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Abstract

The main objective is to generalize previous results obtained for orthogonal Laurent polynomials and their
application in the context of Stielties moment problems to the multipoint case. The measure of orthogonality is
supposed to have support €& co) while the orthogonal rational functions will have poles that are assumed to
be “in the neighborhood of 0 angb”. In this way orthogonal Laurent polynomials will be a special case obtained
when all the poles are at 0 and. We shall introduce the restrictions on the measure and the locations of the poles
gradually and derive recurrence relations, Christoffel-Darboux relations, and the solution of the rational Stieltjes
moment problem under appropriate conditions.
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1. Preliminaries

In [6, Chapter 11jve studied orthogonal rational functions with prescribed poles on the real line and
a measure of orthogonality whose support is also on the real line. Important special cases include a
situation where the measure is supported on a finite intgrvdl, 1] say, in which case the poles can be
outside that interval, and another so called Stieltjes situation is obtained when the measure is supported
on the positive real line and the poles are all located on the negative real line. The most obvious choice
in this context is the case of orthogonal Laurent polynomials where all the poles are at&orhése
orthogonal Laurent polynomials were extensively studied in the context of the so called strong Stieltjes
moment problem. Sg¢@,14-17,21]and the references given there. When allowing the point atr the
origin to proliferate into more points oo, 0] which may be coinciding or not, we obtain multipoint
rational generalizations of the Laurent polynomials. Several aspects were already discussed in papers
like [7-9,11] We note however that in these papers a polecaivas excluded for technical reasons,
thus excluding the Laurent polynomials as a special case. The results concerning quadrature formulas
based on Laurent polynomials discusseBiib,12]were generalized to the multipoint casd1@]. In
this paper we give several technical generalizations of the Laurent polynomials to orthogonal rational
functions trying to include the Laurent polynomials as a special case when deriving recurrence relations,
Christoffel-Darboux relations, and rational Stielties moment problems.

We start from the most general situations and consider a finite positive measarthe real lineR
and spaces of rational functions whose poles are in a prescribed set of{igjfits all on theextended
real line R = R U {oo}. This can be seen as a generalization of the Laurent polynomials who have all
their poles in the s€0, oo}. If all the poles are ato, the ordinary polynomials result as a special case.
We shall be especially interested in the case where the suppplisgiart of the real half ling0, co)
and the poles are in-o0, 0]. In [10], we started including the cases whége= 0 and—oo as a special
case. However, there we mainly concentrated on Gaussian-type quadrature formulas and multipoint Padé
approximation. In this paper, we shall include the Laurent polynomial case from the beginning and we
shall build up the Stieltjes situation more gradually. This is mainly a technical matter which will be dealt
with systematically in the present paper.

We start out with a sequen¢g, } °2 ; of points in the extended real lirfe

It will be convenient to think ofi{,} as being the merging of two subsequenpgg and{f,}. The
o, are multipoint equivalents of the origin and tigare the multipoint generalizations of the point at
infinity. Our discussion will cover cases where thare chosen alternatingly from the setdsfor the set
of p’s, but this needs not be the case; any sequence is possible, with or without repetitions. The matching
between’s, «’s and’s can be described as follows. Ligi(n)}7° ; and{q(n)};° ; be two nondecreasing
sequences of nonnegative integers such gliat + ¢ (n) = n for all n. Thus we have exactly one of the
following two possibilities

p(n)=pn—-1)+1 andg(n)=q(m —1) and then we sel, = o,@),
gn)=qmn -1 +1 andp(n)=pm—1) and then we sel, = f,,)-

We define the factors, (z) as follows:

rn(z>={} =00 12 .. (1.1)

{p—z If{,#00"
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The functionsD,, (z) are defined by
D,(2)=r1(2)r2(2)---ry(z), n=12, ... and Dg(z)=1. (1.2)

Here and in the rest of this papér, denotes the space of polynomials of degree at most
The space¥’,,,n =0, 1, ... andZ are defined by

g,,:{ ) :neﬂn}, 7= % (1.3)
n=0

Dy (2)

The spacew’,, have then dimensiom+ 1.

Although(y does not feature in these definitions, it will be convenient to asgygmec. For example
in the previous definitions, we would not need a separate treatmentdf.

As a special case one may choose to place all poles dhis meansthat,(z)=1foralln=1,2, ...

. Clearly, in this case?,, = I1,,, and we are in the polynomial case.

Another familiar case will appear if we set all=0 and allg, =oo. This meanstha¥’, =A_ ) g(n) =
sparizk : —p(n)<k<q(n)} is a subspace of Laurent polynomials. Since there are only two points used
(0 andoo), it is sometimes referred to as the two-point situation. The order of the introduction of the
pointse; = 0 andp; = oo may be arbitrary. The special case where 0 andre alternating, i.ep(n) is
the integer part of /2 or of (n + 1)/2, is called the balanced two-point situation.

2. Orthogonal functions

Let u be a positive measure dhsuch that all functions i - ¥ = {fg : f, g € &} are absolutely
integrable. Then is finite and we have an inner product

(f.g) = fR Fzdu 2.1)

in . So we can construct amthonormalsequencéyp, } - ; in ¢ suchthatpy € Zpandyp, € Z,\<L,-1
forn=1,2,....Notice that thep, are unique up to constant factors with modulus 1. Since all functions
D, are real valued oft andy is real, we may normalize thg, such that all,, are real orR.

For convenience we normalizesuch that/ du = 1.

We write

Py (z)

D, ) n(2) =ty 2+ 242 to (2.2)

0, (2) =

Note that by constructior?, (¢,) # 0if ¢, # oo, ui” # 0if ¢, = cc.

3. Recurrence relation

From now on we assume that the sequefagg is regular. This means that

Po(ly-1) #0 if {a7#00 and w” #0 if {1 =o0. (3.1)
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We shall use the followingign normalization

Sgnpn (én—l) = SgnPnfl(Cn—l) if Cn—l 7& oo
1)

sgnu(? = sgnp' 7" if ¢, g = 00
uP > 0. (3.2)

Let us now derive a recurrence relation for the functiopy.

Theorem 3.1. Given a sequenci(n)}, we associate the spacgs, as in(1.3).For a positive measure

u on R we define the inner product as (8.1). Suppose the sequence of orthogonal rational functions
{p,} with ¢, € ¥,\¥,—1ande, L ¥,_1is regular. Then there exist numbdi&,}, {V,} and {W,}
such we have the recurren@ecall the definition of,, from (1.1))

0,(2) = Uyz'n=1 + Vyr,—1(2) 0,_1(2) + an
rn(2) rn(2)

0,_2(z), n=L12,... (3.3)

with initial conditions

ro=1ro1=1 ¢@o=1 ¢ 1=0, =1 7 ,=1 (3.4)
where

L )1 if §y =00,

n=lo 025 (35

Proof. Consider the function

1 N
hn(2) = [rn ()@, (2) — Apz’"29, _1(2)]
rn—Z(Z)

_ 1 [Pn(z) — Apz’m—2Py_1(2)]
~ Dy_1(2) rn—2(2) '

This function will be in&,,_1 if

A — { Py({y—2)/ Pu—1(p—2) i {5 # 00,

1 .
w P if {_p = o0.

On the other hand,, is orthogonal to#,,_3 because foif € ¥,_3

. n x) x"/n—Z _
(fihu)= [ f(x) ¢p(x)du(x) — A, | f(x) ¢p_1(x)du(x) =0,
rn—2(x) rp—2(x)
since
Fom g and f) e 2y

rn—2(x) rn—2(x)
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Thus we may writé:,, as

n—3
hn(2) = Bu@y_1(2) + Ca@p_2(2) + Y Dkgy(2) = Bupy_1(2) + Cupp_2(2).
k=0
Therefore
Tn—
on(2) = [An &7 B, r”‘Z(Z)} o1+ C2D . (3.6)
7 (2) 7 (2) 7n(2)

Since every element il may be written in the forn¥/,,z’»-1 4+ V,,r,_1(z), the recurrence may also be
written as (3.3). The initial conditions (3.4) are easily verified]

Note that so faW; appears with a coefficient zero and hence it may be chosen arbitrarily.
By rewriting the previous recurrence relation in terms of the numerd@pos the orthogonal rational
functions, we get immediately

Corollary 3.2. Under the same conditions as in the previous theorem and |etidig@note the numerator
of the orthogonal functions.e., ¢, = P,/D,, we have

P,(2) = [Unzy"_l + Virn—1()1Pu—12) + Wprn—1(Qrn—2(x) Ph—2(z), n=12,.... (37)
with the initial conditions

ro=1 r_1=1 Pp=1 P_1=0; y3=1 y_1=1 (3.8)

4. The coefficientslU,, and W,,

The coefficientd/,, andW, of the recurrence relation have some special properties that we shall prove
in this section.

