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Abstract

The main objective is to generalize previous results obtained for orthogonal Laurent polynomials and their
application in the context of Stieltjes moment problems to the multipoint case. The measure of orthogonality is
supposed to have support on[0,∞) while the orthogonal rational functions will have poles that are assumed to
be “in the neighborhood of 0 and∞”. In this way orthogonal Laurent polynomials will be a special case obtained
when all the poles are at 0 and∞. We shall introduce the restrictions on the measure and the locations of the poles
gradually and derive recurrence relations, Christoffel–Darboux relations, and the solution of the rational Stieltjes
moment problem under appropriate conditions.
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1. Preliminaries

In [6, Chapter 11]we studied orthogonal rational functions with prescribed poles on the real line and
a measure of orthogonality whose support is also on the real line. Important special cases include a
situation where the measure is supported on a finite interval,[−1,1] say, in which case the poles can be
outside that interval, and another so called Stieltjes situation is obtained when the measure is supported
on the positive real line and the poles are all located on the negative real line. The most obvious choice
in this context is the case of orthogonal Laurent polynomials where all the poles are at 0 or at∞. These
orthogonal Laurent polynomials were extensively studied in the context of the so called strong Stieltjes
moment problem. See[2,14–17,21]and the references given there. When allowing the point at∞ or the
origin to proliferate into more points in[−∞,0] which may be coinciding or not, we obtain multipoint
rational generalizations of the Laurent polynomials. Several aspects were already discussed in papers
like [7–9,11]. We note however that in these papers a pole at∞ was excluded for technical reasons,
thus excluding the Laurent polynomials as a special case. The results concerning quadrature formulas
based on Laurent polynomials discussed in[3–5,12]were generalized to the multipoint case in[10]. In
this paper we give several technical generalizations of the Laurent polynomials to orthogonal rational
functions trying to include the Laurent polynomials as a special case when deriving recurrence relations,
Christoffel–Darboux relations, and rational Stieltjes moment problems.
We start from the most general situations and consider a finite positive measure� on the real lineR

and spaces of rational functions whose poles are in a prescribed set of points{�k}∞k=1 all on theextended
real line R̂ = R ∪ {∞}. This can be seen as a generalization of the Laurent polynomials who have all
their poles in the set{0,∞}. If all the poles are at∞, the ordinary polynomials result as a special case.
We shall be especially interested in the case where the support of� is part of the real half line[0,∞)

and the poles are in[−∞,0]. In [10], we started including the cases where�k = 0 and−∞ as a special
case. However, there wemainly concentrated on Gaussian-type quadrature formulas and multipoint Padé
approximation. In this paper, we shall include the Laurent polynomial case from the beginning and we
shall build up the Stieltjes situation more gradually. This is mainly a technical matter which will be dealt
with systematically in the present paper.
We start out with a sequence{�n}∞n=1 of points in the extended real linêR.
It will be convenient to think of{�n} as being the merging of two subsequences{�j } and{�k}. The

�k are multipoint equivalents of the origin and the�k are the multipoint generalizations of the point at
infinity. Our discussion will cover cases where the�k are chosen alternatingly from the set of�’s or the set
of �’s, but this needs not be the case; any sequence is possible, with or without repetitions. The matching
between�’s, �’s and�’s can be described as follows. Let{p(n)}∞n=1 and{q(n)}∞n=1 be two nondecreasing
sequences of nonnegative integers such thatp(n) + q(n) = n for all n. Thus we have exactly one of the
following two possibilities

p(n) = p(n − 1) + 1 andq(n) = q(n − 1) and then we set�n = �p(n),

q(n) = q(n − 1) + 1 andp(n) = p(n − 1) and then we set�n = �q(n).

We define the factorsrn(z) as follows:

rn(z) =
{
1 if �n = ∞
�n − z if �n �= ∞ , n = 1,2, . . . . (1.1)
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The functionsDn(z) are defined by

Dn(z) = r1(z)r2(z) · · · rn(z), n = 1,2, . . . and D0(z) = 1. (1.2)

Here and in the rest of this paper,�n denotes the space of polynomials of degree at mostn.
The spacesLn, n = 0,1, . . . andL are defined by

Ln =
{

�(z)

Dn(z)
: � ∈ �n

}
, L =

∞⋃
n=0

Ln. (1.3)

The spacesLn have then dimensionn + 1.
Although�0 does not feature in these definitions, it will be convenient to assume�0 = ∞. For example

in the previous definitions, we would not need a separate treatment ofn = 0.
As a special case one may choose to place all poles at∞. This means thatrn(z)=1 for alln=1,2, . . .

. Clearly, in this caseLn = �n, and we are in the polynomial case.
Another familiar casewill appear if we set all�n=0 and all�n=∞. Thismeans thatLn=�−p(n),q(n)=

span{zk : −p(n)�k�q(n)} is a subspace of Laurent polynomials. Since there are only two points used
(0 and∞), it is sometimes referred to as the two-point situation. The order of the introduction of the
points�k = 0 and�k = ∞ may be arbitrary. The special case where 0 and∞ are alternating, i.e.p(n) is
the integer part ofn/2 or of (n + 1)/2, is called the balanced two-point situation.

2. Orthogonal functions

Let � be a positive measure onR such that all functions inL · L = {fg : f, g ∈ L} are absolutely
integrable. Then� is finite and we have an inner product

〈f, g〉 =
∫

R

f g d� (2.1)

inL. Sowe can construct anorthonormalsequence{�n}∞n=0 inL such that�0 ∈ L0 and�n ∈ Ln\Ln−1
for n= 1,2, . . . . Notice that the�n are unique up to constant factors with modulus 1. Since all functions
Dn are real valued onR and� is real, we may normalize the�n such that all�n are real onR.
For convenience we normalize� such that

∫
d� = 1.

We write

�n(z) = Pn(z)

Dn(z)
, Pn(z) = �(n)

n zn + �(n)
n−1z

n−1 + · · · + �(n)
0 . (2.2)

Note that by construction,Pn(�n) �= 0 if �n �= ∞, �(n)
n �= 0 if �n = ∞.

3. Recurrence relation

From now on we assume that the sequence{�n} is regular. This means that

Pn(�n−1) �= 0 if �n−1 �= ∞ and �(n)
n �= 0 if �n−1 = ∞. (3.1)
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We shall use the followingsign normalization:

sgnPn(�n−1) = sgnPn−1(�n−1) if �n−1 �= ∞

sgn�(n)
n = sgn�(n−1)

n−1 if �n−1 = ∞

�(1)
1 >0. (3.2)

Let us now derive a recurrence relation for the functions{�n}.
Theorem 3.1.Given a sequence{p(n)},we associate the spacesLn as in(1.3).For a positive measure
� onR we define the inner product as in(2.1).Suppose the sequence of orthogonal rational functions
{�n} with �n ∈ Ln\Ln−1 and�n ⊥ Ln−1 is regular. Then there exist numbers{Un}, {Vn} and {Wn}
such we have the recurrence(recall the definition ofrn from (1.1))

�n(z) = Unz
	n−1 + Vnrn−1(z)

rn(z)
�n−1(z) + Wn

rn−2(z)

rn(z)
�n−2(z), n = 1,2, . . . (3.3)

with initial conditions

r0 = 1, r−1 = 1; �0 = 1, �−1 = 0; 	0 = 1, 	−1 = 1, (3.4)

where

	n =
{
1 if �n = ∞,

0 if �n �= ∞.
(3.5)

Proof. Consider the function

hn(z) = 1

rn−2(z)
[rn(z)�n(z) − Anz

	n−2�n−1(z)]

= 1

Dn−1(z)

[Pn(z) − Anz
	n−2Pn−1(z)]

rn−2(z)
.

This function will be inLn−1 if

An =
{
Pn(�n−2)/Pn−1(�n−2) if �n−2 �= ∞,

�(n)
n /�(n−1)

n−1 if �n−2 = ∞.

On the other handhn is orthogonal toLn−3 because forf ∈ Ln−3

〈f, hn〉 =
∫

f (x)
rn(x)

rn−2(x)
�n(x)d�(x) − An

∫
f (x)

x	n−2

rn−2(x)
�n−1(x)d�(x) = 0,

since

f (x)
rn(x)

rn−2(x)
∈ Ln−2 and f (x)

x	n−2

rn−2(x)
∈ Ln−2.
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Thus we may writehn as

hn(z) = Bn�n−1(z) + Cn�n−2(z) +
n−3∑
k=0

Dk�k(z) = Bn�n−1(z) + Cn�n−2(z).

