve better understanding of the molecular
mechanisms of PPIs and use their experimental approaches to
ll rights reserved.

uhmann).
identify the type of interactions. This research leads to results that
can be described in different ways and that need appropriate text
mining methods to deliver results according to their needs. In this
research work we explore on the use of language in the scientific
literature, in particular in annotated corpora for PPIs to better
understand the use of verbs in this context. We follow the hypoth-
esis that PPIs from separate conceptual categories have different
linguistic representations: (a) interactions with chemical modifica-
tions to one interaction partner (‘‘modifying interaction”, MI) and
(b) interactions without such changes (‘‘non-modifying interac-
tions”, NMI). The distinction between these types is motivated by
the assumption that strong experimental proof for the MIs leads
to explicit statements in the scientific literature reporting on the
interaction (e.g., explicit mention of the interaction partners) and
as a consequence, information extraction techniques will achieve
better performances in identifying the interactions.

Modifying interactions. The evidence for the MIs is any reporting
of chemical changes linked to the interaction partners of the PPI,
such as methylation and demethylation and similarly phosphory-
lation and dephosphorylation as well as other types of chemical
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Table 1
Use of verbs in the extraction of binary relations for PPIs that have mentions in at
least three scientific publications for use in different information extraction solutions
(verbs denoting modifying interactions are represented in boldface). Tk [4], Hg [13],
Fm [5], Rz [14], Pk [11], Bk [1] and Sz [7].

Tk Hg Fm Rz Pk Bk Sz Total

Activate 1 1 1 1 1 1 6
Bind 1 1 1 1 1 5
Interact 1 1 1 1 1 1 6
Regulate 1 1 1 1 1 5
Phorphorylate 1 1 1 1 1 5
Inhibit 1 1 1 1 4
Down-regulate 1 1 1 1 4
Express 1 1 1 1 4
Suppress 1 1 1 1 4
Up-regulate 1 1 1 1 4
Associate 1 1 1 3
Block 1 1 1 3
Contain 1 1 1 3
Dephosphorylate 1 1 1 3
Inactivate 1 1 1 3
Induce 1 1 1 3
Methylate 1 1 1 3
Modify 1 1 1 3
Overexpress 1 1 1 3
Promote 1 1 1 3
Stimulate 1 1 1 3
Substitute 1 1 1 3

Total 22 17 14 11 7 8 4
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changes (e.g., acetylation, biotinylation; see Table 1). These modi-
fications can be subsumed as posttranslational modifications
(PTMs), which are a subcategory of PPIs. Saric et al. [3] have consid-
ered this type of interactions into their work. Since the experimen-
tal evidence for the interaction shows chemical modifications, it is
clear that the two proteins are interacting.

Non-modifying interactions. The second group of reported PPIs
forms the largest set and has been commonly used for the identi-
fication of PPIs [1,4,5]. This group contains all reported results,
where for example one protein activates or binds another protein.
This set of interactions is relevant to molecular biologists searching
for clues to reconstruct regulatory and signaling pathways in the
cell.

The proposed categorization meets the demands from members
of curation teams at the EBI that require integration of different
interaction types (modifying and non-modifying interactions) into
public services (Protein Corral, unpublished). These services will
now be properly assessed, after an appropriate evaluation corpus
has been made available: the evaluation corpus for PPIs as part
of the BioCreAtIve II challenge [6].

Altogether, few results have been presented that report on the
use of verbs (and their nominalizations) in the scientific literature
as part of information extraction solutions for PPIs. In particular,
the distribution of verbal forms for PPIs has not been properly as-
sessed, for example through the analysis of an annotated corpus.
Furthermore, we have discovered that only few research teams
have integrated verbal forms that represent modifying interactions
into their information extraction solutions. As a result, we investi-
gated into the question whether statements on PPIs reporting
modifying interactions can be extracted with higher precision than
the set of verbal forms that are classified as non-modifying
interactions.

In the following sections we will report on the approaches used
from other research teams and their choice of verbal forms (Sec-
tion 1.1). We explain our applied techniques (Section 2) and our
experiments and findings (Section 3). Then we discuss our findings
(Section 4) and the last section reports on the access to the pre-
sented solutions (Section 6).
1.1. Related work

Several researchers have reported on their information extrac-
tion solutions, some of which make reference to the verb forms
that are integrated into their approach. The earliest work is from
Sekimizu et al. [7] who identify frequently used verbs in Medline
to parse relations amongst genes from the literature, but they do
not provide a list of verbs denoting protein relations. Blaschke
et al. [1] applied a text mining solution to Medline abstracts that
identifies keywords in conjunction with a selection of verbs (11
verbs and their inflections and three additional language patterns).
No evaluation is given in the publication. The selected verbs are
listed in Table 1. A similar solution has been proposed by Ono
et al. [8] that focuses on relations defined by ‘‘interact”, ‘‘bind”,
‘‘associate” and ‘‘complex” and that have been extracted with regu-
lar expression for syntactical patterns. Precision is around 94% and
recall is around 85% (82.5–86.8%, recall = # correctly identified re-
sults/# all known correct results; see Table 5). iHOP also makes use
of a rule-based system, but neither the list of verbs nor the evalu-
ation has been disclosed [2].