Theorem 4.1. Let{U, } and{W,} be the coefficients appearing in the recurrence relation. Then we have
U,>0 forn=12,...

and, provided that(recall the notation 0f2.2))
Py2(ly-1) #0 if {1 # 00,
me ) #0 if (=00,

we also have

W,=-U,/U,_1<0 forn=23,.... 4.1)
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Proof. ForU,, it follows easily from (3.4)—(3.7) that

Pn(Cn—l) .
U, =—20222 f ¢, 4 # o0,
"Gy ot
um
U, = (” if ¢,_1=o00. (4.2)
n—1)
'unfl

The sign normalization (3.2) then immediately implies that
U,>0 forn=12,....

For theW,, we proceed as follows. First we establish a relation of the foyh, + W,,J,, = 0. Then we
find expressions for the numbeisandJ,. Once these expressions are found, the desired result follows.

First, multiplication of (3.3) by:"»%- ¢, _,(z) gives

) D0t = Un— (1)1 (1)
o1 (t)(/)n 2) ¢y a1 ()(Pn 2U)Pp—1
+ Vn(pn—Z(t)(/)n—l(t) + W fn- 22 ;(pn Z(I)(pn Z(I) (43)
Clearly 050, _5(1) € £, 1, hence by setting
t'yn—l
In :/ (Pn—Z(t)(Pn—l(t) d,Lt(t)
rn—1(1)
and
Fn—2(t
Jn —f 2( )q)n Z(I)Qon Z(I) d,u(t)
rn—1(1)
we find after integration of (4.3)
Uply + WyJ, =0. (4.4)
We may write
[7n—1q,n_2([)
— =@y 1) F dnp, (1) + - (4.5)

rp—1(1)

and observe that, = ¢,,. We now find an expression foy,.
Multiplication of (4.5) byD,,_1(¢) gives

tynflpn—Z(t) =y Pyoa(t) +dprpn—1(t) Py—2(t) + rp—1()rpn—2(t) T, (1), (46)
with 7,, € I1,,_3.
For{,_1 # oo we then get
P,_
I, =c, = M (4.7)

Pn—l(Cn—l)
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while for {,,_1 = oo we get

Mm—a

-2

Iy =c, = ’(1n—1) (4.8)
My

by comparing coefficients af 1.
We also have a representation

rn—2(1)
rn—1(1)

and see that,, = f,.
Multiplication of (4.9) byD,,_1(¢) gives

Fn—2(t) Py—2(t) = ey Py—1(t) + furn—1(t) Py—2(t) + ry—1(t)rp—2(t) Hy,—3(1), (410)

with H,,_3 € I1,_3. We need to determine the value 6f.
We consider the various cases fo= 2, 3, ... .

(1) Cn—l 7& o0.

(I) Cn—Z 75 Cn—la Cn—2 75 Q.
We get from (4.10)

rn—2(ln—1) Pn—2({y—1) = en Py—1({,—1) (411)

(10n—2(t) = en¢n—1(t) + fnq)n—Z(t) + - s (49)

and

0=rp—2(ln-2) Pu—2((u—2) = en Pu-1((y—2) + furn-1((u—2) Pa—2({n—2) (4.12)

Taking into account that,_2({,_1) = —rn—1({,—2) we find that
Py_1({—2) Pn—2({-1)

Jp=fu= . 4.13
/ Pr—2(ln—2) Pu-1({n-1) #.13)
It follows from (4.4), (4.7), (4.2), and (4.13) that
IZII’Z n
an—U =— u , (4.14)
Jn Un-1
provided thatP,, _2({,,_1) # 0.
(ii) {y—2=oo0.
We get from (4.10)
Pn—Z(Cn—l) =€ Pn—l(Cn—l) (415)
and
0= et " — fanl ) (4.16)

(recall thatr, _1(t) =(,_1 — t andr,_2(t) = 1).
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Hence

)
Pn—2(Cp—1i,

Jn=fo= e (4.17)
Pp1(C—py, o

and consequently

W=t Un (4.18)
Jn Un—l
providedP,_2({,—1) # O.
(”I) Can = Cnfl-

From the definition of/, and because thg, are normalized, we gef, = 1. SinceJ, = f, we
therefore have

Jo=fu=1 (4.19)
Consequently (since in this cage=1/U,_1)

m:—W”=—U”. (4.20)
Jn Un-1
(2) {n—1 =o00.
(i) lp—2 # 0.

We get from (4.10)
—u Y = et (4.21)

and
0= rn—2((n—2) Pu—2({—2) = en Pn—1({—2) + fn Py 2({y—2) (422)

(recall thatr,_1(t) = 1,r,—2(t) = {,,—p — 1).
From this follows that

(n—2)
oo Pn—1({y—2)
o= fo= 2 (4.23)
ty—q Pn—2(ln—2)
It follows from (4.4), (4.8), (4.23) that
U,1
Wy =— ; "= _Un/Un—l (424)

providedu,i’fzz) # 0.

(ii) {y—p=o0.
We immediately see from (4.9) that = 0. In (4.10)H,,_3 € I1,_3, and hencef, = 1. Thus

Jp=fr=1 (4.25)
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and consequently

U, 1, U,
W, = =— ) 4.26
" Jn Un—l ( )
Altogether we have found th&V,, = —U,/U,_1 forn =2,3, ..., providedP,_»({,_1) # 0 when

{n_1 # 00, Or thatuf,l’fzz) #0when(, 1 =00. O

5. Christoffel-Darboux formula
In this section we establish the Christoffel-Darboux formula.

Theorem 5.1. Assuming in addition to regularity of af, (z) that P, (z) for all n satisfy the following
condition(recall (2.2)):

Pn—Z(Cn—l) 7é 0 if Cn—1 ?é 0,

me ) #0 if Gioy=09, (5.1)

and using our previously introduced notatieve have the following Christoffel-Darboux formiacall

(1.1))

n—1
Pn ()@ ()1 @p_1(Y) = Fn (NP (Mra-1() P 1(X) = Un(x = 1) Y () (y).  (5.2)
k=0
The confluent form when= y is
n—1
P ()@ () [ 1(X) @, _1()] = [ ()@, ()] P 1(X) 1 (x) = U Y gy (), (5.3)
k=0

Proof. We recall from (4.1) that in this situation we hawg, = —-U,,/U,_1 <0forn=2,3, ....
The recurrence relation (3.3) may be written as

n(X) @, (x) = Unx" 10, _1(x) + Varn—1(x) @, _1(x) + Warn—2(x) @, _(x). (5.4)
Similarly we have

Ia(M @ (V) = Uny" 10, _1() + Varn-1(0)@p_1(3) + Warn—2(3)@,_2(y). (5.5)
Multiplying (5.4) byr,_1(y)¢,_1(y) and (5.5) byr,_1(x)¢,_1(x) and subtracting, we get

An = =Wypdn_1+ Uplx""1rp_1(y) — y""rn-1(0)]@,_1(0) @, _1(¥), (5.6)
where

A =10(0) 0, 110 @p—1() = 10 (M) @ (Wrn—1(x) @, _1(x). (5.7)
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For{,_1 # co we have
Xty _1(y) =yt o1 (x) = (o1 — 3) — (G —x) = x —y,
and for{,_1 = co we have
X711 (y) — ¥yt _a(x) = x — y.
Thus we have obtained
A = Up(x = y)@p—1(x) 9,1 (y) — Wy dp—1. (5.8)
Taking into account (4.1) we may write

A A1

U U (X = V@1 @1 ().