Therefore

�n(z) =
[
An

z	n−2

rn(z)
+ Bn

rn−2(z)

rn(z)

]
�n−1(z) + Cn

rn−2(z)

rn(z)
�n−2(z). (3.6)

Since every element in�1 may be written in the formUnz
	n−1 + Vnrn−1(z), the recurrence may also be

written as (3.3). The initial conditions (3.4) are easily verified.�

Note that so farW1 appears with a coefficient zero and hence it may be chosen arbitrarily.
By rewriting the previous recurrence relation in terms of the numeratorsPn of the orthogonal rational

functions, we get immediately

Corollary 3.2. Under the same conditions as in the previous theoremand lettingPn denote the numerator
of the orthogonal functions, i.e., �n = Pn/Dn, we have

Pn(z) = [Unz
	n−1 + Vnrn−1(z)]Pn−1(z) + Wnrn−1(z)rn−2(z)Pn−2(z), n = 1,2, . . . . (3.7)

with the initial conditions

r0 = 1, r−1 = 1; P0 = 1, P−1 = 0; 	0 = 1, 	−1 = 1. (3.8)

4. The coefficientsUn andWn

The coefficientsUn andWn of the recurrence relation have some special properties that we shall prove
in this section.

Theorem 4.1. Let {Un} and{Wn} be the coefficients appearing in the recurrence relation. Then we have
Un >0 f or n = 1,2, . . .

and, provided that(recall the notation of(2.2))

Pn−2(�n−1) �= 0 if �n−1 �= ∞,

�(n−2)
n−2 �= 0 if �n−1 = ∞,

we also have

Wn = −Un/Un−1<0 f or n = 2,3, . . . . (4.1)
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Proof. ForUn, it follows easily from (3.4)–(3.7) that

Un = Pn(�n−1)

Pn−1(�n−1)
if �n−1 �= ∞,

Un = �(n)
n

�(n−1)
n−1

if �n−1 = ∞. (4.2)

The sign normalization (3.2) then immediately implies that

Un >0 for n = 1,2, . . . .

For theWn we proceed as follows. First we establish a relation of the formUnIn + WnJn = 0. Then we
find expressions for the numbersIn andJn. Once these expressions are found, the desired result follows.
First, multiplication of (3.3) by rn(z)

rn−1(z)
�n−2(z) gives

rn(t)

rn−1(t)
�n−2(t)�n(t) = Un

t	n−1

rn−1(t)
�n−2(t)�n−1(t)

+ Vn�n−2(t)�n−1(t) + Wn

rn−2(t)

rn−1(t)
�n−2(t)�n−2(t). (4.3)

Clearly rn(t)
rn−1(t)

�n−2(t) ∈ Ln−1, hence by setting

In =
∫

t	n−1

rn−1(t)
�n−2(t)�n−1(t)d�(t)

and

Jn =
∫

rn−2(t)

rn−1(t)
�n−2(t)�n−2(t)d�(t),

we find after integration of (4.3)

UnIn + WnJn = 0. (4.4)

We may write

t	n−1�n−2(t)

rn−1(t)
= cn�n−1(t) + dn�n−2(t) + · · · (4.5)

and observe thatIn = cn. We now find an expression forcn.
Multiplication of (4.5) byDn−1(t) gives

t	n−1Pn−2(t) = cnPn−1(t) + dnrn−1(t)Pn−2(t) + rn−1(t)rn−2(t)Tn(t), (4.6)

with Tn ∈ �n−3.
For �n−1 �= ∞ we then get

In = cn = Pn−2(�n−1)

Pn−1(�n−1)
(4.7)
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while for �n−1 = ∞ we get

In = cn = �(n−2)
n−2

�(n−1)
n−1

(4.8)

by comparing coefficients oftn−1.
We also have a representation

rn−2(t)

rn−1(t)
�n−2(t) = en�n−1(t) + fn�n−2(t) + · · · , (4.9)

and see thatJn = fn.
Multiplication of (4.9) byDn−1(t) gives

rn−2(t)Pn−2(t) = enPn−1(t) + fnrn−1(t)Pn−2(t) + rn−1(t)rn−2(t)Hn−3(t), (4.10)

with Hn−3 ∈ �n−3. We need to determine the value offn.
We consider the various cases forn = 2,3, . . . .

(1) �n−1 �= ∞.

(i) �n−2 �= �n−1, �n−2 �= ∞.
We get from (4.10)

rn−2(�n−1)Pn−2(�n−1) = enPn−1(�n−1) (4.11)

and

0= rn−2(�n−2)Pn−2(�n−2) = enPn−1(�n−2) + fnrn−1(�n−2)Pn−2(�n−2). (4.12)

Taking into account thatrn−2(�n−1) = −rn−1(�n−2) we find that

Jn = fn = Pn−1(�n−2)Pn−2(�n−1)

Pn−2(�n−2)Pn−1(�n−1)
. (4.13)

It follows from (4.4), (4.7), (4.2), and (4.13) that

Wn = −UnIn

Jn
= − Un

Un−1
, (4.14)

provided thatPn−2(�n−1) �= 0.
(ii) �n−2 = ∞.

We get from (4.10)

Pn−2(�n−1) = enPn−1(�n−1) (4.15)

and

0= en�
(n−1)
n−1 − fn�

(n−2)
n−2 (4.16)

(recall thatrn−1(t) = �n−1 − t andrn−2(t) = 1).
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Hence

Jn = fn = Pn−2(�n−1)�
(n−1)
n−1

Pn−1(�n−1)�
(n−2)
n−2

(4.17)

and consequently

Wn = −UnIn

Jn
= − Un

Un−1
, (4.18)

providedPn−2(�n−1) �= 0.
(iii) �n−2 = �n−1.

From the definition ofJn and because the�n are normalized, we getJn = 1. SinceJn = fn we
therefore have

Jn = fn = 1. (4.19)

Consequently (since in this caseIn = 1/Un−1)

Wn = −UnIn

Jn
= − Un

Un−1
. (4.20)

(2) �n−1 = ∞.

(i) �n−2 �= ∞.
We get from (4.10)

−�(n−2)
n−2 = en�

(n−1)
n−1 (4.21)

and

0= rn−2(�n−2)Pn−2(�n−2) = enPn−1(�n−2) + fnPn−2(�n−2) (4.22)

(recall thatrn−1(t) = 1, rn−2(t) = �n−2 − t).
From this follows that

Jn = fn = �(n−2)
n−2 Pn−1(�n−2)

�(n−1)
n−1 Pn−2(�n−2)

. (4.23)

It follows from (4.4), (4.8), (4.23) that

Wn = −UnIn

Jn
= −Un/Un−1 (4.24)

provided�(n−2)
n−2 �= 0.

(ii) �n−2 = ∞.
We immediately see from (4.9) thatgn = 0. In (4.10)Hn−3 ∈ �n−3, and hencefn = 1 . Thus

Jn = fn = 1 (4.25)
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and consequently

Wn = UnIn

Jn
= − Un

Un−1
. (4.26)

Altogether we have found thatWn = −Un/Un−1 for n = 2,3, . . . , providedPn−2(�n−1) �= 0 when
�n−1 �= ∞, or that�(n−2)

n−2 �= 0 when�n−1 = ∞. �

5. Christoffel–Darboux formula

In this section we establish the Christoffel–Darboux formula.

Theorem 5.1. Assuming in addition to regularity of all�n(z) thatPn(z) for all n satisfy the following
condition(recall (2.2)):

Pn−2(�n−1) �= 0 if �n−1 �= ∞,

�(n−2)
n−2 �= 0 if �n−1 = ∞, (5.1)

and using our previously introduced notation,we have the following Christoffel–Darboux formula(recall
(1.1))

rn(x)�n(x)rn−1(y)�n−1(y) − rn(y)�n(y)rn−1(x)�n−1(x) = Un(x − y)

n−1∑
k=0

�k(x)�k(y). (5.2)

The confluent form whenx = y is

rn(x)�n(x)[rn−1(x)�n−1(x)]′ − [rn(x)�n(x)]′rn−1(x)�n−1(x) = −Un

n−1∑
k=0

�k(x)
2. (5.3)

Proof. We recall from (4.1) that in this situation we haveWn = −Un/Un−1<0 for n = 2,3, . . . .
The recurrence relation (3.3) may be written as

rn(x)�n(x) = Unx
	n−1�n−1(x) + Vnrn−1(x)�n−1(x) + Wnrn−2(x)�n−2(x). (5.4)

Similarly we have

rn(y)�n(y) = Uny
	n−1�n−1(y) + Vnrn−1(y)�n−1(y) + Wnrn−2(y)�n−2(y). (5.5)

Multiplying (5.4) byrn−1(y)�n−1(y) and (5.5) byrn−1(x)�n−1(x) and subtracting, we get


n = −Wn
n−1 + Un[x	n−1rn−1(y) − y	n−1rn−1(x)]�n−1(x)�n−1(y), (5.6)

where


n = rn(x)�n(x)rn−1(y)�n−1(y) − rn(y)�n(y)rn−1(x)�n−1(x). (5.7)
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For �n−1 �= ∞ we have

x	n−1rn−1(y) − y	n−1rn−1(x) = (�n−1 − y) − (�n − x) = x − y,

and for�n−1 = ∞ we have

x	n−1rn−1(y) − y	n−1rn−1(x) = x − y.

Thus we have obtained


n = Un(x − y)�n−1(x)�n−1(y) − Wn
n−1. (5.8)

Taking into account (4.1) we may write


k

Uk

− 
k−1

Uk−1
= (x − y)�k−1(x)�k−1(y).