Several solutions have been proposed that match language pat-
terns in form of finite state automata (FSA) to the scientific litera-
ture. Pustejovsky et al. [9] analyzed syntactical language patterns
for inhibitory events. Their system performed at recall of 57%
and at precision of 90%. They did not offer any solution for the
PGN normalization. Part of their solution is the processing of sub-
ordinate clauses, sentential coordination and anaphoric resolu-
tions. Leroy et al. [10] also applied cascaded FSAs to extract PPIs
from Medline abstracts. They reported 90% precision, but again
did not apply any PGN normalization. Saric et al. [3] extracted reg-
ulatory gene/protein networks from Medline with cascaded FSAs.
They do not state the set of verbs that were used to identify the
relations. They suggest that a given verb (e.g., activate) can be used
to ‘‘express different types of relations” (called semantic variation).
For their evaluation they opted for semantic correctness in contrast
to grammatical correctness and claim to have achieved 83–90%
accuracy for expression relations and 86–95% accuracy for phos-
phorylation relations.

Park et al. [11] applied combinatory categorial grammar in con-
junction of seven verbs (including their inflections and noun
phrases) denoting a positive regulatory effect (e.g., activate, stimu-
late) and five verbs denoting a negative regulatory effect (inhibit,
down-regulate). They consider solving coordination, appositions
and anaphoric expressions. They claim 48% recall and 80% preci-
sion measured on a selection of 492 sentences.

Friedman et al. [5] use a system that parses text based on gram-
mar rules (semantic patterns, MedLee). The grammar makes use of
22 terms denoting verbs and also nouns (e.g., apoptosis, myogene-
sis) that are categorized into 14 classes representing actions and
processes. All inflectional forms and the nominalizations have been
considered for all verbs. NER for PGNs is based on BLAST. [4] ap-
plied context-free grammar for the processing of Medline ab-
stracts. They integrated 49 verb forms, their inflectional forms
and nominalizations and achieved 63.9% recall at 70.2% precision.
Temkin thus reports the biggest coverage of proposed verbs. Final-
ly, Daraselia et al. [12] use context-free grammar to identify PPIs
and report 91% precision based on Medline abstracts (recall rate
21%).

Huang et al. [13] did invest effort into an automated analysis of
the scientific literature to identify syntactical patterns denoting
PPIs. They applied alignment algorithms to the text, filtered out
syntactical patterns and identified 30 verbs that are relevant for
the identification of PPIs. The list of relevant verbs comprises 91
entries including specific verbs denoting modifying interactions
(e.g., ubiquitinate), non-modifying interactions (e.g., interact, bind)
and undefined interactions (e.g., hasten, function) with regards to
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protein-related events. The authors use the patterns to extract
‘‘interacting” and ‘‘binding” relations and report around and above
80% recall and 80% precision. The PGNs are not normalized to CIDs.

Apart from the sheer numbers for precision and recall of the dif-
ferent systems, it is difficult to assess the IE systems against each
other. This is mainly due to the fact that the performances have
not been measured on a shared corpus. Certainly the approaches
based on regular expressions and FSAs scale with the number of
language patterns that have been integrated. The number of pat-
terns increases the recall. On the other side, every pattern has to
be well crafted to not over-generalize and to reduce the precision
of the IE system in an intolerable way. The proposed systems make
use of part-of-speech tagging and basic syntactical structures (e.g.,
identification of noun phrases) to comply with standards in natural
language processing approaches.

Those solutions that base on syntactic parsing techniques (com-
binatorial categorical grammar (CCG) by Park, context-free gram-
mar (CFG) by Daraselia and Temkin) achieve to cover a larger set
of verbs and approach more sophisticated language phenomena,
such as anaphora resolution. In this respect, we have to give credit
to Pustejovsky, too.