Summation yields

n n—1
Ay A
O = @) Y a0 1) = & =) Y 0@k (y). (5.9)
n 1 k=2 k=1

Also note thatd] = r1(x)@1(x) — ri(y)e1(y) (recall (3.4)) and1(¢)p4(t) = Uzt + V1.
ThusA41/Ui=(x—y)=(x—y)po(x)pg(y), SO that we have obtained the Christoffel-Darboux formula
(5.2).
Differentiating with respect tg and settingy = x further yields the confluent formula (5.3) 1

This implies an interlacing property of the zeros of the orthogonal functions.

Corollary 5.2. Two consecutive orthogonal functions can have no common zeros. Moreover the zeros of
¢, are simple In other words ifp, (x) = 0, theng,, 1 (x) ¢, _1(x) ¢, (x) # 0.

Proof. This follows immediately from the confluent Christoffel-Darboux formula (5.3 i§ a zero
of ¢,, hence off,, = r,¢,, then it follows from (5.3) thatf,,—_1(x) f,.(x) # 0. Thuse,_1(x) # 0 and
¢p(x) #0. O

6. Quadrature formulas
Here we assume that we have the same conditions as in Section 5, i.e., we have regularity,gf the
and condition (5.1) holds. Moreover, we assume thahasn simple distinct zeros in the interior of the

smallest interval containing supp
To estimate the integral

I;t(f):ff(x)dﬂ(x)»
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we choose a quadrature formula of the form

L(f) =" Jnf ).

k=1

The {/}}_, are called the coefficients or weights apg};_, are called the nodes of the quadrature
formula. These weights and nodes could be chosen so as to have exactness in a space of the form
Ln - &r={f=g-h:ge%,,gec 2 }withr>0.This means that we want the nodes to be such that
1,(f)=1,(f) forall fin this space. Clearly, when we chooseodes x };_; in supfn), then the weights
can be chosen such that the quadrature formula is exact férall?,,_1 (note that dim#,_1 =n). This
is aninterpolatory quadrature formulgince it is obtained by integrating the unique funct®r %, _1
that interpolates in the poinféx, f(xx))};_;-

We shall now choose the nodes to get exactness in a larger $pac#, of dimensiom +r +1>n
where we shall makeas large as possible. It is well known that in the polynomial case, we can obtain
exactness by the Gauss formulas, i.e., formulas whera timdes are chosen as the zeros ofritie
orthogonal polynomial. Thenitis possible to choose the weights such that the quadrature formula is exact
N, 1 =11, -II,_;.

Note that in genera¥?,, - &, _1 # %2,_1, except under certain restrictive conditions. However, this
is an indication that the maximalkhat can be attained allowing exactnes¥ip- &, isn — 1, which is
indeed the case as shown next.

We have the following result.

Theorem6.1. Letl, (f)=)_;_1 / f (xx) be aquadrature formulawith nodés.};_, C suppw\{(; ?‘;1.
Thenr,(f) is exacting,, - &, with r >0 if and only if

(1) L,(f) is exacting,,_1.
(2) (R,,g)=0,Vg € £, whereR, (x) = ]_[;le (x —x;)/Dy(x) € L.

Proof. If the quadrature formula is exact i#1,, - .#,, then it is obviously exact it¥,,_1. It also implies
that(R,, o) = Z’}Zl ZjRn(xj)pr(x;) =0fork=0,1,...,r which means thar, L &,.

For the opposite implication, we have to prove that the quadrature formula is exactfor alt,, - %,
Suppos€; € ,_1 is defined by

Li(xp) =0jk, 1<j, k<n.
Then the ipterpolatil_wg functiqn from,,_4 for the_ nodesf.xj}’}.:l is given by, (x)_: Z’}_-:l Ej(_x)f(xj)_.
Thus, the interpolation error is, = f — f,. Obviouslye, € %, - ,. Because it vanishes in all points
{xj}j=1, it should have the form
P(x)

D, (x)Dy(x)
with P(x) € II,,, a polynomial vanishing in a[lx.,-}’}zl. Thus we may write

en(x) = Ry (x) fr(x), fr € Z.

Becausef e, (x) du(x) = (R,, f,) =0 by (2), the integration error will be zero and hence the quadrature
formulais exactinZ, - &¢,.. O

en(x) =
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Note that exactness i, - %, is impossible, because this would imply thép,, ¢,) =
Y1 92 (xx) = 0. Thus, the maximal space of exactness one might hope fgf,is #,_1. This
can indeed be reached as is shown by the following result.

Corollary 6.2. Letxy, ..., x, be the n distinct zeros of the nth orthogonal rational functign Then
there exist positive weightsg, . .., 4, such that

L()=Y Af)=1(f). Vf€Ly Ln1.

k=1

Proof. Ifthe x; are the zeros a,,, then condition (2) of Theorem 6.1 is satisfied fe£n — 1. Choosing
the weights to make the quadrature formula of interpolatory type satisfies condition (1) of that theorem.
Thus we have exactnessifi, - Z,_1.

It only remains to show that all, > 0. We therefore set; € #,,_1 such that

Li(xp) =0jk, 1<), k<n.

CIearIyE? € ¥u_1-%n-1C %y ¥n_1. Hence, since the quadrature formula is exact in the latter space,
we get

n
0< 1,65 => Wty =4, j=1....n.
k=1

This proves the positivity of the weights [

We shall refer to an exact formula i#t,, - #,_1 as arational Gauss formuldor the measur@. Note
that the formula also depends on both the pigs$, {5}, and on the nesting of the spaces, i.e., on the

sequencgp(n)}2 ;.
Theorem 6.3. The weights of the rational Gauss formulas are givergrbgall (1.1))

B U, B Uni1 1
Fn—1(x)rn(xj) @y, (X))@, _1(x;) Pn1(X )1 (X))@ (X)) (xj) 30T (1) P2(x;) '

Proof. We recall from[10, Theorem 3.4ihat these weights are given by

o @ (x)
J_(pn(xj)/x—xj (6.1)

Using the Christoffel-Darboux formula, we can derive the alternative expressions given above. Indeed,
from (5.2) withy = x; we get

n—1

Pp—1(x)rn(x)@, (X)rp—1(x;) = Up(x — x;) Z Pr ()P (x ).
k=0
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Hence, because of orthonormality
rn—1(xj)p,_1(x;) / n(X) @y (X) du

U, X —Xj

From the definition of,, and orthogonality, it follows that

x)=1

frn(x)¢n(x) du(X)=rn(xj)/ #n () du(x).
—Xj X — Xj
Thus
an(x) Un
d = )
/x — X ) Pn—1(Xj)rn (X)) @p—1(x;))

so that, using (6.1)
L= Un
K Fn—1(x))rn (X))@l (X))@, _1(xj)

Next, we use the Christoffel-Darboux relation (5.2) witteplaced by: + 1 and get as before, setting
y =x; that

(6.2)

1 1(X)) @1 )T ()0, () = Upga (x = x7) D 0 (1) (),
k=0

yielding

_rn+1(xgn<i,1+1(Xj) rnix)_wzfx) du(x) = 1.
Thus we now obtain from (6.1)
_ Unt1

Fnt2(X )1 (X)) @1 (x )@y (x)

By our assumptions on the sequeiieg} -, and Corollary 5.2 we get

A= (6.3)

Ppi1 (X))@ 1(x @y (xj) #0, 1<j<n, n>1

So both formulas (6.2) and (6.3) are meaningful.
Finally, we use the confluent form of the Christoffel-Darboux formula (5.3) ferx; and we get

n—1
[ra ()@ () s a-1(X ) @1 (6)) = Un Y 97 (x))
k=0
or equivalently
n—1
Fn ()@ (1)@ 1 (X)) = Un Y 0 (x)).
k=0

Thus, by (6.2) the third expression for the weights is obtainéd.
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7. Tridiagonal matrix and eigenvalue problem

In the polynomial case, the nodes and weights of the Gauss quadrature formula can be obtained via the
solution of an eigenvalue problem for the tridiagonal Jacobi matrix. A generalization can be obtained in

the case of rational Gauss formulas. We therefore write the recurrence relation, assuming regularity, as

20, (2) = dp—11-1(2) 9, _1(2) + catn(2) 0, (2) + dnrn+1(2) @, 11(2),

wherec, =—V,+1/Uy+1andd, =1/ U, 1. Writing this out forn =0, 1, . . . , using the following notation:
do, d1, ... . )
- R =diag(ro(2), r1(z), .. .),
= . ; =|®
J trldlag<co, c1, ) L = diagz’. 7. .. ), P ‘1 ,
do, d1, ...

we get(J R — L)® = 0. Truncating this to the first + 1 rows and columns, we get the finite analog

(JuRy — Lp)®, = _dnrn+1(z)(Pn+1(Z)eiz»

withe, =10, ..., 0, 1]" the (n + 1)th unit vector. If in this relation, we replaaby a zerai. of Ppi1, WE
find that the right-hand side vanishes and hence the zeros are found as the solutiasfs for

[JnRn(2) — Ln(D)]®,(2) = 0.