Summation yields


n

Un

− 
1

U1
= (x − y)

n∑
k=2

�k−1(x)�k−1(y) = (x − y)

n−1∑
k=1

�k(x)�k(y). (5.9)

Also note that
1 = r1(x)�1(x) − r1(y)�1(y) (recall (3.4)) andr1(t)�1(t) = U1t + V1.
Thus
1/U1=(x−y)=(x−y)�0(x)�0(y), so that we have obtained theChristoffel–Darboux formula

(5.2).
Differentiating with respect toy and settingy = x further yields the confluent formula (5.3).�

This implies an interlacing property of the zeros of the orthogonal functions.

Corollary 5.2. Two consecutive orthogonal functions can have no common zeros. Moreover the zeros of
�n are simple. In other words if�n(x) = 0, then�n+1(x)�n−1(x)�

′
n(x) �= 0.

Proof. This follows immediately from the confluent Christoffel–Darboux formula (5.3). Ifx is a zero
of �n, hence offn = rn�n, then it follows from (5.3) thatfn−1(x)f

′
n(x) �= 0. Thus�n−1(x) �= 0 and

�′
n(x) �= 0. �

6. Quadrature formulas

Here we assume that we have the same conditions as in Section 5, i.e., we have regularity of the{�n}
and condition (5.1) holds. Moreover, we assume that�n hasn simple distinct zeros in the interior of the
smallest interval containing supp�.
To estimate the integral

I�(f ) =
∫

f (x)d�(x),
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we choose a quadrature formula of the form

In(f ) =
n∑

k=1

�kf (xk).

The {�k}nk=1 are called the coefficients or weights and{xk}nk=1 are called the nodes of the quadrature
formula. These weights and nodes could be chosen so as to have exactness in a space of the form
Ln · Lr = {f = g · h : g ∈ Ln, g ∈ Lr} with r�0. This means that we want the nodes to be such that
I�(f )=In(f ) for all f in this space. Clearly, whenwe choosennodes{xk}nk=1 in supp(�), then theweights
can be chosen such that the quadrature formula is exact for allf ∈ Ln−1 (note that dimLn−1=n). This
is aninterpolatory quadrature formulasince it is obtained by integrating the unique functionR ∈ Ln−1
that interpolates in the points{(xk, f (xk))}nk=1.
We shall now choose the nodes to get exactness in a larger spaceLn ·Lr of dimensionn + r + 1>n

where we shall maker as large as possible. It is well known that in the polynomial case, we can obtain
exactness by the Gauss formulas, i.e., formulas where then nodes are chosen as the zeros of thenth
orthogonal polynomial. Then it is possible to choose the weights such that the quadrature formula is exact
in �2n−1 = �n · �n−1.
Note that in generalLn · Ln−1 �= L2n−1, except under certain restrictive conditions. However, this

is an indication that the maximalr that can be attained allowing exactness inLn · Lr is n − 1, which is
indeed the case as shown next.
We have the following result.

Theorem6.1. LetIn(f )=∑n
k=1 �kf (xk)beaquadrature formulawithnodes{xk}nk=1 ⊂ supp(�)\{�j }∞j=1.

ThenIn(f ) is exact inLn · Lr with r�0 if and only if

(1) In(f ) is exact inLn−1.
(2) 〈Rn, g〉 = 0,∀g ∈ Lr whereRn(x) =∏n

j=1 (x − xj )/Dn(x) ∈ Ln.

Proof. If the quadrature formula is exact inLn · Lr , then it is obviously exact inLn−1. It also implies
that〈Rn,�k〉 =∑n

j=1 �jRn(xj )�k(xj ) = 0 for k = 0,1, . . . , r which means thatRn ⊥ Lr .
For the opposite implication, we have to prove that the quadrature formula is exact for allf ∈ Ln ·Lr .

Suppose'j ∈ Ln−1 is defined by

'j (xk) = �jk, 1�j, k�n.

Then the interpolating function fromLn−1 for the nodes{xj }nj=1 is given byfn(x)=∑n
j=1 'j (x)f (xj ).

Thus, the interpolation error isen = f − fn. Obviouslyen ∈ Ln · Lr . Because it vanishes in all points
{xj }nj=1, it should have the form

en(x) = P(x)

Dn(x)Dr(x)

with P(x) ∈ �n+r a polynomial vanishing in all{xj }nj=1. Thus we may write

en(x) = Rn(x)fr(x), fr ∈ Lr .

Because
∫
en(x)d�(x)= 〈Rn, fr〉 = 0 by (2), the integration error will be zero and hence the quadrature

formula is exact inLn · Lr . �
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Note that exactness inLn · Ln is impossible, because this would imply that〈�n,�n〉 =∑n
k=1 �k�2

n(xk) = 0. Thus, the maximal space of exactness one might hope for isLn · Ln−1. This
can indeed be reached as is shown by the following result.

Corollary 6.2. Let x1, . . . , xn be the n distinct zeros of the nth orthogonal rational function�n. Then
there exist positive weights�1, . . . , �n such that

In(f ) =
n∑

k=1

Akf (xk) = I�(f ), ∀f ∈ Ln · Ln−1.

Proof. If thexj are the zeros of�n, then condition (2) of Theorem 6.1 is satisfied forr =n−1. Choosing
the weights to make the quadrature formula of interpolatory type satisfies condition (1) of that theorem.
Thus we have exactness inLn · Ln−1.

It only remains to show that all�k >0. We therefore set'j ∈ Ln−1 such that

'j (xk) = �j,k, 1�j, k�n.

Clearly'2j ∈ Ln−1 ·Ln−1 ⊂ Ln ·Ln−1. Hence, since the quadrature formula is exact in the latter space,
we get

0<I�('
2
j ) =

n∑
k=1

�k'
2
j (xk) = �j , j = 1, . . . , n.

This proves the positivity of the weights.�

We shall refer to an exact formula inLn · Ln−1 as arational Gauss formulafor the measure�. Note
that the formula also depends on both the poles{�k}, {�k}, and on the nesting of the spaces, i.e., on the
sequence{p(n)}∞k=1.

Theorem 6.3. The weights of the rational Gauss formulas are given by(recall (1.1))

�j = Un

rn−1(xj )rn(xj )�′
n(xj )�n−1(xj )

= − Un+1

rn+1(xj )rn(xj )�n+1(xj )�
′
n(xj )

= 1∑n−1
k=0 �2

k(xj )
.

Proof. We recall from[10, Theorem 3.4]that these weights are given by

�j = 1

�′
n(xj )

∫
�n(x)

x − xj
d�(x). (6.1)

Using the Christoffel–Darboux formula, we can derive the alternative expressions given above. Indeed,
from (5.2) withy = xj we get

�n−1(xj )rn(x)�n(x)rn−1(xj ) = Un(x − xj )

n−1∑
k=0

�k(x)�k(xj ).
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Hence, because of orthonormality

rn−1(xj )�n−1(xj )

Un

∫
rn(x)�n(x)

x − xj
d�(x) = 1.

From the definition ofrn and orthogonality, it follows that∫
rn(x)�n(x)

x − xj
d�(x) = rn(xj )

∫
�n(x)

x − xj
d�(x).

Thus ∫
�n(x)

x − xj
d�(x) = Un

rn−1(xj )rn(xj )�n−1(xj )
,

so that, using (6.1)

�j = Un

rn−1(xj )rn(xj )�′
n(xj )�n−1(xj )

. (6.2)

Next, we use the Christoffel–Darboux relation (5.2) withn replaced byn+1 and get as before, setting
y = xj that

−rn+1(xj )�n+1(xj )rn(x)�n(x) = Un+1(x − xj )

n∑
k=0

�k(x)�k(xj ),

yielding

−rn+1(xj )�n+1(xj )

Un+1

∫
rn(x)�n(x)

x − xj
d�(x) = 1.

Thus we now obtain from (6.1)

�j = − Un+1

rn+1(xj )rn(xj )�n+1(xj )�
′
n(xj )

. (6.3)

By our assumptions on the sequence{�n}∞n=0 and Corollary 5.2 we get

�n+1(xj )�n−1(xj )�
′
n(xj ) �= 0, 1�j �n, n�1.

So both formulas (6.2) and (6.3) are meaningful.
Finally, we use the confluent form of the Christoffel–Darboux formula (5.3) forx = xj and we get

[rn(x)�n(x)]′x=xj
rn−1(xj )�n−1(xj ) = Un

n−1∑
k=0

�2
k(xj )

or equivalently

rn(xj )�
′
n(xj )rn−1(xj )�n−1(xj ) = Un

n−1∑
k=0

�2
k(xj ).

Thus, by (6.2) the third expression for the weights is obtained.�
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7. Tridiagonal matrix and eigenvalue problem

In the polynomial case, the nodes and weights of the Gauss quadrature formula can be obtained via the
solution of an eigenvalue problem for the tridiagonal Jacobi matrix. A generalization can be obtained in
the case of rational Gauss formulas. We therefore write the recurrence relation, assuming regularity, as

z	n�n(z) = dn−1rn−1(z)�n−1(z) + cnrn(z)�n(z) + dnrn+1(z)�n+1(z),

wherecn=−Vn+1/Un+1 anddn=1/Un+1.Writing this out forn=0,1, . . . , using the following notation:

J = tridiag

(
d0, d1, . . .

c0, c1, . . .

d0, d1, . . .