The listed verbs (see Table 1) from previous publications will all
be considered in our analysis, i.e. use of verbs in the protein inter-
action corpora and performance measurements on BioCreAtIve II
corpus.
2. Methods

The identification of PPIs from the literature is a complex task,
which is composed of named entity recognition for proteins, pro-
tein name normalization (i.e. identification of the correct CID)
and the extraction of the relation between both entities. For the
evaluation we relied on the BioCreAtIve II corpus for the IPS task
(347,749 sentences from 740 full-text documents), on the AIMed
corpus (1942 sentences from 255 abstracts) and on BioInfer
(1100 sentences from full text) [6,15,16]. Only the BioCreAtIve cor-
pus delivers a set of CID pairs for every contained document where
the CID pair represents a PPI.
1 http://www.ebi.ac.uk/Rebholz-srv/BootStrep/bootstrep.html.
2.1. Named entity recognition for proteins/genes

The identification of PGNs has been studied extensively [17–
19]. The identification of gene mentions has been solved to a pre-
cision close to 90% whereas the gene normalization is still ongoing
work. In the presented work, we used two methods that both de-
liver CIDs as part of the NER task. The first method (SP-tagger) is
part of several TM solutions at the EBI (EbiMed, PCorral, MedEvi;
[20]). It incorporates all protein names from UniProtKb/SwissProt
and their synonyms. Named entity recognition is mainly done by
dictionary lookup under consideration of morphological variability
[21]. After the first identification step, additional features are con-
sidered, for example resolution of acronyms and term frequencies
from the British National Corpus to increase the precision of the
NER module [22,23]; for SOAP Web services access see [24]. The
performance of this tagger is 76% F-measure (precision 95%, recall
64%).

The second protein-tagger again uses dictionary lookup in com-
bination with contextual information to disambiguate gene men-
tions and to identify the correct boundaries (BL-Tagger [25]). The
performance of this method showed 75% F-measure (precision
94%, recall 63%). The underlying term repository is a publicly avail-
able lexical resource for biological terms (http://www.ebi.ac.uk/
Rebholz-srv/BootStrep/bootstrep.html). The term repository incor-
porates the BioThesaurus and other terminological resources [26].
Both taggers have been used in this study, since they are based
on different design principles. The SP-tagger shows better perfor-
mance, but the BL-tagger has the advantage that the underlying
lexical resource1 is publicly available. The SP-Tagger is species inde-
pendent, whereas the BL-Tagger delivers only annotations for human
proteins.

2.2. Identification of PPIs

The identification of PPIs from the text is based on the modules
of the Whatizit infrastructure [24]. Public access is granted to all
modules that are used in this study. Most modules are imple-
mented as finite state automata [27]. The basic NLP modules of
the infrastructure comprise the sentenciser and a part-of-speech
(PoS) tagger. The PoS tagger was trained on the British National
Corpus and incorporates a large-scale biomedical terminological
resource to improve the performance on biomedical scientific liter-
ature. Noun phrases (NPs) are identified with syntax patterns
equivalent to ‘‘DET (ADJ|ADV)+ N+”.

2.2.1. PPI identification based on tri-cooccurrence (3-CO)
For our study we assessed 3-CO against syntactical patterns

denoting a PPI (SynP). Both approaches restrict the scope of syntac-
tical expressions that are accepted as representations of PPIs, but
have the advantage that they do not rely on more complex solu-
tions to filter out the syntactical structure for the relations from
the dependency structure or the predicate-argument structure of
a parser. This leads to the result, that the usage and the perfor-
mance of the verbs can be monitored under restricted but stan-
dardized conditions.

3-CO is performed on the stretch of a sentence. Any triplet of
two proteins in combination with a verb mention in the following
combinations is accepted: (1) ‘‘PGN VP PGN”, (2) ‘‘nomVP PGN
PGN”, and (3) ‘‘PGN PGN nomVP”, where VP is the verb phrase that
represents all the conjugational forms of a form and nomVP is the
nominalized form of a verb phrase. Only the pre-specified verbs are
counted and in the case of coordination of two such verbs, both are
counted.

The module that identifies and highlights PPIs searches for
phrases that contain a verb or a nominal form describing an inter-
action like bind or dimerization. The first set comprises all verbal
forms that report on chemical modifications of a protein: acetylate,
acylate, amidate, brominate, biotinylate, carboxylate, cysteinylate,
farnesylate, formylate, ‘‘hydrox[iy]late”, methylate, demethylate,
‘‘myristo?ylate”, ‘‘palmito?ylate”, phosphorylate, dephosphorylate,
pyruvate, nitrosylate, sumoylate, ‘‘ubiquitin(yl)?ate”. The second set
of verbs consists of forms that report on interaction and regulation
events: associate, dissociate, assemble, attach, bind, complex, contact,
couple, ‘‘(multi|di)meri[zs]e”, link, interact, precipitate, regulate, inhi-
bit, activate, ‘‘down[-]regulate”, express, suppress, ‘‘up[-]regulate”,
block, contain, inactivate, induce, modify, overexpress, promote, stim-
ulate, substitute, catalyze, cleave, conjugate, disassemble, discharge,
mediate, modulate, repress, transactivate. ‘‘Associate” does not de-
note any specific binding or transformation event.