Since this is not in the familiar form of a (generalized) eigenvalue problem, we will make the equation

more explicit. To this end defing =diag(yg, 71 . . . , 7,,). It is @ matrix indicating where the infinite poles
are. The “complementary” matrilglf“” = I, — I, indicates where the finite poles are. To represgnt
we introduce the matri¥,, = diag(zo, 71, . .., t,) With 1, = {; if {; is finite andr, = 1 otherwise. Then

the previous relation becomes
(JnZy — IX7] = I 17 + Iy, = 0.

This is the generalized eigenvalue problem to solve. Each eigenvalue is a node of the quadrature formula
andifE, =[eon, - -, e,,,n]T is the corresponding normalized eigenvecTE;grE,, = 1), then the weight
for that node is given byg,n/coyo just like in the polynomial case.

8. Stieltjes situation
We now assume the following:
suppu C [0,00) and {, € [-o0,0] forall n. (8.1)
We shall call this théStieltjes situation

Theorem 8.1. In the Stieltjes situatiarthe numeratorP, of the nth orthogonal function, has n simple
zeros in(0, 0o).
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Proof. Letr, ..., t; denote the zeros at,(¢) of odd order in(0, oo), each counted only once. We prove
thatZ < n will lead to a contradiction. If. < n, then the function (recall (1.2))
(t—1t1)...(t—1)
Dn—l(t)
belongs ta%,_1, hence[ F(1)¢,(r) du(r) = 0. On the other hand

(t—n1n)...(t —1;)Py(2)
[Du1OPra()
Here(t — 1) ... (r — t;) P,(¢) has constant sign it+o0, 00), while r,, () has constant sign i(0, co).

It follows that [ F(r)¢,(t)du(t) # 0, which contradicts the previous conclusion that
JF®)e, ) du(r)=0. O

F(t)=

F) g, (1) =

Note thatwe did not use regularity or conditiofs.1). However, it follows from the obtained properties
of the zeros that alP,(r) have constant sign if+oo, 0] and that the degree dt,(z) is exactlyn. In
particular P,({;) # 0 for all n andk. Consequenthall ¢, (z) are automatically regular and satisfy
condition(5.1). Moreover we have an interlacing property of the zeros of two consecutive orthogonal
functions.

Corollary 8.2. Suppose that we are in the Stieltjes case. Thehas only simple zeros (0, co) and
the zeros of,, and ¢,_4 interlace

Proof. Thatthe zeros are simple and®) oo) (in fact they are in the interior of the convex hull of spp
is a classical result since the numerator polynomigl$orm an orthogonal polynomial sequence with
respect to a varying measure. Since allfhare in[—o0, 0], none of the zeros aP, can coincide with
any of the(y.

Set f, = rnp,. Sincer,(t) has no zeros in0, co), the result will follow from the confluent
Christoffel-Darboux formula (5.3) which states th@aix) f, _;(x) — fu—1(x) f,(x) <0 is true for all
x > 0.Indeed, supposg andx ;1 are two consecutive zeros Bf, hence off,,. Thenf, (x;) f,;(x;+1) <0
since the zeros are simple. On the other hand, the confluent Christoffel-Darboux formula then implies that
fon—1(x)) fu(x;) >0andf,_1(x;11) f,, (xj+1) > 0, fromwhich we conclude thaf, 1 (x ;) f—1(x;+1) <O.
In other wordsf,_1 or equivalentlyp, ; will have at least one zero between andx;1 by Rolle’s
theorem. Because this holds for every pair of consecutive zekgg tiere can be at most (hence exactly
one) zero ofp,_, between two consecutive zeros@f. O

9. Balanced Stieltjes situation

We shall now consider a special case of the Stieltjes situatierhalanced Stieltjes situation
p@2m+1)>p2m), q@m)>qg2m —1). (9.2)
This means that

lom = ﬂm’ C2m+1 = Um+1- (9-2)
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We further assume that
—oo<fj <y <0 forallj, k. (9.3)

In this case{,,_1 # {,_» and at most one of them can be infinite. Therefafe 2, r,—1} forms a basis
for 111 the polynomials of degree at most 1. So we may then write the recurrence relation in the form

0,(2) = Onrn—2(2) + Ryrp-1(2) 0_1(2) + W, rn—2(2)
rn(2) rn(2)

For theseD,, andR,, we have the following properties.

Pp—2(2)- (9.4)

Theorem 9.1. Inthe balanced Stieltjes situatipmssume that the recurrence relation takes the f(am).
Then we have

Whenz, 2 = f,,_1 # oc:
Q2m <0, Ron >0, (9.5)
Qon-1>0, Rau-1<0. (9.6)
When{y,,_» = f,,_1 = 00:
Qom >0, Ran >0, (9.7)
Qom-1<0, Rou-1<0. (9.8)
Proof. Multiplying by D, (z) and writing out fom even and odd we get
Po (z) = [Qamram—2(2) + Ram (om — 2)1P2m—1(2)

+ Womram—2(2)(un — 2) Pam—2(2), (9.9)
P2y 11(2) = [Q2m+1(om — 2) + Romy1r2m (2) 1 P2 (2)
+ Wony1rom (2) (m — 2) Pan—1(2), (9.10)
P2n—1(2) =[Q2m—10m—1 — 2) + Rom—1r2m—2(2)1 Pom—2(2)
+ Wom—1rom—2(2) (m—1 — 2) Pam—3(2). (9.11)
By substituting appropriate values we find whgp_» = 8,1 # 0o:
Poy (am)
m = , 9.12
Qo = o) Pam1(om) (12)
P2y (Br—1)
Ry, = , 9.13
2" G — B Pon—1(Bu—1) (9.13)
Pop—1(B—1)
1 = , 9.14
O = T b ) Pom—2(y ) 619
Ry 1 — Pom—1(otm—1) (9.15)

(ﬂm—l — om—1) Poy—2(otm—1) .
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Similarly when(,,,_» = f,,_1 = co we get

Poyy (0,
QZm_ 2 (%m)

_ 22mlOm) 9.16
Pop—1 (o) ( )

2
Rom = ~an-1)° (9.17)
Hom-1
@D
2m—1
Oom-1= ~an-2° (9.18)
Hom—2

_ P2y —1(0tm—1)
Poy—2(otm—1)
We know thatP, (t) has constant sign i—oo, 0), and P, (¢) and P,_1(¢) has opposite sign if—oo, 0)

if and only if sgnu,([‘) = sgnufl”_*ll). Taking into account the sign normalization (3.2) we find the sign of

0, andR, as indicated in the theorem [

Rom—1 (9.19)

10. Associated functions

We make the same assumptions as in Section 8, i.e., we assume the Stieltjes situation. We define the
associated functions, by

0u(2) = /oo M du(r), n=0,1.2,... (10.1)
0

Note that (6.1) and (10.1) imply that the weights of the rational Gauss quadrature can also be written as
Lj=0n(x})/ @) (x}).

Recall that until now, the coefficieriW, was arbitrary. We now fix it to bév; = —U; to get the
following.