)
,

R = diag(r0(z), r1(z), . . .),
L = diag(z	0, z	1, . . .),


 =

�0

�1
...


 ,

we get(JR − L)
 = 0. Truncating this to the firstn + 1 rows and columns, we get the finite analog

(JnRn − Ln)
n = −dnrn+1(z)�n+1(z)en,

with en = [0, . . . ,0,1]T the(n+ 1)th unit vector. If in this relation, we replacezby a zero� of �n+1, we
find that the right-hand side vanishes and hence the zeros are found as the solutions for� of

[JnRn(�) − Ln(�)]
n(�) = 0.

Since this is not in the familiar form of a (generalized) eigenvalue problem, we will make the equation
more explicit. To this end defineI 	

n =diag(	0, 	1, . . . , 	n). It is amatrix indicating where the infinite poles
are. The “complementary” matrixI1−	

n = In − I
	
n indicates where the finite poles are. To representRn

we introduce the matrixZn = diag(�0, �1, . . . , �n) with �k = �k if �k is finite and�k = 1 otherwise. Then
the previous relation becomes

{[JnZn − I1−	
n ] − �[JnI1−	

n + I 	
n]}
n = 0.

This is the generalized eigenvalue problem to solve. Each eigenvalue is a node of the quadrature formula
and ifEn = [e0,n, . . . , en,n]T is the corresponding normalized eigenvector (ET

nEn = 1), then the weight
for that node is given bye20,n/c0,0 just like in the polynomial case.

8. Stieltjes situation

We now assume the following:

supp� ⊂ [0,∞) and �n ∈ [−∞,0] for all n. (8.1)

We shall call this theStieltjes situation.

Theorem 8.1. In the Stieltjes situation, the numeratorPn of the nth orthogonal function�n has n simple
zeros in(0,∞).
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Proof. Let t1, . . . , t� denote the zeros ofPn(t) of odd order in(0,∞), each counted only once.We prove
that�<n will lead to a contradiction. If�<n, then the function (recall (1.2))

F(t) = (t − t1) . . . (t − t�)

Dn−1(t)

belongs toLn−1, hence
∫
F(t)�n(t)d�(t) = 0. On the other hand

F(t)�n(t) = (t − t1) . . . (t − t�)Pn(t)

[Dn−1(t)]2rn(t)
.

Here(t − t1) . . . (t − t�)Pn(t) has constant sign in(−∞,∞), while rn(t) has constant sign in(0,∞).
It follows that

∫
F(t)�n(t)d�(t) �= 0, which contradicts the previous conclusion that∫

F(t)�n(t)d�(t) = 0. �

Note thatwe did not use regularity or condition(5.1). However, it follows from the obtained properties
of the zeros that allPn(t) have constant sign in(−∞,0] and that the degree ofPn(z) is exactlyn. In
particularPn(�k) �= 0 for all n andk. Consequentlyall �n(z) are automatically regular and satisfy
condition(5.1). Moreover we have an interlacing property of the zeros of two consecutive orthogonal
functions.

Corollary 8.2. Suppose that we are in the Stieltjes case. Then�n has only simple zeros in(0,∞) and
the zeros of�n and�n−1 interlace.

Proof. That the zerosare simple and in(0,∞) (in fact theyare in the interior of the convexhull of supp(�))
is a classical result since the numerator polynomialsPn form an orthogonal polynomial sequence with
respect to a varying measure. Since all the�k are in[−∞,0], none of the zeros ofPn can coincide with
any of the�k.
Set fn = rn�n. Since rn(t) has no zeros in(0,∞), the result will follow from the confluent

Christoffel–Darboux formula (5.3) which states thatfn(x)f
′
n−1(x) − fn−1(x)f

′
n(x)<0 is true for all

x >0. Indeed, supposexj andxj+1 are twoconsecutive zerosofPn, henceoffn.Thenf ′
n(xj )f

′
n(xj+1)<0

since the zeros are simple. On the other hand, the confluent Christoffel–Darboux formula then implies that
fn−1(xj )f

′
n(xj )>0andfn−1(xj+1)f

′
n(xj+1)>0, fromwhichweconclude thatfn−1(xj )fn−1(xj+1)<0.

In other wordsfn−1 or equivalently�n−1 will have at least one zero betweenxj andxj+1 by Rolle’s
theorem. Because this holds for every pair of consecutive zeros of�n, there can be at most (hence exactly
one) zero of�n−1 between two consecutive zeros of�n. �

9. Balanced Stieltjes situation

We shall now consider a special case of the Stieltjes situation,the balanced Stieltjes situation:

p(2m + 1)>p(2m), q(2m)>q(2m − 1). (9.1)

This means that

�2m = �m, �2m+1 = �m+1. (9.2)
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We further assume that

−∞��j < �k �0 for all j, k. (9.3)

In this case,�n−1 �= �n−2 and at most one of them can be infinite. Therefore{rn−2, rn−1} forms a basis
for �1 the polynomials of degree at most 1. So we may then write the recurrence relation in the form

�n(z) = Qnrn−2(z) + Rnrn−1(z)

rn(z)
�n−1(z) + Wn

rn−2(z)

rn(z)
�n−2(z). (9.4)

For theseQn andRn we have the following properties.

Theorem9.1. In the balancedStieltjes situation,assume that the recurrence relation takes the form(9.4).
Then we have
When�2m−2 = �m−1 �= ∞:

Q2m <0, R2m >0, (9.5)

Q2m−1>0, R2m−1<0. (9.6)

When�2m−2 = �m−1 = ∞:

Q2m >0, R2m >0, (9.7)

Q2m−1<0, R2m−1<0. (9.8)

Proof. Multiplying by Dn(z) and writing out forn even and odd we get

P2m(z) = [Q2mr2m−2(z) + R2m(�m − z)]P2m−1(z)

+ W2mr2m−2(z)(�m − z)P2m−2(z), (9.9)

P2m+1(z) = [Q2m+1(�m − z) + R2m+1r2m(z)]P2m(z)

+ W2m+1r2m(z)(�m − z)P2m−1(z), (9.10)

P2m−1(z) = [Q2m−1(�m−1 − z) + R2m−1r2m−2(z)]P2m−2(z)

+ W2m−1r2m−2(z)(�m−1 − z)P2m−3(z). (9.11)

By substituting appropriate values we find when�2m−2 = �m−1 �= ∞:

Q2m = P2m(�m)

(�m−1 − �m)P2m−1(�m)
, (9.12)

R2m = P2m(�m−1)

(�m − �m−1)P2m−1(�m−1)
, (9.13)

Q2m−1 = P2m−1(�m−1)

(�m−1 − �m−1)P2m−2(�m−1)
, (9.14)

R2m−1 = P2m−1(�m−1)

(�m−1 − �m−1)P2m−2(�m−1)
. (9.15)
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Similarly when�2m−2 = �m−1 = ∞ we get

Q2m = P2m(�m)

P2m−1(�m)
, (9.16)

R2m = − �(2m)
2m

�(2m−1)
2m−1

, (9.17)

Q2m−1 = −�(2m−1)
2m−1

�(2m−2)
2m−2

, (9.18)

R2m−1 = P2m−1(�m−1)

P2m−2(�m−1)
. (9.19)

We know thatPn(t) has constant sign in(−∞,0), andPn(t) andPn−1(t) has opposite sign in(−∞,0)
if and only if sgn�(n)

n = sgn�(n−1)
n−1 . Taking into account the sign normalization (3.2) we find the sign of

Qn andRn as indicated in the theorem.�

10. Associated functions

We make the same assumptions as in Section 8, i.e., we assume the Stieltjes situation. We define the
associated functions�n by

�n(z) =
∫ ∞

0

�n(t) − �n(z)

t − z
d�(t), n = 0,1,2, . . . (10.1)

Note that (6.1) and (10.1) imply that the weights of the rational Gauss quadrature can also be written as
�j = �n(xj )/�′

n(xj ).
Recall that until now, the coefficientW1 was arbitrary. We now fix it to beW1 = −U1 to get the

following.

Theorem 10.1.Suppose we are in the Stieltjes situation and defineW1 = −U1. Then the associated
functions satisfy(recall (1.1))

�n(z) = Unz
	n−1 + Vnrn−1(z)

rn(z)
�n−1(z) + Wn

rn−2(z)

rn(z)
�n−2(z), n = 1,2,3, . . . (10.2)

with initial conditions

r0 = 1, r−1 = 1; 	−1 = 1, 	0 = 1; �−1 = −1, �0 = 0. (10.3)

Proof. Clearly�0 = 0.
If �1 �= ∞, then�1(z) = U1z+V1

�1−z
by (3.3) and we easily find

�1(z) = �1U1 + V1

�1 − z
c0,1 wherec0,1 =

∫ ∞

0

d�(t)

�1 − t
. (10.4)

If �1 = ∞, then�1(z) = U1z + V1, so that�1 = U1. Moreoverc0,1 = 1.
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A standard argument (consisting of plugging the recurrence relation for the�n into the definition of
the�n) now shows that{�n} satisfies the recurrence

�n(z) = Unz
	n−1 + Vnrn−1(z)

rn(z)
�n−1(z) + Wn

rn−2(z)

rn(z)
�n−2(z), n = 2,3, . . . (10.5)

with initial conditions

r0 = 1, r−1 = 1; 	0 = 1; �0 = 0 (10.6)

and�1 as described above.
Note that since

∫
�1(t)d�(t) = 0, we get for�1 �= ∞

0=
∫ ∞

0

U1t + V1

�1 − t
d�(t) = −U1 + (U1�1 + V1)c0,1.