If two different verbs have been identified in the context of a
CID pair, then both occurrences have been counted. This is also
the case for CID pairs that have been identified with syntactical
patterns (see below), but then only takes place at a low frequency.

2.2.2. PPI identification based on syntactical patterns
The identification of the syntactical patterns representing PPIs

is a more complex process and a computationally intensive task
in comparison to the 3-CO analysis. It covers the following
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components. One module identifies single adjectives (‘‘adj”), com-
binations of adjectives and adverbs and coordination of adverbs.
The second module selects the conjugational forms of ‘‘to be”, also
in combination with leading, interleaving and trailing adverbs
(‘‘beForm”; see Fig. 1). The next module, seeks phrases like ‘‘were
initially observed” to be combined with ‘‘to” and the infinitive of
an interaction verb (‘‘shownForm”). In the same sense, modal verbs
with optional trailing adverbs, where modal verbs are any of: can,
could, cannot, do, may, might, must, need, ought, shall, should, would.

The identification of verb phrases is composed of five parts:
Vsimple covers the verb itself with only optional leading or trailing
adverbs. Vprep extends Vsimple by a trailing preposition to catch
expressions such as ‘‘bound to” or ‘‘interact with”. Vbe extends
both of the above by allowing any of the matches produced by
the ‘‘beform” stage in front of them and thus captures phrases such
as ‘‘is regulated” or ‘‘are positively regulated by”, Vshown allows a
match of the Shown stage followed by ‘‘to” and a match of Beforms
in front of Vsimple and Vprep. This will tag phrases like ‘‘have been
shown to be phosphorylated”. Finally, Vmodal works like Vshown,
but uses a modal verb from the ‘‘shownForm” stage. It will catch
phrases like ‘‘may be linked to”.

The identification of noun phrases (NP) selects nouns in combi-
nation with adjective modifiers, including coordination of ADJ ele-
ments in front of a sequence of nouns. PGNs are treated as nouns.
NPs do not include determiners (e.g., ‘‘novel orphan receptor
TAK1”). Finally the PPI patterns are identified. They are basically
combinations of the previously identified information, such as
NP_P VP det? NP_P and NP_P VP det? NP of NP_P, where NP_P
is an NP that contains the identified protein.

These construction rules for syntactical patterns lead to the
selection of structures that are similar to 3-CO representations
but produce results with higher precision. Similar structures have
been proposed by Huang et al. [13]. The syntactical patterns apply
the same word order as used in the 3-CO extraction method and in
addition specify better the verb phrases that are accepted for the
extraction of PPIs. The ‘‘shownForm” phrase accounts for the hedg-
ing used by authors and thus increase the recall of the approach. In
the same vein, the use of syntactical patterns denoting nominaliza-
tions improve the recall for the identification of PPIs and follow the
representation VP_NP ‘‘(of | with | between | through | from)” det?
NP_P ‘‘(and | with | within | via | through | by)” det? NP_P, where
VP_NP is the nominalization of the verb form.
2.3. Evaluation

The evaluation was performed using the corpus that has been
provided as for the BioCreAtIve II challenge, protein interaction
pair sub-task 2 (IPS). The participants of this sub-task had to iden-
tify protein interaction pairs from the full-text document. In more
detail, the documents in the training and testing corpus were
annotated with pairs of protein identifiers, where both proteins
of a given pair are known to interact, and the document is known
to deliver the evidence to this interaction. The curators of the cor-
Fig. 1. (Syntactical patterns) The diagram explains the composition of the language
patterns. The verb phrase (VP) is composed of several subcomponents that enable
the identification of modal verbs (Vmodal), forms of to be (Vbe) and common forms
of hedging (Vshown). NP_P is a noun phrase containing a protein mention. For
further details refer to Section 2.
pus did not annotate the mentions of the proteins in the docu-
ments and therefore it is not possible to measure the
performance of the PPI identification methods against individual
mentions of interaction pairs in the text. The other available cor-
pora, i.e. AIMed and BioInfer, are small in comparison to the Bio-
CreAtIve IPS corpus and have been deemed less suitable.
3. Results

Identification of verbs denoting PPIs. In the first step we analyzed
all three available corpora, i.e. AIMed, BioInfer and BioCreAtIve,
and extracted all verbs that cooccur with two mentions of a PGN.
This resulted to the identification of 967 verbs for the BioCreAtIve
corpus, 165 for AIMed and 162 for BioInfer. 90 were shared in all
three corpora. Modal verbs (e.g., do, have) were only considered
if they did not appear in combination with other verb forms. Apart
from the domain-specific verbs (see Section 2), a large list of gen-
eral English verbs were extracted: encode, suggest, use, show, test.
They are part of idiomatic phrases such as ‘‘we have shown that”
or the ‘‘encoded protein‘‘. The first type is covered by our syntacti-
cal patterns if used as part of the textual protein interaction
description.