Theorem 10.1. Suppose we are in the Stieltjes situation and defihe= —U1. Then the associated
functions satisfyrecall (1.1))

UZVn—lJ’_Vr_ z r—2(2
on@) = 1) w29 o ), n=1.2.3. . (10.2)
7 (2) 7 (2)
with initial conditions
ro=1 ro1=1 y_1=1 79%=1 o_-1=-1 60=0. (20.3)

Proof. Clearlyso =0.
If {1 # 00, theng,(z) = Y&t py (3.3) and we easily find

(1—z
U1+ V:  du(t
= —Cl L 1co,1 wherecq 1 =/ ) .
(h—z2 o (1—1
If {1 = o0, theng4(z) = U1z + V1, so thats1 = U1. Moreovercg 1 = 1.

01(2) (10.4)
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A standard argument (consisting of plugging the recurrence relation fos,theo the definition of
thea,) now shows thafs, } satisfies the recurrence

Unz'n=1 4 Vyrp—1(2) rn—2(2)

on(2) = (2) op-1(2) + W, (2)

on—2(z), n=2,3,... (20.5)

with initial conditions
ro=1 ro1=1 99=1 00=0 (10.6)
ando1 as described above.
Note that since ¢4 (r) du(r) = 0, we get forl; # oo
® Ust + V-
0= /0 “op = ~Urt (U + Vaeos
-

If we want the recurrence far, to hold forn =1, we should define_1. Still assuming; # oo, it should
follow from (10.4) and (10.5)—(10.6) that

o-1W1 =c01({1U1 + V1) = Us. (10.7)
If {1 = o0, this relation becomes

o_1W1 =01 =U1. (10.8)
SinceW1 has been an arbitrary constant so far, we can now use it to fix

o_1=-1, (10.9)

from which follows in both caseg{ infinite or not) thatW; = —U;. Thus by choosingV, = —U;, we
can takes_; = —1 as initial condition and the recurrence (10.2) is validiet 1, 2, . .. .
Note that, becausg; > 0,

Wi <0 (10.10)

so that it is line with all the otheW; being negative. Also relation (4.1) holds foe=1, 2, . . . if we set
Upg=1.

If we assume that the conditions of Section 9 are satisfied, i.congder the balanced Stieltjes case
it then follows immediately that we can rewrite the recurrence relation in terms of the coeffigigits
and{R,}. We give the result without further proof.CJ

Theorem 10.2. Suppose we are in the balanced Stieltjes situation. Then the associated fuf€tipns
satisfy the recurrencéecall (1.1))

on(2) = OnTn—2(2) + KaTy1(2) on-1(2) + an on—2), n=12... (10.11)
7 (2) 7 (2)

o0=0, o_1=-1 (10.12)




A. Bultheel et al. / Journal of Computational and Applied Mathematics 179 (2005) 121-155 139

If
rn—2(2)
a,(z2) =W, , n=12 ... (10.13)
rn(2)
nn— Rn n—
bo(e) = 2nm2@ + Rarna@) g 5 (10.14)
rn(2)

with

ro=1r1=1, (10.15)

then{s,} and{¢p,} satisfy

0n(2) 0p-1(2) | _ | 0n-1(2) on—2() || bn(z) 1 _
[%(Z) wn—l(z)]_[q)n_l(z) (pn_z(z)][an(z) o}’ n=12... (10.16)

oo(z) o-1(2) | _ |0 -1
[(po(z) w_l(z)}_[l o] (10.17)

The approximants of the continued fraction defined(b§.16)—(10.17)are given by the quotients
o1 (2)/ P (2).

11. The separated balanced Stieltjes situation

We shall now assume all the conditions in Section 9 satisfied, and in addition the following: There exist
numbersx andp such that

Bi<p<oa<o forall j, k. (11.1)

We call this theseparated balanced Stieltjes situation

We shall consider the behavior of the approximaaisz)/¢,(z) of the continued fraction
(10.16)—(10.17). We shall in particular considez (f, ).

For convenience we introduce the expression

0n(t) = Qurn—2(t) + Ryry—1(1). (112)

We then have

on(2)

by(z) = s

(11.3)

We recall thaty,, 11 # oo for allm(see (9.2)) and consequenthy, +1(t) = a1 —1t; hencery, +1(t) > 0
fort € (B, o). For{y, # o0, ra,(t) <0 fort € (B, o), while for {5,, = co, we havery, (1) = 1, thus

rom (1) > 0.
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Combining these results with (9.5)—(9.6) we obtain

Theorem 11.1. Suppose we are in the separated balanced Stieltjes situation and suppdsgzthe
defined in(10.14),are denoted as i(i11.3).Then we have

o Foriz, 2=p,_1# o0
oo () >0 fort e (B, a), (11.4)
Som1(1)>0  for t € (B, %). (11.5)
o For iy, 2=p,_1=00
Som(1)>0  for t € (B, %), (11.6)
Som_1(t) <0 for t € (B, ). (11.7)

12. Monotonicity of even and odd approximants

We make the same assumptions in this section as in Section 11, i.e., we consider the separated balance
Stieltjes situation.

Theorem 12.1.Suppose we are in the separated balanced Stieltjes situation. Then the sequence
{o2m (t)/ @2, ()} is decreasing 018, o), while the sequend@ 2, +1(t) /92, +1(1)} iS increasing orn(p, «).

Proof. By taking determinants in (10.16)—(10.17) we get some standard formulas for approximants of
continued fraction§l 8], namely

0,(2)  op—1(2) ai(z) - - an(2)

— = (=" 12.1
on(2)  ¢p_1(2) s 0n(2)@,-1(2) (12.1)
and further standard methods yield
0,(2) _ on—2(2) _ (Pnfl(z)bn(z) |:O'n—l(z) _ O'n—Z(Z):| . (122)
(/)n(z) (pn—Z(Z) (Pn(z) (pn—l(z) q)n—Z(Z)

Herea, andb, are defined in (10.13) and (10.14), respectively. Combining these formulas and taking
into account (10.13)—(10.17) we obtain

0n(2)  0n2) _ (=D"by (Wi Waa

_ (12.3)
02 0u_2@) 9, (DPp_2(Drn-1(2)rn-2(2)

and thus
@ on2@) _ (CD"ou@Wr- Wl D21 (12.4)

0u@) o2 Fn—2(2) Pu(2) Pa_2(2)
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Written out this gives

oon(@) _ oam—2(2) _ —0m@ W1 Wan—1[Don—2(2))? (12.5)
DPom (Z) (/)Zm—Z(Z) 7’2m_2(Z)P2m (Z)PZm—Z(Z) ' .
02m11(2)  02m-1(2) _ S2m1(@W1- - Wou[Don-1(2)I? (12.6)

Pomi1(2)  Pom_1(2)  Fam—1(2) Pom+1(2) Pam—1(2)

In the following lett € (B, ).
o Letlzy2=pyu 1 # 0.

Thenry,,_2(t) <0, anddy, (t) > 0 by (11.4). Furthermore it follows from the sign normalizations
(3.2) thatPy,, () and P2, _2(¢) have the same sign. Since &8}, are negative, we conclude that

aom(t) — oam—2(1)
Pom () Pom—2(1)

(12.7)

o Letly,_o= ﬁm—l = 0Q.
Thenry,,_2(t) > 0, andd,, (r) > 0 by (11.6). It now follows from the sign normalizations (3.2) that
Py, () and P2, _»(t) have opposite sign. Again we find that

a2n(t)  o2m-2(1)
Pon(®)  Pom—2(1)

e Letly, =p,, # oo.
We haversy,,_1(t) >0, anddo,+1(¢) > 0 by (11.5). The sign normalizations (3.2) implies that

P2, 11(1) and Py, _1(r) have the same sign. Hence

(12.8)

o2m+1(t)  o2m—1(r) -0 (12.9)
Pom1()  Pop_1(0)

e Letly, = f,, = 0.
Againra,,_1(t) > 0, while 2, +1(t) < 0 by (11.7). The sign normalizations (3.2) now implies that
P2,11(t) and P, —1(1) have opposite sign. Thus we again find that

oom+1(t) _ o2m—1(1) -0 (12.10)
Pom+1(t)  P2p1(1)

Altogether we conclude that the theorem is correc¢il
A further argument shows that these even and odd sequences will converge.