If we want the recurrence for�n to hold forn=1, we should define�−1. Still assuming�1 �= ∞, it should
follow from (10.4) and (10.5)–(10.6) that

�−1W1 = c0,1(�1U1 + V1) = U1. (10.7)

If �1 = ∞, this relation becomes

�−1W1 = �1 = U1. (10.8)

SinceW1 has been an arbitrary constant so far, we can now use it to fix

�−1 = −1, (10.9)

from which follows in both cases (�1 infinite or not) thatW1 = −U1. Thus by choosingW1 = −U1, we
can take�−1 = −1 as initial condition and the recurrence (10.2) is valid forn = 1,2, . . . .
Note that, becauseU1>0,

W1<0 (10.10)

so that it is line with all the otherWk being negative. Also relation (4.1) holds forn = 1,2, . . . if we set
U0 = 1.
If we assume that the conditions of Section 9 are satisfied, i.e., weconsider the balanced Stieltjes case,

it then follows immediately that we can rewrite the recurrence relation in terms of the coefficients{Qn}
and{Rn}. We give the result without further proof.�

Theorem 10.2.Suppose we are in the balanced Stieltjes situation. Then the associated functions{�n}
satisfy the recurrence(recall (1.1))

�n(z) = Qnrn−2(z) + Rnrn−1(z)

rn(z)
�n−1(z) + Wn

rn−2(z)

rn(z)
�n−2(z), n = 1,2, . . . (10.11)

�0 = 0, �−1 = −1. (10.12)
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If

an(z) = Wn

rn−2(z)

rn(z)
, n = 1,2, . . . (10.13)

bn(z) = Qnrn−2(z) + Rnrn−1(z)

rn(z)
, n = 1,2, . . . (10.14)

with

r0 = 1, r−1 = 1, (10.15)

then{�n} and{�n} satisfy[
�n(z) �n−1(z)

�n(z) �n−1(z)

]
=
[

�n−1(z) �n−2(z)

�n−1(z) �n−2(z)

] [
bn(z) 1
an(z) 0

]
, n = 1,2, . . . (10.16)

[
�0(z) �−1(z)

�0(z) �−1(z)

]
=
[
0 −1
1 0

]
. (10.17)

The approximants of the continued fraction defined by(10.16)–(10.17)are given by the quotients
�n(z)/�n(z).

11. The separated balanced Stieltjes situation

We shall now assume all the conditions in Section 9 satisfied, and in addition the following: There exist
numbers� and� such that

�j ��< ���k for all j, k. (11.1)

We call this theseparated balanced Stieltjes situation.
We shall consider the behavior of the approximants�n(z)/�n(z) of the continued fraction

(10.16)–(10.17). We shall in particular considerz ∈ (�, �).
For convenience we introduce the expression

�n(t) = Qnrn−2(t) + Rnrn−1(t). (11.2)

We then have

bn(z) = �n(z)

rn(z)
. (11.3)

We recall that�2m+1 �= ∞ for allm(see (9.2)) and consequentlyr2m+1(t)=�m+1− t ; hencer2m+1(t)>0
for t ∈ (�, �). For �2m �= ∞, r2m(t)<0 for t ∈ (�, �), while for �2m = ∞, we haver2m(t) = 1, thus
r2m(t)>0.
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Combining these results with (9.5)–(9.6) we obtain

Theorem 11.1.Suppose we are in the separated balanced Stieltjes situation and suppose thebn(z),
defined in(10.14),are denoted as in(11.3).Then we have

• For �2m−2 = �m−1 �= ∞
�2m(t)>0 f or t ∈ (�, �), (11.4)

�2m−1(t)>0 f or t ∈ (�, �). (11.5)

• For �2m−2 = �m−1 = ∞
�2m(t)>0 f or t ∈ (�, �), (11.6)

�2m−1(t)<0 f or t ∈ (�, �). (11.7)

12. Monotonicity of even and odd approximants

Wemake the same assumptions in this section as in Section 11, i.e., we consider the separated balanced
Stieltjes situation.

Theorem 12.1.Suppose we are in the separated balanced Stieltjes situation. Then the sequence
{�2m(t)/�2m(t)} is decreasing on(�, �),while the sequence{�2m+1(t)/�2m+1(t)} is increasing on(�, �).
Proof. By taking determinants in (10.16)–(10.17) we get some standard formulas for approximants of
continued fractions[18], namely

�n(z)

�n(z)
− �n−1(z)

�n−1(z)
= (−1)n

a1(z) · · · an(z)
�n(z)�n−1(z)

(12.1)

and further standard methods yield

�n(z)

�n(z)
− �n−2(z)

�n−2(z)
= �n−1(z)

�n(z)
bn(z)

[
�n−1(z)

�n−1(z)
− �n−2(z)

�n−2(z)

]
. (12.2)

Herean andbn are defined in (10.13) and (10.14), respectively. Combining these formulas and taking
into account (10.13)–(10.17) we obtain

�n(z)

�n(z)
− �n−2(z)

�n−2(z)
= (−1)n+1bn(z)W1 · · ·Wn−1

�n(z)�n−2(z)rn−1(z)rn−2(z)
(12.3)

and thus

�n(z)

�n(z)
− �n−2(z)

�n−2(z)
= (−1)n+1�n(z)W1 · · ·Wn−1[Dn−2(z)]2

rn−2(z)Pn(z)Pn−2(z)
. (12.4)
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Written out this gives

�2m(z)

�2m(z)
− �2m−2(z)

�2m−2(z)
= −�2m(z)W1 · · ·W2m−1[D2m−2(z)]2

r2m−2(z)P2m(z)P2m−2(z)
, (12.5)

�2m+1(z)

�2m+1(z)
− �2m−1(z)

�2m−1(z)
= �2m+1(z)W1 · · ·W2m[D2m−1(z)]2

r2m−1(z)P2m+1(z)P2m−1(z)
. (12.6)

In the following lett ∈ (�, �).

• Let �2m−2 = �m−1 �= ∞.
Thenr2m−2(t)<0, and�2m(t)>0 by (11.4). Furthermore it follows from the sign normalizations

(3.2) thatP2m(t) andP2m−2(t) have the same sign. Since allWk are negative, we conclude that

�2m(t)

�2m(t)
− �2m−2(t)

�2m−2(t)
<0. (12.7)

• Let �2m−2 = �m−1 = ∞.
Thenr2m−2(t)>0, and�2m(t)>0 by (11.6). It now follows from the sign normalizations (3.2) that

P2m(t) andP2m−2(t) have opposite sign. Again we find that

�2m(t)

�2m(t)
− �2m−2(t)

�2m−2(t)
<0. (12.8)

• Let �2m = �m �= ∞.
We haver2m−1(t)>0, and�2m+1(t)>0 by (11.5). The sign normalizations (3.2) implies that

P2m+1(t) andP2m−1(t) have the same sign. Hence

�2m+1(t)

�2m+1(t)
− �2m−1(t)

�2m−1(t)
>0. (12.9)

• Let �2m = �m = ∞.
Again r2m−1(t)>0, while�2m+1(t)<0 by (11.7). The sign normalizations (3.2) now implies that

P2m+1(t) andP2m−1(t) have opposite sign. Thus we again find that

�2m+1(t)

�2m+1(t)
− �2m−1(t)

�2m−1(t)
>0. (12.10)

Altogether we conclude that the theorem is correct.�

A further argument shows that these even and odd sequences will converge.