From the list of NMI verbs 5 were not contained in AIMed
(attach, catalyze, disassemble, modify, overexpress; see Table 6), 5
not in BioInfer (dimerize, down[-]?regulate, repress, substitute,
transactivate) and 3 only in BioCreAtIve (conjugate, multimerize,
up[-]?regulate). This shows that the BioCreAtIve corpus has the
biggest coverage. It is a small surprise that ‘‘up-regulate” is not
more commonly used.

Regarding the verbs categorized as MI only ‘‘phosphorylate” ap-
peared in all three corpora and ‘‘acylate” in two corpora (i.e. not in
AIMed). Four verbs appeared only in the BioCreAtIve corpus (bioti-
nylate, dephosphorylate, methylate, pyruvate). This leads to the re-
sult that MIs are preferably reported in the full-text document
and at a low frequency. A complete Medline analysis has lead to
the result that only a few verbs for MIs (biotinylate, dophosphory-
late, hydroxylate, methylate, phosphorylate, pyruvate) are applied
in conjunction with mentions of PGNs, whereas all verbs for NMIs
are in use.

The following analysis focuses on the BioCreAtIve corpus only,
since it is the largest corpus and the previous figures demonstrate
that it provides the largest coverage of relevant verbs.
3.1. Comparison of NER tagging results

3.1.1. Identification of CIDs from abstracts and from full-text
documents

In our analysis we used two different Protein-taggers: SP-tagger
and BL-tagger. The highest precision was achieved with the SP-tag-
ger on the abstracts (51.4%) and with the BL-tagger on abstracts as
well (72.7%). In this evaluation, we considered only the correct
identification of the matching CID as the correct solution. Precision
was lower, when either one was run in case-insensitive mode
(41.3% and 48.6%, respectively). F-measure was rather low in all
cases (1.8–6.4%). The same approaches applied to full-text docu-
ments showed lower precision (14.8% for SP-tagger and 20.3% for
BL-tagger, not shown), but F-measure was higher for the SynP
extraction for all methods (6.3–6.8%, not shown). This reflects that
a number of PPIs are not reported in the abstract.

In our experiments, we considered the result of the protein-tag-
gers as correct, if the correct CID was contained in the list of attrib-
uted CIDs. The resulting number is similar to the frequency of the
identified named entities in the text and enables better comparison
of results between the different methods (3-CO vs. SynP). Upon
this change, the recall on the abstract text and on the full-text
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increases significantly (as expected) and on the other side, the
precision was lowered to 37.5% and to 44.7% for the case-sensitive
SP-tagger and BL-tagger, respectively.

Identification of CID pairs. When analyzing the full-text docu-
ments (see Table 2) in comparison to their abstracts, we find that
the overall number of identified CID pairs increases (about 10-fold
for all methods) as well as the number of correctly identified CID
pairs (3- to 5-fold). Precision decreases, recall increases and the
F-measure increases to 17.1% and 13.7% for the SP-tagger and the
BL-tagger, respectively. The results show, that the full-text docu-
ments still contain a significant number of binary relations that
make reference to any of the before-mentioned verbs, but that
are not relevant interaction pairs.

The evidence extracted with SynP is a true subset of the evi-
dence from the 3-CO method leading to the result that about 50%
(49.9–58.8%) of the evidence from 3-CO can be confirmed by the
approach using syntactical language patterns. This can be ex-
plained by the fact that the predictions are counts of unique CID
pairs, which again can be represented by a number of instances
in the document. The redundancy in the document counter-bal-
ances lower recall of the SynP methods over the 3-CO methods.
In the next step we investigated into the distribution of the verb
forms that were part of our two approaches.

Identification of CID pairs denoting MIs and NMIs. According to
our categorization, we find the following numbers for events rep-
resenting MIs and NMIs (see Table 3). The most correct predictions
are reported in the set of NMIs (325) and the smallest number in
the set of MIs (23). Altogether, MIs have a small contribution to
all PPIs in the Bio-CreAtIve II corpus. The precision is for both types
of events in the same range (18.5% and 17.2%, respectively). Similar
results are gained when only processing the abstracts (MI: seven
agreements for 18 predictions; NMI: 64 agreements for 241
predictions).