Theorem 12.2. Suppose we are in the separated balanced Stieltjes situation. Then there exist functions
Fp and F, analytic outsidg0, co), such that for all; € C\[0, c0)

im 29 _ g o and lim 229 g

m—>00 (o, (Z) m—00 (/)2m+1(z)
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Proof. We return to formula (12.1) which may be written as

e 2
o) _ 001 _ g W WalDaa @) (12.11)
0p(2)  9p_1(2) rn—1(2) P (2) Py-1(2)
Thus
om(@) _ oam-1(2) _ Wi Wan[Dan-1()1? (12.12)
P2 (2) Pom—1(2) (o — 2) Po (2) P2 —1(2) .
and
oon+1(@) _ oam@ _ Wi Wania[Daw(2))? (12.13)
Pom+1(2) 92, (2) r2m(2) Pom11(2) Pan (2) '

Let againt € (8, «). Since allW, are negative and sgp,,; (1) = sgnPo,,—1(¢) by (3.2), we conclude that
o) _ om-1(1)
Dom (t) (PZm—l(t)

Furthermore, iy, = ,, # 0o, thenry, (1) <0 and sgnPy,+1(t) = SgNPay, (1), and if (o, = B, = oo,
thenry, (r) > 0 and sgnPy,, 1 1() = —sgnPo,,(1). Hence in both cases

0. (12.14)

o2m+1(t)  o2m (1)
Pomt+1() @y (1)
Let j, k be arbitrary indices and lei > max(j, k). Then by (12.7)—(12.10) and (12.14)—(12.15) we have

(12.15)

02(t)  oom (1) - o2m—1(1) - 02k—1(1)
@2 (t) @2, (1) @2p_1(t)  Pop_1(1)

(12.16)

and
02j+1(t)  oomy1(t)  oom(t)  oo(t)
< < < .
?2j41(1)  Pomy1(t) @2y (1) @i (1)

(12.17)

In particular the sequendez,, (1)/¢,,,(¢)} is bounded below and the sequeniég, +1(1)/ @2, 1 1(1)} IS
bounded above. Consequently there exist functigis) and F»(z) on (B, «) such that

20 _ gy and lim 2 piy viee 5. (12.18)

m— o0 @2m+1(t)

lim
m—00 Poy (t)

Furthermore, by arguments of normal families, it follows tfsat, (z)/ @2, (2)} and{62,+1(2) / P2n41(2)}
converge to analytic functionB, (z) and Fp(z) outside[0, oo), extending the functions (12.18) ]

13. Stieltjes transforms

Suppose we have a linear functiohatlefined onz - . If {Q,}°° , is a basis forz, then the moments

Cki=M[%Q], k 1=0,1,... (13.1)
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are well defined. Note the symmetry; = ¢; x. A positive measure with infinite support in[0, co) is
said to solve ther@tional) Stielties moment problem afi - & if it satisfies

[ee]
ool = / QL)) du(x), VA, 1=0,1,...
0

and it solves the (rational) Stielties moment problem®if

o
ck,0=/ Qe(x)du(x), Vk=0,1,....
0

We now place our previous results in the above context, i.e., we assume that the Stielties moment problem
on.Z- ¥ has at least one solution and that the meagommsidered in previous sections is such a solution.
Define its Stieltjes transform by

Sz, p) = /0 2e@) (13.2)

7—1

Since we are in the Stieltjes situation, the orthogonal rational fungtjoshall haven simple zeros in
(0, o0) and we can define a rational Gauss quadrature formulea for

Theorem 13.1. Suppose that is a solution of the rational Stielties moment problen#An #. Suppose
also thaty,, is the discrete measure that represents tigoimt rational Gauss quadrature formula that is
exact on?, - #,,—1. Then we have

S, ) = 2. (13.3)
¥n(2)
Furthermore(recall the definition of,, from (1.1))
o (2) /°° 0, (1)%ra (1) du(t)
— Sz, n) = . 13.4
¥n(2) &0 1 (2)@,(2)% Jo r—z (134)

Proof. Formula (13.3) follows from the definition af,,. The integrand of (10.1) belongs 16, and
therefore the rational Gauss quadrature is exact. Since the nodes are zeygdamula (13.3) is
immediate.

Again using the definition of, (z) we then get

on(2) s ):/O" @, (1) du(t) .
¢n(2) 0 ¢,(2)—2)

For{, # oo we have

(13.5)

I (1) t—z
B 1 (2) 1 (2)
and hence

@, (1) du(r) /OO Fa ()@, (£) du(r) 1 /oo
oD —2) du(o), 13.6
/o 2 @E—2 Jo n@e@C—0 " @@ o PN (13.6)
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from which follows
/ OL U NS [ T 00O g ), (13.7)
0 0,1t -2 12,2 Jo t—z

by orthogonality. Fot,, = oo, the formula obviously holds.
Furthermore we may write

/°° 0a (% 9u (@) | ra(®) du(t)
0 | on@? 0@ | Mm@tz

1 © e, (1) — ¢, (D) ]rn () @, (1)
= d . 13.8
T | i (o) (13.8)
The function
£ = [0, (1) — @, (2)]r (1)
t—z
belongs taZ,,_1, hence the integral in (13.8) vanishes. Thus
/°° ¢ (Ora (1) du() /°° @n(1)ra (1) du(1) (13.9)
0 @@ =2 Jo 0,22 —2) '

Combining (13.5), (13.7), and (13.9) we obtain (13.4)]

We now make the same assumptions as in Sections 11 and 12, i.e., we consider the separated balance
Stieltjes situation.

Theorem 13.2. Suppose we are in the separated balanced Stieltjes situation. Then for any measure that
solves the rational Stieltjies moment problem%n ., we have
a2m+1(x) 92m (X) (13.10)

<S(x,p < for x € (B, o).
P2m41(X) ®2m (X)

Proof. Letx € (B, «). The integral
f°° 0 (1)%ra (1) du(r)
0

r—Xx

is negative if{, # oo and positive if{, = oco. The factorry, (x) is negative if(y,, # oo, positive if
{5, = 0o. The factorry,+1(x) is positive. Thus we find that

921 0) x>0, (13.11)
(/’Zm(x)

921 gy <0, (13.12)
P2m41(X)

This completes the proof.0]
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In particular, if the sequende, (x)/¢, (x)} converges forx € (8, «), thenS(x, ) and hence(z, u)
for z ¢ [0, oo) is unique, which implies that is unique.

Thus: if{s, (x)/¢, (x)} converges fox € (f, =), then the inner product i has a unique representing
measureu.

By a standard compactness argument, the functiai® and F(z) are Stieltjes transforms of mea-
suresu© andu(> representing the function on .

14. A canonical basis

We continue to study the separated balanced Stieltjes situation, and consider thehasis. . ., Q,,}
for %, defined as follows (with,, as in (1.1)):

Q0 =1, (14.1)
r1(2)r3(z) - - - ram-1(2)
/=D @/a—D (2l — 1)

@/ o=-D@E/G-1 - (z/lom — D
o = T OR@ @ (149

We may also write (withD,, as in (1.2))

Qo (z) =

(14.2)

Q, = o (14.4)

where
1
Tom+1(2) = — [r2(2)ra(2) - - - rom (2)1%, (14.5)
K2m

Tom (2) = kom[r1(2)r3(2) - - - ram—1(2)]? (14.6)
with

Kom = 1_[ (—Cox)- (14.7)

{op#00sk<m

Note thatky,, is positive.
The orthonormal functiop,, has an expansion according{te} with leading coefficient,:

Pp=UnQp+---. (14.8)
This implies (recall,, = P,/ D,)

Py (2) = vn Ty (2) + ra(2)[- - . (14.9)
Thus if{, # oo, we have

Py (8) = v Ty (Cy),s (1410)
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while if {,, = 00, we have

2
™ = vicom, (14.11)

(the leading coefficient dfy,, beingksz,,).
In order to derive a condition under which the rational Stielties moment problem is determinate, i.e.,
has a unique solution, we shall analyse the behavior of the difference

on(2) _ on—2(2)
P (Z) (pn—Z(Z) ‘

It follows from (12.3) that we may write

on(2) on—2(2) _ Ap(x)

_ _ , (14.12)
®n (Z) (/)n—Z(Z) bn (Z)(Pn—Z(Z)

where

_1)ynt+l -
foey = CV @ W Wy (1413
ra—1(Drn—2(2)