Theorem 12.2.Suppose we are in the separated balanced Stieltjes situation. Then there exist functions
F0 andF∞, analytic outside[0,∞), such that for allz ∈ C\[0,∞)

lim
m→∞

�2m(z)

�2m(z)
= F∞(z) and lim

m→∞
�2m+1(z)

�2m+1(z)
= F0(z).
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Proof. We return to formula (12.1) which may be written as

�n(z)

�n(z)
− �n−1(z)

�n−1(z)
= (−1)n

W1 · · ·Wn[Dn−1(z)]2
rn−1(z)Pn(z)Pn−1(z)

. (12.11)

Thus

�2m(z)

�2m(z)
− �2m−1(z)

�2m−1(z)
= W1 · · ·W2m[D2m−1(z)]2

(�m − z)P2m(z)P2m−1(z)
(12.12)

and

�2m+1(z)

�2m+1(z)
− �2m(z)

�2m(z)
= −W1 · · ·W2m+1[D2m(z)]2

r2m(z)P2m+1(z)P2m(z)
. (12.13)

Let againt ∈ (�, �). Since allWk are negative and sgnP2m(t)= sgnP2m−1(t) by (3.2), we conclude that

�2m(t)

�2m(t)
− �2m−1(t)

�2m−1(t)
>0. (12.14)

Furthermore, if�2m = �m �= ∞, thenr2m(t)<0 and sgnP2m+1(t) = sgnP2m(t), and if�2m = �m = ∞,
thenr2m(t)>0 and sgnP2m+1(t) = −sgnP2m(t). Hence in both cases

�2m+1(t)

�2m+1(t)
− �2m(t)

�2m(t)
<0. (12.15)

Let j, k be arbitrary indices and letm>max(j, k). Then by (12.7)–(12.10) and (12.14)–(12.15) we have

�2j (t)

�2j (t)
>

�2m(t)

�2m(t)
>

�2m−1(t)

�2m−1(t)
>

�2k−1(t)

�2k−1(t)
(12.16)

and

�2j+1(t)

�2j+1(t)
<

�2m+1(t)

�2m+1(t)
<

�2m(t)

�2m(t)
<

�2k(t)

�2k(t)
. (12.17)

In particular the sequence{�2m(t)/�2m(t)} is bounded below and the sequence{�2m+1(t)/�2m+1(t)} is
bounded above. Consequently there exist functionsF0(t) andF∞(t) on (�, �) such that

lim
m→∞

�2m(t)

�2m(t)
= F∞(t) and lim

m→∞
�2m+1(t)

�2m+1(t)
= F0(t), ∀t ∈ (�, �). (12.18)

Furthermore, by arguments of normal families, it follows that{�2m(z)/�2m(z)} and{�2m+1(z)/�2m+1(z)}
converge to analytic functionsF∞(z) andF0(z) outside[0,∞), extending the functions (12.18).�

13. Stieltjes transforms

Suppose we have a linear functionalM defined onL ·L. If {�n}∞n=0 is a basis forL, then themoments

ck,l = M[�k�l], k, l = 0,1, . . . (13.1)
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are well defined. Note the symmetryck,l = cl,k. A positive measure� with infinite support in[0,∞) is
said to solve the (rational) Stieltjes moment problem onL · L if it satisfies

ck,l =
∫ ∞

0
�k(x)�l(x)d�(x), ∀k, l = 0,1, . . .

and it solves the (rational) Stieltjes moment problem onL if

ck,0 =
∫ ∞

0
�k(x)d�(x), ∀k = 0,1, . . . .

We now place our previous results in the above context, i.e., we assume that the Stieltjes moment problem
onL·L has at least one solution and that themeasure� considered in previous sections is such a solution.
Define its Stieltjes transform by

S(z, �) =
∫ ∞

0

d�(t)

z − t
. (13.2)

Since we are in the Stieltjes situation, the orthogonal rational function�n shall haven simple zeros in
(0,∞) and we can define a rational Gauss quadrature formula for�.

Theorem 13.1.Suppose that� is a solution of the rational Stieltjes moment problem inL ·L. Suppose
also that�n is the discrete measure that represents the n-point rational Gauss quadrature formula that is
exact onLn · Ln−1. Then we have

S(z, �n) = �n(z)

�n(z)
. (13.3)

Furthermore(recall the definition ofrn from (1.1))

�n(z)

�n(z)
− S(z, �) = 1

rn(z)�n(z)
2

∫ ∞

0

�n(t)
2rn(t)d�(t)

t − z
. (13.4)

Proof. Formula (13.3) follows from the definition of�n. The integrand of (10.1) belongs toLn and
therefore the rational Gauss quadrature is exact. Since the nodes are zeros of�n, formula (13.3) is
immediate.
Again using the definition of�n(z) we then get

�n(z)

�n(z)
− S(z, �) =

∫ ∞

0

�n(t)d�(t)

�n(z)(t − z)
. (13.5)

For �n �= ∞ we have

1= rn(t)

rn(z)
+ t − z

rn(z)

and hence∫ ∞

0

�n(t)d�(t)

�n(z)(t − z)
=
∫ ∞

0

rn(t)�n(t)d�(t)

rn(z)�n(z)(t − z)
+ 1

rn(z)�n(z)

∫ ∞

0
�n(t)d�(t), (13.6)
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from which follows∫ ∞

0

�n(t)d�(t)

�n(z)(t − z)
= 1

rn(z)�n(z)

∫ ∞

0

rn(t)�n(t)

t − z
d�(t), (13.7)

by orthogonality. For�n = ∞, the formula obviously holds.
Furthermore we may write∫ ∞

0

[
�n(t)

2

�n(z)
2 − �n(t)

�n(z)

]
rn(t)

rn(z)

d�(t)

t − z

= 1

rn(z)�n(z)
2

∫ ∞

0

[�n(t) − �n(z)]rn(t)�n(t)

t − z
d�(t). (13.8)

The function

fz(t) = [�n(t) − �n(z)]rn(t)
t − z

belongs toLn−1, hence the integral in (13.8) vanishes. Thus∫ ∞

0

�n(t)rn(t)d�(t)

�n(z)rn(z)(t − z)
=
∫ ∞

0

�n(t)
2rn(t)d�(t)

�n(z)
2rn(z)(t − z)

. (13.9)

Combining (13.5), (13.7), and (13.9) we obtain (13.4).�

We now make the same assumptions as in Sections 11 and 12, i.e., we consider the separated balanced
Stieltjes situation.

Theorem 13.2.Suppose we are in the separated balanced Stieltjes situation. Then for any measure that
solves the rational Stieltjes moment problem onL · L, we have

�2m+1(x)

�2m+1(x)
<S(x, �)<

�2m(x)

�2m(x)
f or x ∈ (�, �). (13.10)

Proof. Let x ∈ (�, �). The integral∫ ∞

0

�n(t)
2rn(t)d�(t)

t − x

is negative if�n �= ∞ and positive if�n = ∞. The factorr2m(x) is negative if�2m �= ∞, positive if
�2m = ∞. The factorr2m+1(x) is positive. Thus we find that

�2m(x)

�2m(x)
− S(x, �)>0, (13.11)

�2m+1(x)

�2m+1(x)
− S(x, �)<0. (13.12)

This completes the proof.�
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In particular, if the sequence{�n(x)/�n(x)} converges forx ∈ (�, �), thenS(x, �) and henceS(z, �)
for z /∈ [0,∞) is unique, which implies that� is unique.
Thus: if{�n(x)/�n(x)} converges forx ∈ (�, �), then the inner product inL has a unique representing

measure�.
By a standard compactness argument, the functionsF0(z) andF∞(z) are Stieltjes transforms of mea-

sures�(0) and�(∞) representing the functionalM onL.

14. A canonical basis

Wecontinue to study the separated balanced Stieltjes situation, and consider the basis{�0,�1, . . . ,�n}
for Ln defined as follows (withrn as in (1.1)):

�0 = 1, (14.1)

�2m(z) = r1(z)r3(z) · · · r2m−1(z)

(z/�2 − 1)(z/�4 − 1) · · · (z/�2m − 1)
, (14.2)

�2m+1(z) = (z/�2 − 1)(z/�4 − 1) · · · (z/�2m − 1)

r1(z)r3(z) · · · r2m+1(z)
. (14.3)

We may also write (withDn as in (1.2))

�n = Tn

Dn

, (14.4)

where

T2m+1(z) = 1

�2m
[r2(z)r4(z) · · · r2m(z)]2, (14.5)

T2m(z) = �2m[r1(z)r3(z) · · · r2m−1(z)]2 (14.6)

with

�2m =
∏

�2k �=∞;k�m

(−�2k). (14.7)

Note that�2m is positive.
The orthonormal function�n has an expansion according to{�k} with leading coefficientvn:

�n = vn�n + · · · . (14.8)

This implies (recall�n = Pn/Dn)

Pn(z) = vnTn(z) + rn(z)[· · ·]. (14.9)

Thus if �n �= ∞, we have

Pn(�n) = vnTn(�n), (14.10)
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while if �2m = ∞, we have

�(2m)
2m = v2m�2m, (14.11)

(the leading coefficient ofT2m being�2m).
In order to derive a condition under which the rational Stieltjes moment problem is determinate, i.e.,

has a unique solution, we shall analyse the behavior of the difference

�n(z)

�n(z)
− �n−2(z)

�n−2(z)
.