To our surprise, the association of proteins has a significant con-
tribution to the correct identification of relations between proteins.
This result is unexpected, since the association of two proteins
does not give any clues on the underlying relatedness of the pro-
teins, i.e. a relation based on binding, regulatory or transforma-
tional effects.
Table 2
(Processing full-text documents, One-CID) Results for the identification of CID pairs from th
tagger), cs (case-sensitive), ci (case-insensitive), 3-CO (tri-cooccurrence), SynP (syntactica

Predictions Correct predictions

SP-cs, 3-CO 12,771 408
SP-cs, SynP 1539 211
SP-ci, 3-CO 15,823 609
Sp-ci, SynP 2078 358
BL-cs, 3-CO 13,671 479
BL-cs, SynP 1470 239
BL-ci, 3-CO 28,544 659
BL-ci, SynP 3229 367

Table 3
(Processing full-text documents, One-CID, SP-ci, SynP) Predictions from the full-text docum
All findings are categorized according to the category of the verb form that has been use
acronyms see Table 2).

Predictions Correct predictions

All, 3-CO 15,823 609
All, SynP 2,078 358
Associate, 3-CO 1,203 180
Associate, SynP 171 66
MI, 3-CO 1,092 71
MI, SynP 124 23
NMI, 3-CO 14,833 596
NMI, SynP 1,893 325
We further investigated, whether the associated relations have
been confirmed by other types of relations. For this analysis we
used the case-insensitive BL-tagger that generated higher recall
at lower precision than the SP-tagger. From the 64 correct predic-
tions out of 241 total predictions (66 out of 171 for the SP-tagger,
see Table 3) 44 were confirmed by NMI interactions (41 correct out
of 95 total) and by MI interactions (three correct predictions of five
shared predictions). This shows that the authors deliver the scien-
tific evidence to a protein–protein interaction even if the proteins
are linked via the verb ‘‘associate” in the text.

Identifying the predictive capacity of verbs. We now analyzed the
whole set of verb forms used in the corpus to better understand the
distribution of contributions in terms of correct predictions (see
Table 4). All verbs that are mentioned in Section 2 and that are
not listed in Table 4, did not contribute to correct predictions.
Amongst these verbs are the following: upregulate, dissociate, cou-
ple, link, overexpress, repress, inactivate, cleave and acetylate. When
comparing the list of verbs from Table 4 to the proposed verbs
from other authors (see Table 1) then we can identify that the
verbs ‘‘downregulate”, ‘‘upregulate”, ‘‘inactivate” and ‘‘stimulate” do
not play an important role, whereas ‘‘associate” and ‘‘contain” play
an important role for the predictions.

In all our experiments, we found that the integration of nomi-
nalizations lead to a decrease in precision of up to 3% in all cases
(for 3-CO and SynP, for SP-tagger and BL-tagger), but the F-mea-
sure improved up to 2% due to better recall (results not shown).
Only in the case of 3-CO tested on full-text documents, the F-mea-
sure decreased. This is due to the fact, that 3-CO delivered already
a significant portion of recall in the full-text document analysis and
the use of nominalizations further decreased the precision.

Altogether our analysis has lead to a prioritized list of verbs
that are relevant to the identification of modifying and non-mod-
ifying interactions from the scientific literature. The entries in the
list can be used to optimize the performance of an information
extraction solution, i.e. selection of verbs with a high F-measure
to improve the precision/recall ratio of the IE solution and inte-
gration of the best performing verbs to improve the overall cov-
erage of the solution. Certainly, more knowledge about the
subframe categorizations of the listed verbs will help to further
e BioCreAtIve full text corpus for 3-CO and SynP. SP (SwissProt-tagger), BL (BioLexicon-
l language patterns for PPIs).

Precision (%) Recall (%) F-measure (%)

3.2 19.3 5.5
13.7 10.0 11.6

3.8 28.8 6.8
17.2 17.0 17.1

3.5 22.7 6.1
16.3 11.3 13.3

2.3 31.2 4.3
11.4 17.4 13.7

ents from BioCreAtIve II based on the case-insensitive use of the SP-tagger and SynP.
d in the text in conjunction with the mentioned proteins (see Section 2) (for use of

Precision (%) Recall (%) F-measure (%)

3.8 28.8 6.8
17.2 17.0 17.1
15.0 8.5 10.9
38.6 3.1 5.8

6.5 3.4 4.4
18.5 1.1 2.1

4.0 28.2 7.0
17.2 15.4 16.2



Table 4
(Full-text, One-CID, BL-ci, SynP) All verbs that contributed to a correct prediction of related proteins. They are sorted according to their F-measure. The list can be used to tune an
information extraction system for performance (e.g., for precision, recall, speed).