We want to obtain lower bounds fou,, ()| for ¢ € (B, «) in terms of the coefficients,. This will be our
aim in this section and the next one.
Taking into account the equality;, = —Uy/Uy_1 obtained in Section 4, we find

_ Un—1[Qnrn—2(z) + Ryrp-1(2)]

Ap(2) = 14.14

© D1 2() (1419

Letr € (B, «). It follows from (9.5)—(9.8) that sg@,,r,—2(t) = sgnR,r,—1(t). Consequently
()] > — Rl (14.15)

[rn (Orn—2(t)]

The rest of this section is devoted to finding expression®f@r, 1. From (4.2), (9.13), (9.15), (14.10),
(14.11), it follows that we may writ&, U, in terms ofv,, andv,_ in the following way:

e When(y,,_» # 00, {2, # 00:

Pop1(Com—1) Pom (Com—1)

R Uoy =
22 o (Com—1) Pom (Cam—1) Pom—1(Com—1)
_ Tom+1(lom+1) Pon+1(C2m-1) Vam+1 (14.16)
Tom-1Com—DramCom—-1)  Pom+1(Coms1) Vom—1 '
P: _2)Poy, _
Ry Unyy 1 = om (Lom—2) Pom—1(Com—2)

rom—1Com—2) Pom—1(Com—2) Pom—2(Lom—2)
T2 (Lom) Pan(Com—2)  vom (14.17)
Tom—2Com—2rom—-1Com—2)  Pom(Com)  Vom—2’ '
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e When({y,,_» = 00, {5,, = 00:

P2y +1(Com—1) Pom (Com—1)

Rom+1U2p =
T P (Lom—1) Pan—1(Com—1)
T P _
_ Donta@omtd)  Pom(Com-1) van+1 (14.18)
Tom-1Com-1)  Pom+1(Com+1)  vom—1
(2m) (2m—1)
Ror U __ Hom Hom—1
2mY2m—-1= 2m—1) (2m—2)
Mom—1 Hop—2
—_ fem  Yom _ U2m (14.19)
Kom—2 V2m—2 V22
since in this casey,, = k2, —2.
e When{y,_» # 00, (g, = o0
Pomt1(Com—1) Pom (Com—1)
Rom+1U2p =
P2 (Lom—1) Pom—1(Lom—1)
T P _
_ 2m+1(Com+1)  Pomt1(om—1) vami1 (14.20)
Tom-1Com—1)  Pom+1(lomt1)  vom—1
For R, U>,,—1 We obtain in this case a more complicated expression.
We write (14.9) in more detail as (recall thaf, (z) = 1):
P2y (2) = vom Tom (2) + wom Tom-1(2)
+ uomrom—1(2) Tom—2(2) + rom—1(2)ram—2(2)[- - -1. (14.21)
We find that
P2y (Lom—2) = v2m Tom (Com—2) + uz2mr2m—1(Com—2) Tam—2(Lom—2)- (14.22)
Writing
T =Y 1", (14.23)
k=0
we find by comparing coefficients of the terms wif'—1 in (14.21):
M(Zim—)l = vzmtéﬁlm_)l — U2 K2 —2. (14.24)

Here we made use of the facts that deg_1 <2m — 2, téi”i‘zz) = k2,_2 and the degree of the term

between square brackets in (14.21) is at mest-24.
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Substituting from (14.24) into (14.22) and using (4.2), (9.13) we find

Pon (Lom—2) Pom—1(Lom—2)
r2om—1(Com—2) Pom—1(Com—2) Pom—2({om—2)
_ Vom Tom (Com—2) + u2mrom—1(Com—2)Tom—2({om—2)

RoUopp—1=

(14.25)
r2m—1Com—2)Tom—2(Lom—2)v2m—2
and further
2m 2m
T2m (C2m72) U2m Uthém_)]_ - 'u(Zm—)l
RoUop—1 = . . (14.26)
Tom—2Lom—2)rom—1(lom—2) vom—2 K2m—2V2m—2
Taking into account (14.6), we write this as
(2m) (2m)
P Vomls, "1 — Ho,
RonmUzn—1 = ram—1((om—p) —— + ——2=t__—2n=d (14.27)
Vom—2 K2m—2V2 -2

sincexy, = k2,;—2 in this case.
¢ Note that we have not considered the situatign » = oo, {»,, # oo.

15. Monotonicity of the interpolation points

We still consider the separated balanced Stieltjes situation, with the canonical basis and derived concepts
introduced in Section 14.

In addition, we assume the following monotonicity property:

O(k+120(k, ﬁk_,_lgﬁk fOl‘ a” k. (151)

We may call this thenonotone separated balanced Stieltjes situation

We shall obtain lower bounds for the expressifaiiz) whens € (B, «) in terms of quotients,, /v, _».
More precisely, we prove:

Theorem 15.1. Suppose we are in the monotone separated balanced Stieltjes situation. Then there is a
positive constant K such thatith v, as defined if{14.9),

1 v,
Mgm>f-v, n=23 ... (15.2)
vV

n—2

forall t € (B, o).

Proof. We start by noting thatP,(7)| tends tooo ast tends to—oo, and thatP, () has no zeros in
(—o0, 0) because of the properties of the zero®pfr). ConsequentlyP, (¢)| decreases dsncreases in
(—00, 0).
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In the following we assume thate (8, «).

Let (o, # 00, {22 # 0.
From (14.5), (14.15), (14.16), we conclude that
220 B (o +1)1%| Pam 1.0t | |2 11
KZm(OCm+1 — 1) (o, — t)[Bm—l(“m)]z(ﬁm - ocm)|PZm+1(O(m+l)||v2m—1|

with B (1) = (1 —1) - - - (B — ). Since| Pa,11(1)| is decreasing iti—oo, 0) anda, < oy,+1, it follows
that| Poy+1(om) | = | Pom+1(tm+1)|. SiNCeuy 1 — P >0y — fr @ndoyg — ¢ <o — f, we find

|42m1(1)[ > (15.3)

Kom—2(tm — P v2m+1l
i . (15.4)
Kom (o0 — B)“|vam—1]
Furthermorecy,, —2/x2, = —1/8,,, and

[A2m+1(2)] >

P = Omia| _ | B = omi1| g [oma S1- lad _ 1B = 1o (15.5)
—Bm B B || ||
Consequently
V2m+1
Ao > . . 15.6
o201 - [~ (15.6)
From (14.6), (14.15), (14.17), we get
2
| Ao ()] > <2m [Am (Bp)] |P2m(§m—l)||v2m| (15.7)
Kom—2(t = Bp)(t = B D[Am—1(Bp— )17 (m — B P2 (B llv2m—2]
with
Ar(t) = (1 —1) -~ (o — 7). (15.8)
Herer — ﬁm—lgo{m - ﬁm—l andr — ﬁm < 2|ﬁm|i while K2m [ Kom—2 = _ﬁm = Iﬁm| Thus
[Am B 121 P2 (Bru—1) V2]
Ao ()| > ) 15.9
1420 (1) Z[Am(ﬁm—l)]2|P2m(ﬁm)||v2m—2| ( )
To handle the expression in (15.9), we introduce the function
P2m(t)
= . 15.10
P = P R
We find
/ l»me(t)
= 15.11
P = o (1541
with
Yom () = P, (1) A (t) — 2P2, (1) A, (1). (15.12)

Since the leading coefficients of the two terms in (15.12) both egah]mZmu(ZZ"), it follows that

Vo, (1) is a polynomial of degree at mosu3- 2.
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Let 7 andr41 be consecutive zeros &, (). ThenP,, (k) and Py, (1x+1) have opposite signs, while
A, (¢) has constant sign i(D, co). Consequentlyy,,, (t) has a zero iri, tx+1). This accounts for at
least 2n — 1 zeros.

Next, consider the intervalsy, ox11), k=1, ..., m—1. A, (¢) has asimple zero at each of these points,
and A}, (o) and A}, (u41) have opposite signPy, (1) has constant sign if—oo, 0). Consequently,
Vo, (1) has at least one zero (B, ax+1). This accounts for at least — 1 zeros.

Thus all the zeros of,,,(t) are accounted for. It follows thab,, () is monotone for < «1. Since
|po, ()| tends tooo ast tends toxg, we conclude thafp,,, (1)| is increasing in—oo, o1).