It follows from (12.3) that we may write

�n(z)

�n(z)
− �n−2(z)

�n−2(z)
= 
n(x)

�n(z)�n−2(z)
, (14.12)

where


n(z) = (−1)n+1bn(z)W1 · · ·Wn−1

rn−1(z)rn−2(z)
. (14.13)

We want to obtain lower bounds for|
n(t)| for t ∈ (�, �) in terms of the coefficientsvn. This will be our
aim in this section and the next one.
Taking into account the equalityWk = −Uk/Uk−1 obtained in Section 4, we find


n(z) = Un−1[Qnrn−2(z) + Rnrn−1(z)]
rn(z)rn−1(z)rn−2(z)

. (14.14)

Let t ∈ (�, �). It follows from (9.5)–(9.8) that sgnQnrn−2(t) = sgnRnrn−1(t). Consequently

|
n(t)|� |RnUn−1|
|rn(t)rn−2(t)| . (14.15)

The rest of this section is devoted to finding expressions forRnUn−1. From (4.2), (9.13), (9.15), (14.10),
(14.11), it follows that we may writeRnUn−1 in terms ofvn andvn−2 in the following way:

• When�2m−2 �= ∞, �2m �= ∞:

R2m+1U2m = P2m+1(�2m−1)P2m(�2m−1)

r2m(�2m−1)P2m(�2m−1)P2m−1(�2m−1)

= T2m+1(�2m+1)

T2m−1(�2m−1)r2m(�2m−1)
· P2m+1(�2m−1)

P2m+1(�2m+1)
· v2m+1

v2m−1
, (14.16)

R2mU2m−1 = P2m(�2m−2)P2m−1(�2m−2)

r2m−1(�2m−2)P2m−1(�2m−2)P2m−2(�2m−2)

= T2m(�2m)

T2m−2(�2m−2)r2m−1(�2m−2)
· P2m(�2m−2)

P2m(�2m)
· v2m

v2m−2
, (14.17)
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• When�2m−2 = ∞, �2m = ∞:

R2m+1U2m = P2m+1(�2m−1)P2m(�2m−1)

P2m(�2m−1)P2m−1(�2m−1)

= T2m+1(�2m+1)

T2m−1(�2m−1)
· P2m(�2m−1)

P2m+1(�2m+1)
· v2m+1

v2m−1
, (14.18)

R2mU2m−1 = − �(2m)
2m �(2m−1)

2m−1

�(2m−1)
2m−1 �(2m−2)

2m−2

= − �2m
�2m−2

· v2m

v2m−2
= − v2m

v2m−2
, (14.19)

since in this case�2m = �2m−2.
• When�2m−2 �= ∞, �2m = ∞:

R2m+1U2m = P2m+1(�2m−1)P2m(�2m−1)

P2m(�2m−1)P2m−1(�2m−1)

= T2m+1(�2m+1)

T2m−1(�2m−1)
· P2m+1(�2m−1)

P2m+1(�2m+1)
· v2m+1

v2m−1
. (14.20)

ForR2mU2m−1 we obtain in this case a more complicated expression.
We write (14.9) in more detail as (recall thatr2m(z) = 1):

P2m(z) = v2mT2m(z) + w2mT2m−1(z)

+ u2mr2m−1(z)T2m−2(z) + r2m−1(z)r2m−2(z)[· · ·]. (14.21)

We find that

P2m(�2m−2) = v2mT2m(�2m−2) + u2mr2m−1(�2m−2)T2m−2(�2m−2). (14.22)

Writing

Tn(z) =
n∑

k=0

t
(n)
k zk, (14.23)

we find by comparing coefficients of the terms withz2m−1 in (14.21):

�(2m)
2m−1 = v2mt

(2m)
2m−1 − u2m�2m−2. (14.24)

Here we made use of the facts that degT2m−1�2m − 2, t (2m−2)
2m−2 = �2m−2 and the degree of the term

between square brackets in (14.21) is at most 2m − 4.
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Substituting from (14.24) into (14.22) and using (4.2), (9.13) we find

R2mU2m−1 = P2m(�2m−2)P2m−1(�2m−2)

r2m−1(�2m−2)P2m−1(�2m−2)P2m−2(�2m−2)

= v2mT2m(�2m−2) + u2mr2m−1(�2m−2)T2m−2(�2m−2)

r2m−1(�2m−2)T2m−2(�2m−2)v2m−2
(14.25)

and further

R2mU2m−1 = T2m(�2m−2)

T2m−2(�2m−2)r2m−1(�2m−2)
· v2m

v2m−2
+ v2mt

(2m)
2m−1 − �(2m)

2m−1

�2m−2v2m−2
. (14.26)

Taking into account (14.6), we write this as

R2mU2m−1 = r2m−1(�2m−2)
v2m

v2m−2
+ v2mt

(2m)
2m−1 − �(2m)

2m−1

�2m−2v2m−2
, (14.27)

since�2m = �2m−2 in this case.
• Note that we have not considered the situation�2m−2 = ∞, �2m �= ∞.

15. Monotonicity of the interpolation points

Westill consider theseparatedbalancedStieltjes situation,with thecanonical basis andderivedconcepts
introduced in Section 14.
In addition, we assume the following monotonicity property:

�k+1��k, �k+1��k for all k. (15.1)

We may call this themonotone separated balanced Stieltjes situation.
We shall obtain lower bounds for the expression
n(t) whent ∈ (�, �) in terms of quotientsvm/vm−2.

More precisely, we prove:

Theorem 15.1.Suppose we are in the monotone separated balanced Stieltjes situation. Then there is a
positive constant K such that, with vn as defined in(14.9),

|
n(t)|� 1

K

vn

vn−2
, n = 2,3, . . . (15.2)

for all t ∈ (�, �).

Proof. We start by noting that|Pn(t)| tends to∞ as t tends to−∞, and thatP ′
n(t) has no zeros in

(−∞,0) because of the properties of the zeros ofPn(t). Consequently|Pn(t)| decreases ast increases in
(−∞,0).
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In the following we assume thatt ∈ (�, �).

• Let �2m �= ∞, �2m−2 �= ∞.
From (14.5), (14.15), (14.16), we conclude that

|
2m+1(t)|� �2m−2[Bm(�m+1)]2|P2m+1(�m)||v2m+1|
�2m(�m+1 − t)(�m − t)[Bm−1(�m)]2(�m − �m)|P2m+1(�m+1)||v2m−1|

(15.3)

with Bk(t)= (�1− t) · · · (�k − t). Since|P2m+1(t)| is decreasing in(−∞,0) and�m��m+1, it follows
that|P2m+1(�m)|� |P2m+1(�m+1)|. Since�m+1 − �k ��m − �k and�k − t < � − �, we find

|
2m+1(t)|� �2m−2(�m − �m)|v2m+1|
�2m(� − �)2|v2m−1|

. (15.4)

Furthermore�2m−2/�2m = −1/�m, and∣∣∣∣�m − �m+1

−�m

∣∣∣∣=
∣∣∣∣�m − �m+1

�m

∣∣∣∣= 1− |�m+1|
|�m| �1− |�|

|�| = |�| − |�|
|�| . (15.5)

Consequently

|
2m+1(t)|� 1

(� − �)|�| ·
∣∣∣∣v2m+1

v2m−1

∣∣∣∣ . (15.6)

From (14.6), (14.15), (14.17), we get

|
2m(t)|� �2m[Am(�m)]2|P2m(�m−1)||v2m|
�2m−2(t − �m)(t − �m−1)[Am−1(�m−1)]2(�m − �m−1)|P2m(�m)||v2m−2|

(15.7)

with

Ak(t) = (�1 − t) · · · (�k − t). (15.8)

Heret − �m−1��m − �m−1 andt − �m <2|�m|, while �2m/�2m−2 = −�m = |�m|. Thus

|
2m(t)|� [Am(�m)]2|P2m(�m−1)||v2m|
2[Am(�m−1)]2|P2m(�m)||v2m−2|

. (15.9)

To handle the expression in (15.9), we introduce the function

�2m(t) = P2m(t)

[Am(t)]2
. (15.10)

We find

�′
2m(t) = �2m(t)

[Am(t)]3
(15.11)

with

�2m(t) = P ′
2m(t)Am(t) − 2P2m(t)A

′
m(t). (15.12)

Since the leading coefficients of the two terms in (15.12) both equal(−1)m2m�(2m)
2m , it follows that

�2m(t) is a polynomial of degree at most 3m − 2.
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Let tk andtk+1 be consecutive zeros ofP2m(t). ThenP ′
2m(tk) andP

′
2m(tk+1) have opposite signs, while

Am(t) has constant sign in(0,∞). Consequently,�2m(t) has a zero in(tk, tk+1). This accounts for at
least 2m − 1 zeros.
Next, consider the intervals(�k, �k+1), k=1, . . . , m−1.Am(t) has a simple zero at each of these points,
andA′

m(�k) andA
′
m(�k+1) have opposite sign.P2m(t) has constant sign in(−∞,0). Consequently,

�2m(t) has at least one zero in(�k, �k+1). This accounts for at leastm − 1 zeros.
Thus all the zeros of�2m(t) are accounted for. It follows that�2m(t) is monotone fort < �1. Since
|�2m(t)| tends to∞ ast tends to�1, we conclude that|�2m(t)| is increasing in(−∞, �1).
We may write (15.9) as

|
2m(t)|� 1

2
· |�2m(�m−1)|

|�2m(�m)|
· |v2m|
|v2m−2| . (15.13)

Because of (15.1) and the fact that|�2m(t)| is increasing, we conclude that

|
2m(t)|� 1

2

∣∣∣∣ v2m

v2m−2

∣∣∣∣ . (15.14)