Predictions Correct predictions Precision Recall F-measure

Interact 702 136 19.4 6.4 9.7
Bind 562 112 19.9 5.3 8.4
Associate 180 37 20.6 1.8 3.2
Phosphorylate 116 12 10.3 0.6 1.1
Regulate 179 12 6.7 0.6 1.0
Contain 286 12 4.2 0.6 1.0
Inhibit 130 9 6.9 0.4 0.8
Mediate 136 7 5.1 0.3 0.6
Activate 165 7 4.2 0.3 0.6
Modulate 31 5 16.1 0.2 0.5
Precipitate 31 4 12.9 0.2 0.4
Express 218 4 1.8 0.2 0.3
Promote 42 3 7.1 0.1 0.3
Induce 110 3 2.7 0.1 0.3
Modify 6 2 33.3 0.1 0.2
dephosphorylate 8 2 25.0 0.1 0.2
Complex 15 2 13.3 0.1 0.2
Stimulate 41 2 4.9 0.1 0.2
down-regulate 6 2 33.3 0.1 0.2
Methylate 6 1 16.7 0.0 0.1
Substitute 7 1 14.3 0.0 0.1
Assemble 11 1 9.1 0.0 0.1
Block 30 1 3.3 0.0 0.1
Suppress 40 1 2.5 0.0 0.1

Table 5
(Precision and recall of reported solutions) Precision and recall values reported by the authors of the solutions mentioned in Section 1.1. Saric et al. [3] only discloses the range of
the accuracy of their system (see text).

First authors Date of publication Type of approach Precision (%) Recall (%)

Ono 2001 Regular expressions 94 83–87
Pustejovsky 2001 Language patterns 90 57%
Leroy 2003 Cascaded FSAs 90 NA
Saric 2006 Cascaded FSAs NA NA
Park 2001 CCG 80 48
Friedman 2001 Grammar rules NA NA
Temkin 2003 CFG 70 64
Daresalia 2004 CFG 91 21
Huang 2004 Syntactical patterns 80 80

Table 6
(Overview on the distribution of verbs) All three annotated corpora use full-text documents. In the case of AIMed and BioInfer the protein mentions are annotated in the sentence
reporting on the interaction, in the BioCreAtive corpus, however, the document is delivered in conjunction with the protein ids of the interacting proteins in the document. In the
case of the Medline analysis, first cooccurrences of proteins were identified to filter out the relevant verb between them or as normalization before them.

All verbs AIMed BioInfer BioCreAtive All Medline
Full text Full text Full text Abstracts
PGN mention PGN mention PGN normalization NA
Interactions Interactions Documents NA

Modifying interactions (MI)
Acetylate, acylate, amidate, brominate, biotinylate,

carboxylate, cysteinylate, farnesylate, formylate,
‘‘hydrox[iy]late”, methylate, demethylate,
‘‘myristo?ylate”, ‘‘palmito?ylate”, phosphorylate,
dephosphorylate, pyruvate, nitrosylate, sumoylate,
‘‘ubiquitin(yl)?ate”

Phosphorylate Phosphorylate, acylate Acylate, biotinylate,
dephosphorylate,
methylate,
phosphorylate, pyruvate

Biotinylate,
dophosphorylate,
hydroxylate, methylate,
phosphorylate, pyruvate

Non-modifying interactions (NMI)
Associate, dissociate, assemble, attach, bind, complex,

contact, couple, ‘‘(multi|di)meri[zs]e”, link, interact,
precipitate, regulate, inhibit, activate, ‘‘down[-
]regulate”, express, suppress, ‘‘up[-]regulate”, block,
contain, inactivate, induce, modify, overexpress,
promote, stimulate, substitute, catalyze, cleave,
conjugate, disassemble, discharge, mediate, modulate,
repress, transactivate

All except {attach,
catalyze,
disassemble, modify,
overexpress}

All except {dimerize,
down[-]?regulate,
repress, substitute,
transactivate}

All except {conjugate,
multimerize, up[-
]?regulate}

All
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optimize any IE solution and will give contributions to the event
identification overall.

4. Discussion

In this work we have systematically analyzed the relevance of
different verbs for the identification of PPIs from the scientific lit-
erature. We have gathered the verbs from different resources (e.g.,
scientific publications, annotated corpora) and have estimated the
predictive capacity of individual verbs. We have defined the classes
of modifying interactions containing all verb forms that report on a
chemical transformation of one interaction partner (posttransla-
tional modifications, e.g., methylation, acetylation, phosphoryla-
tion), and non-modifying interactions (e.g., interaction, binding,
regulatory events). The last class is composed of the undefined
interactions (e.g., associations, functions). Much to our surprise
the single entry from the class of undefined interactions (‘‘associ-
ate”) contributed significantly to the correct predictions in our
analysis. A significant portion of the ‘‘association” of protein pairs
could be confirmed by a more informative relation between the
proteins from the same document. It needs to be mentioned that
all statistical figures with regards to the verbs include the assump-
tion that there is an even distribution of false PGN recognitions
over all PPIs.