We may write (15.9) as

1 1ponBu-n)|  [v2nl

[ A ()] = = . 15.13
2 pam Bl vam—2l ( )
Because of (15.1) and the fact tha,, (7)| is increasing, we conclude that
1
Aan (]2 5 | 22| (15.14)
2 |vam—2
e Next, let(,,,_» = o0, and{y,, = co.
We find that
B 2Kom_2| P
| Aoms1(1)] > [ B (41 1“K2m—2| 2m+;(0‘m)||v2m+1| ’ (1515)
(m+1 — 1) (0m — D)1c2m [ Bim—1(04m) 1| Pom+1(eam+2) || v2m -1
with
Bi(t) =r2(t)ra(t) - - - ra(t), (15.16)

where each termy (¢) is either of the formro (1) = f;, — ¢ or rox (1) = 1. In both cases o (o,+1)| >
|rox (o) | because of (15.1). Furthermotg — ¢ <« — f andkg,—2 = Kk2,,—1 SiNCely, = co. Finally,
P2 1(0m) = Pam11(am+1). Consequently

U2m+1

Aoma1(t)| > . 15.17
| A2m+1(1)] S o— ( )
Similarly
[v2m |
| Ao (£)| > . 15.18
[72m () r2m—2(t)[|vom—2| ( )
Sincerg, (t) = ram—2(t) = 1, this gives
A ()] > | —22 (15.19)
2m—2
e Finally let(,,, = co and{y,,_» # oo.
We have
B 2kom—2| P
|A2m+1(t)|2 [ m(“m—l—l)] K2m 2| 2m+1(‘xm)||v2m+1| (1520)

Kom (41 — 1) (o4 — t)[Bm—l(fxm)]zlP2m+1(°‘m+l)||v2m—1|
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with B; (1) as in (15.16). Againrax (o1)| = 172k ()|, K2m = K2m—2, [ P2m41(tm)| > | P21 (@m41)1s
rom(t) =1, 040 —t <o — . Thus

U2m+1
| dom1(D)| = —— 15.21
m—+ (_ﬁ)z Vom 1 ( )
We also have
Ro,, U2y, — Ro,, Uy, —
o ()] > |R2m U1l :| 2mU2m 1|‘ (15.22)

lram (Dram—2(0) (& = Bp—1)

Recall formula (14.27) foR2, Uz, —1. Note that—r, (2’") , equals the sum of the zeros ﬁjm(t)/iczm,

i.e., 152" = —2(a1+- - - 2,) /2, SO that 2" > 0, Furtherrecallthatzm_/,agn’"),sothat—/,a2 1/V2m

equals the sum of the zeros &%, (¢). Thusvy, and “(lenm—)l have opposite signs. It follows that
(2m) (2m)

2mloy—1 — Moy 1S POSitive if vy, is positive, and negative ifz, is negative. Consequently (since
er_l(Qm_z) = 0 — Br1)s T2m—1(om—2)V2m andvzmtéilm)l ﬂ(zim)l have the same sign. Hence
U2m
|RomUzm—11= (0m — Bru—1) (15.23)
V2m—2
Combining this with (15.22) we get
()] > 2~ =t | Vom (15.24)
(t = By—1) [v2m-2
Sincew,, — f,,_1>1 — f,,_1, this finally gives
[don(0)| > | 2 (15.25)

e Note that because of (15.1) the cdgg # o0, {5,,_» = 00 cannot occur.

From (15.6), (15.14), (15.17), (15.19), (15.21), (15.22), we conclude that there exists a cidrsstelmt
that (15.2) holds for alt € (,«) and alln>2. O

16. Unique representation
We are now able to prove uniqueness.

Theorem 16.1. Suppose we are in the monotone separated balanced Stieltjes situation. Assume

1/2
lim — 0. (16.1)

n—oo

Up—-2

Then the rational Stieltjies moment problem.@n ¢ is determinate
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Proof. Recall from (14.12) that

on(2) B on—2(2)
¢, (2) Pp—2(2)

and from (15.2) that

A,(2) = [ } (2 Pp_2(2), (16.2)

Un

Up—-2

<K|4,()| fort e (B, ). (16.3)

Assume that

00
m=1

Then

1/2
= Q.

V2m
V2m—2

> o @)Y =00 fort e (B, 2).

m=1

The boundedness and monotonicity results in Section 12 imply convergence of

i [sz—z(t) o2m (1) ]

= Loom—2d)  oon(®)

Thus by the Schwarz inequality we conclude

{Z |:O'2m—2(t) O'Zm(t)i|} {Z |§Dzm(f)(/?2m_2(t)|} = 00. (16.4)

= Loom—2(t) 02 (1) —

Similarly, if Y071 [vam+1/vam—1| = 00, then

{Z |:O'2m+l(l‘) B o2m—1(1) i|} {Z |(P2m+1(t)q)2m—1(t)|} — 00 (16.5)
m=1 m=1

Poms1(t) @y _1(1)

fort € (B, «). From this we conclude (again applying the Schwarz inequalily t@,,, (t)¢,,,_»(t)| or
S 1 P2ms1 ) P21 (1)]) that if 32 5|v, /v,—2|Y? = 00, then at least one of

D e ®P =00 or Y |pg, () =00

m=0 m=0

holds for allz € (B, «). Thus

Y o> =00 forallt e (8, a).

n=0
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Let u be an arbitrary measure representing the functivhah ¢ - #. By (13.5) we have

oy (2) 1 [,
- Sz, ) = / On22 du(o). (16.6)
®n(2) pp(2) Jo t—z2

Letx € (B, «). Then the function — (¢ — x)~* is square integrable with respectto\We observe
from (16.6) that its Fourier coefficient with respect to the system is [a,,(x) /¢, (x) — S(x, W], (x).
Hence by Bessel’s inequality

00 2
Z [Gn(x) — S(x, u)} P (x)% < 00. (16.7)
0,0

Now assume thatz,‘j‘;z|vn/vn_2|1/2 = oo. It follows from the considerations above that
> o oo (DP=000rY 0> o 1¢a,1(1)[>=coforallt € (B, o). Assumefirstthal sr_q @2, (1)|2=00.
Then a subsequence[@b,, (x)/¢,, (x) — S(x, u)]? tends to zero by (16.7), and hence by the monotonicity
of {62 (x)/ @2, (x)} We have

“Zm(x; — S(x, ) for x € (B, %). (16.8)

lim
m—00 q;zm(x

Similarly, if Y5 [¢2,41(1)1? = oo, then

lim 7201 e forx € (B ). (16.9)

m—00 (P2m+1(x)

In both casesall representing measures oh- % have the same Stieltjes transform @) «), hence in
C\[0, 0c0). Consequentlythe functional has a unique representing measurezon? if (16.1)holds O

From this, Carleman-type conditions on the “momed{%Q Q, (12 du(r) can be deduced. We have
Theorem 16.2. Suppose we are in the monotone separated balanced Stieltjes situation. Let the moments

Chn = f(‘,’o Q,%(t) du(r) be defined as if13.1). Then the rational Stielties moment problemdh. & is
determinate if

> 1
> = 0. (16.10)
n

n=0 (Cn’
Proof. This proof of[7, Theorem 6.2tan be used without any change.
Note that when, = 0 andg,, = —oo for all n, thenQy,, (z) = 2" andQz,, 11(z) = z~ "+ If we set
o
Cn :/ "du(t), n=0,+1,+£2, ..., (16.11)
0

thencoy, om = com andepy,—1.2m—1 = c—2,. Condition (16.10) may thus be written as

o0 o
PN Y S

_1 1
m=1 (C—2pp) =2 m=0 (C2m) %m
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The orthogonal rational functions become the orthogonal Laurent polynomials. The rational Stieltjes
moment problem or¥ - ¥ becomes the strong Stieltjes moment problem. Hence we recover a result that
is essentially irf1] and which can also be found [©3,19,20] O

Corollary 16.3. Define the moments,n =0, £1, £2, ... as in(16.11).Then if at least one of

> 1 =1
e Y
m=1 (C—2pp) =2 m—0 (C2m) %

holds then the strong Stielties moment problem is determinate
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