• Next, let�2m−2 = ∞, and�2m = ∞.
We find that

|
2m+1(t)|� [Bm(�m+1)]2�2m−2|P2m+1(�m)||v2m+1|
(�m+1 − t)(�m − t)�2m[Bm−1(�m)]2|P2m+1(�m+1)||v2m−1|

, (15.15)

with

Bl(t) = r2(t)r4(t) · · · r2l(t), (15.16)

where each termr2k(t) is either of the formr2k(t) = �k − t or r2k(t) = 1. In both cases|r2k(�m+1)|�
|r2k(�m)| because of (15.1). Furthermore�k − t < � − � and�2m−2 = �2m−1 since�2m = ∞. Finally,
P2m+1(�m)�P2m+1(�m+1). Consequently

|
2m+1(t)|� 1

(� − �)2

∣∣∣∣v2m+1

v2m−1

∣∣∣∣ . (15.17)

Similarly

|
2m(t)|� |v2m|
|r2m(t)r2m−2(t)||v2m−2| . (15.18)

Sincer2m(t) = r2m−2(t) = 1, this gives

|
2m(t)|�
∣∣∣∣ v2m

v2m−2

∣∣∣∣ . (15.19)

• Finally let �2m = ∞ and�2m−2 �= ∞.
We have

|
2m+1(t)|� [Bm(�m+1)]2�2m−2|P2m+1(�m)||v2m+1|
�2m(�m+1 − t)(�m − t)[Bm−1(�m)]2|P2m+1(�m+1)||v2m−1|

(15.20)
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with Bl(t) as in (15.16). Again|r2k(�m+1)|� |r2k(�m)|, �2m = �2m−2, |P2m+1(�m)|> |P2m+1(�m+1)|,
r2m(t) = 1, �k − t < � − �. Thus

|
2m+1(t)|� 1

(−�)2

∣∣∣∣v2m+1

v2m−1

∣∣∣∣ . (15.21)

We also have

|
2m(t)|� |R2mU2m−1|
|r2m(t)r2m−2(t)| = |R2mU2m−1|

(t − �m−1)
. (15.22)

Recall formula (14.27) forR2mU2m−1. Note that−t
(2m)
2m−1 equals the sum of the zeros ofT2m(t)/�2m,

i.e.,t (2m)
2m−1=−2(�1+· · · �n)/�2m, so thatt (2m)

2m−1>0. Further recall thatv2m=�(2m)
2m , so that−�(2m)

2m−1/v2m

equals the sum of the zeros ofP2m(t). Thus v2m and �(2m)
2m−1 have opposite signs. It follows that

v2mt
(2m)
2m−1 − �(2m)

2m−1 is positive ifv2m is positive, and negative ifv2m is negative. Consequently (since

r2m−1(�2m−2) = �m − �m−1), r2m−1(�2m−2)v2m andv2mt
(2m)
2m−1 − �(2m)

2m−1 have the same sign. Hence

|R2mU2m−1|�(�m − �m−1)

∣∣∣∣ v2m

v2m−2

∣∣∣∣ . (15.23)

Combining this with (15.22) we get

|
2m(t)|� �m − �m−1

(t − �m−1)

∣∣∣∣ v2m

v2m−2

∣∣∣∣ . (15.24)

Since�m − �m−1> t − �m−1, this finally gives

|
2m(t)|�
∣∣∣∣ v2m

v2m−2

∣∣∣∣ . (15.25)

• Note that because of (15.1) the case�2m �= ∞, �2m−2 = ∞ cannot occur.

From (15.6), (15.14), (15.17), (15.19), (15.21), (15.22), we conclude that there exists a constantK such
that (15.2) holds for allt ∈ (�, �) and alln�2. �

16. Unique representation

We are now able to prove uniqueness.

Theorem 16.1.Suppose we are in the monotone separated balanced Stieltjes situation. Assume

lim
n→∞

∣∣∣∣ vn

vn−2

∣∣∣∣
1/2

= ∞. (16.1)

Then the rational Stieltjes moment problem onL · L is determinate.
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Proof. Recall from (14.12) that


n(z) =
[

�n(z)

�n(z)
− �n−2(z)

�n−2(z)

]
�n(z)�n−2(z), (16.2)

and from (15.2) that∣∣∣∣ vn

vn−2

∣∣∣∣ �K|
n(t)| for t ∈ (�, �). (16.3)

Assume that

∞∑
m=1

∣∣∣∣ v2m

v2m−2

∣∣∣∣
1/2

= ∞.

Then

∞∑
m=1

|
2m(t)|1/2 = ∞ for t ∈ (�, �).

The boundedness and monotonicity results in Section 12 imply convergence of

∞∑
m=1

[
�2m−2(t)

�2m−2(t)
− �2m(t)

�2m(t)

]
.

Thus by the Schwarz inequality we conclude{ ∞∑
m=1

[
�2m−2(t)

�2m−2(t)
− �2m(t)

�2m(t)

]}{ ∞∑
m=1

|�2m(t)�2m−2(t)|
}

= ∞. (16.4)

Similarly, if
∑∞

m=1|v2m+1/v2m−1| = ∞, then{ ∞∑
m=1

[
�2m+1(t)

�2m+1(t)
− �2m−1(t)

�2m−1(t)

]}{ ∞∑
m=1

|�2m+1(t)�2m−1(t)|
}

= ∞ (16.5)

for t ∈ (�, �). From this we conclude (again applying the Schwarz inequality to
∑ |�2m(t)�2m−2(t)| or∑ |�2m+1(t)�2m−1(t)|) that if

∑∞
n=2|vn/vn−2|1/2 = ∞, then at least one of

∞∑
m=0

|�2m(t)|2 = ∞ or
∞∑

m=0

|�2m+1(t)|2 = ∞

holds for allt ∈ (�, �). Thus

∞∑
n=0

|�n(t)|2 = ∞ for all t ∈ (�, �).



A. Bultheel et al. / Journal of Computational and Applied Mathematics 179 (2005) 121–155 153

Let � be an arbitrary measure representing the functionalM onL · L. By (13.5) we have

�n(z)

�n(z)
− S(z, �) = 1

�n(z)

∫ ∞

0

�n(t)

t − z
d�(t). (16.6)

Let x ∈ (�, �). Then the functiont �→ (t − x)−1 is square integrable with respect to�. We observe
from (16.6) that its Fourier coefficient with respect to the system{�n} is [�n(x)/�n(x) − S(x, �)]�n(x).
Hence by Bessel’s inequality

∞∑
n=0

[
�n(x)

�n(x)
− S(x, �)

]2
�n(x)

2<∞. (16.7)

Now assume that
∑∞

n=2 |vn/vn−2|1/2 = ∞. It follows from the considerations above that∑∞
m=0 |�2m(t)|2=∞or

∑∞
m=0 |�2m+1(t)|2=∞ for all t ∈ (�, �).Assumefirst that

∑∞
m=0 |�2m(t)|2=∞.

Then a subsequence of[�2m(x)/�2m(x)−S(x, �)]2 tends to zero by (16.7), and hence by themonotonicity
of {�2m(x)/�2m(x)} we have

lim
m→∞

�2m(x)

�2m(x)
= S(x, �) for x ∈ (�, �). (16.8)

Similarly, if
∑∞

m=0 |�2m+1(t)|2 = ∞, then

lim
m→∞

�2m+1(x)

�2m+1(x)
= S(x, �) for x ∈ (�, �). (16.9)

In both cases,all representing measures onL · L have the same Stieltjes transform on(�, �), hence in
C\[0,∞). Consequently,the functional has a unique representing measure onL ·L if (16.1)holds. �

From this, Carleman-type conditions on the “moments”
∫∞
0 �n(t)

2 d�(t) can be deduced. We have

Theorem 16.2.Suppose we are in the monotone separated balanced Stieltjes situation. Let the moments
cn,n = ∫∞

0 �2
n(t)d�(t) be defined as in(13.1).Then the rational Stieltjes moment problem inL · L is

determinate if

∞∑
n=0

1

(cn,n)
1/2n = ∞. (16.10)

Proof. This proof of[7, Theorem 6.2]can be used without any change.

Note that when�n = 0 and�n = −∞ for all n, then�2m(z) = zm and�2m+1(z) = z−(m+1). If we set

cn =
∫ ∞

0
tn d�(t), n = 0,±1,±2, . . . , (16.11)

thenc2m,2m = c2m andc2m−1,2m−1 = c−2m. Condition (16.10) may thus be written as

∞∑
m=1

1

(c−2m)
1

4m−2

+
∞∑

m=0

1

(c2m)
1
4m

= ∞.
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The orthogonal rational functions become the orthogonal Laurent polynomials. The rational Stieltjes
moment problem onL ·L becomes the strong Stieltjes moment problem. Hence we recover a result that
is essentially in[1] and which can also be found in[13,19,20]. �

Corollary 16.3. Define the momentscn, n = 0,±1,±2, . . . as in(16.11).Then, if at least one of

∞∑
m=1

1

(c−2m)
1

4m−2

= ∞ or

∞∑
m=0

1

(c2m)
1
4m

= ∞

holds, then the strong Stieltjes moment problem is determinate.
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