Friedman et al. [5] proposed a categorization of verbs into
semantic classes for actions, process and other relations. It is more
fine-grained and distinguishes positive regulation (‘‘activate”) from
negative regulation (‘‘inactivate”) and proposes semantic classes
related to bond formation (‘‘createbond”, ‘‘breakbond”) and general
modification actions, reaction actions and others. This approach
shows foresight, but could be too detailed to deliver conclusive re-
sults from information extraction. Temkin and Gilder [4] propose
similar semantic classes. Future experiments will show, which
granularity of semantic classes is most suitable for information
extraction systems.

Our automatic analysis of the BioCreAtIve II corpus confirmed
the top-ranked entries on the list of verbs that have already been
used in different information extraction solutions. The verbs ‘‘phos-
phorylate” and ‘‘dephosphorylate” are the best-ranked protein rela-
tions from the list of MIs that have already been extensively
analyzed by Saric et al. [3]. Other event denoting verbs have been
exploited from a large number of researchers including ‘‘interact”,
‘‘bind”, ‘‘regulate” and ‘‘inhibit”. Another unexpected result is the
finding, that up- and downregulation is used at a low frequency
in conjunction with protein relations. Verbs that are shared
amongst all three corpora but occur at low frequency and that
could be relevant for future analyses are: abolish, affect, disrupt,
increase, translocate and trigger.

The difference in the performance of our protein-taggers is not
very strong, although they apply different techniques for the
extraction of the PGNs and one has been tuned for better recall
(BL-tagger) whereas the other one is optimized for precision (SP-
tagger). This could be due to the fact that full-text documents pro-
vide redundant mentions of protein interaction pairs.

The use of syntactic language patterns is a strong restriction.
The use of other parsing techniques is work in progress. We as-
sume that the ranking of the verbs according to their predictive
capacity will not change when using syntactical parsing tech-
niques, but the precision of the extraction methods will certainly
improve. The interpretation of the results requires good knowledge
of the underlying parsing techniques.

It is possible that a number of verbs have not been considered in
this study, although they are closely related to PGNs and PPIs, if
they are only identified with a low reliability. Since the BioCreAtIve
corpus is already quite large, we would not expect many of them.
Nonetheless, this would be an interesting question to follow up.
Furthermore, it has to be kept in mind that our results most likely
include a unified distribution of false PGN recognitions for all
verbs. This problem could be partly resolved by exploiting the con-
tent of reference databases that contain PPIs and the corresponding
references to Medline abstracts (similar to the BioCreAtIve IPS cor-
pus). Similar approaches in the past have suffered from inconsis-
tencies in the protein interaction databases (unpublished work).

The presented work contributes to the identification of subcat-
egorization frames (ongoing work in the BootStrep project,
www.bootstrep.org). The results help to focus the information
extraction task to a selection of verbs that are part of protein inter-
action events. Certainly more advanced parsing techniques will
contribute to improve the performance of the used approach (work
in progress).

For the ongoing work in the extraction of gene regulatory
events, we will analyze how MI and NMI events contribute to the
event extraction. Furthermore, it has to be kept in mind that PPIs
are events that report on the relation between two and more enti-
ties. Such events are frequently reported in the scientific literature
based on syntactical representations that are more complex than
binary relation representations between two entities and would
even require input from ontological resources to correctly interpret
(and possibly parse) the expressed relation. For example the state-
ment ‘‘cpxA gene increases [. . .] csgA transcription by dephospho-
rylation of CpxR” requires domain knowledge to understand that
only the product of the cpxA gene can induce via PPIs the activa-
tion of cpxR. Future research in the future will give a better under-
standing of the representation of binary and other relations as well
as event representations in the scientific literature and the avail-
ability of more advanced ontologies will support the interpretation
of such representations [28].
5. Conclusions

The semantic classification of verbs remains to be a challenging
task. Our distinction of verbs with regards to their involvement in
MI and NMI is meaningful to biologists, but does not lead to higher
precision in the identification of MIs as expected. Overall protein–
protein interactions are more frequently reported as NMIs than as
MIs in the literature and the most complete set of verbs linked to
NMIs has already been reported by Temkin and Gilder [4]. Individ-
ual verbs for NMIs are well known, e.g., interact, bind, others show
mediocre performance, e.g., activate. The verb ‘‘associate” has a
strong predictive value, but does not denote an interaction,
whereas the verb ‘‘phosphorylate” is the most relevant amongst
all verbs used for MI identification. We expect that the reporting
on MIs will increase in the future if the screening methods for
chemical interactions of proteins will improve.
6. Access to resources

The information extraction pipeline for the PPIs for MIs and
NMIs is accessible via the Whatizit SOAP Web services. The infor-
mation extraction solution described in this publication was used
to extract relations between proteins from Medline. The latest
compilation delivered the following results for the identified rela-
tions: inhibit (71,328), bind (40,407), interact (18,705), regulate
(37,755), phosphorylate (8864), link (8399), complex (1542) and
dissociate (1565).
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