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Abstract

In this paper we deal with discontinuous vector fields on R2 and we prove that the analysis of their local
behavior around a typical singularity can be treated via singular perturbation. The regularization process
developed by Sotomayor and Teixeira is crucial for the development of this work.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and statements of the main results

Let K € R? be a compact setand ¥ C K given by X = F~1(0), where F is a smooth function
F:K — R having 0 € R as a regular value.

Designate by x” the space of C" vector fields on K endowed with the C”-topology with
r > 1 or r = 00, big enough for our purposes. Call 2" = 2" (K, F) the space of vector fields
X:K \ ¥ — R? such that
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Xi(x,y), for F(x,y)>0,
X0, y) = {Xz(x,y), for F(x,y) <0, M
where X; = (fi,gi) € x",i =1,2. We write X = (X, X2), which we will accept to be multival-
ued in the points of X.

The trajectories of X are solutions of the autonomous differential equation system ¢ = X (g),
which has, in general, discontinuous right-hand side.

The study of differential equations with discontinuous right-hand side is motivated by its
many applications mainly in mechanics, electrical engineering and general automatic control.
Correlated problems can be obtained in [7,9,10,12] and basic results for differential equations
in this context can be found in [6]. The regularization method introduced by Sotomayor and
Teixeira in [10] gives the mathematical tool to study the stability of these systems, according to
the program introduced by Peixoto. The method consists in the analysis of the regularized vector
field which is a smooth approximation of the discontinuous vector field.

Definition 1. A C* function ¢:R — R is a transition function if ¢(x) = —1 for x < —1,
@(x) =1forx > 1and ¢'(x) > 0 if x € (—1, 1). The g-regularization of X = (X1, X») is the
1-parameter family X, € C” given by

I %(F(q))) i +<1 4:(F@)

Xe(‘])z(i-i- 3 3 )

>X2(61), (2)
with ¢ (x) = ¢(x/¢), for e > 0.

Definition 2. Let U C R? be an open subset and & > 0. A singular perturbation problem in U
(SP-problem) is a differential system which can be written like

X' =dx/dt = f(x,y,¢), y' =dy/dt =eg(x,y,¢) 3)
or equivalently, after the time rescaling t = ¢,
ex=edx/dt = f(x,y,¢), y=dy/dt =g(x,y,¢), 4)
with (x, y) € U and f, g smooth in all variables.
In what follows we will use the notation

XiF(p)=(VF(p), Xi(p))= ((0F/0x)(p), (OF /3y)(p)) Xi(p)

fori=1,2.
Our first result is:

Theorem A. Consider X € 2", X its ¢-regularization, and p € X. Suppose that ¢ is a poly-
nomial of degree k in a small interval 1 C (—1,1) with 0 € I. Then the trajectories of X in
Ve ={q € K: F(q)/¢ € I} are in correspondence with the solutions of an ordinary differen-
tial equation 7' = h(z, ), satisfying that h is smooth in both variables and h(z,0) = 0 for any
z € X. Moreover, if (X1 — X2)F¥)(p) # 0 then we can take a C"'-local coordinate system
{(@/9x)(p), (8/0y)(p)} such that this smooth ordinary differential equation is a SP-problem.
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The understanding of the phase portrait of the vector field associated to a SP-problem is the
main goal of the geometric singular perturbation-theory (GSP-theory). The techniques of GSP-
theory can be used to obtain information on the dynamics of (3) for small values of ¢ > 0, mainly
in searching limit cycles.

System (3) is called the fast system, and (4) the slow system of SP-problem. Observe that for
& > 0 the phase portraits of the fast and the slow systems coincide.

For ¢ =0, let S be the set

S={(,»: fx,y,00=0} (&)

of all singular points of (3). We call S the slow manifold of the singular perturbation problem
and it is important to notice that Eq. (4) defines a dynamical system, on S, called the reduced
problem:

fx,y,00=0, y=g(x,y,0). (6)

Combining results on the dynamics of these two limiting problems, with ¢ = 0, one obtains
information on the dynamics of X, for small values of ¢.

In this paper we consider those systems related to a discontinuous vector fields, like in The-
orem A, and we refer to [5] for an introduction to the general theory of singular perturbations.
Related problems can be seen in [2,4] and [11].

Our first result (Theorem A) says that we can transform a discontinuous vector field in a SP-
problem. In general this transition cannot be done explicitly. Theorem B provides an explicit
formula of the SP-problem for a suitable class of vector fields.

Consider C =C(K)={£:K CR?> - R: £ € C", L(£) =0} where L(&) denotes the linear
part of & at (0, 0).

Let 24 C 2" be the set of vector fields X = (X1, X») in £2" such that there exists & € C that
is a solution of

VE(X 1 — X2) =TIT; (X1 — X2), (N

where I1; denote the canonical projections, fori =1 ori = 2.
Our second result is:

Theorem B. Consider X € 2,4 and X, its ¢-regularization. Suppose that ¢ is a polynomial of
degree k in a small interval I C R with 0 € I. Then the trajectories of X, on Vo = {q € K:
F(q)/¢e € 1} are solutions of a SP-problem.

We remark that the singular problems discussed in the previous theorems, when ¢ \ 0, defines
a dynamical system on the discontinuous set of the original problem. This fact can be very useful
for problems in control theory.

Our third theorem deals with SP-problem such that the fast and the slow systems approach the
discontinuous vector field. More specifically, the fast system approaches the discontinuous vector
field whereas the slow system approaches the corresponding sliding vector field (see Section 2
for the definition).

Consider X € £2" and p: K — R with p(x, y) being the distance between (x, y) and X'. We
denote by X the vector field given by f(x, y)=px, VX, y).
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In what follows we identify 5(\8 and the vector field on [(K \ X¥) x R] C R3 given by
X(-x7 yvg): (XS(-xa y)vo)

Theorem C. If p € ¥ then there exist an open set U C R?, p € U, a 3-dimensional mani-
fold M, a smooth function ® : M — R> and a SP-problem Y on M such that ® sends orbits of

Y|¢’1(U><(0,+00)) in orbits OfX|(U><(0,+OO))-

The paper is organized as follows. In Section 2 we prove Theorems A and B and present
some usual definitions of discontinuous vector fields. Moreover, we make explicit the equations
of the SP-problem obtained in Theorem B. In Section 3 we apply Theorem B to study the class
of discontinuous vector fields X = (X1, X7) with X; = (f;, gi) (i =1,2) and g1 = g». We prove
that the trajectories of the sliding vector field X* are solutions of the reduced problem of a
SP-problem.

Let S be the set given by (5). We say that g € S is normally hyperbolic if (9f/dx)(g,0) # 0.

The classical results of GSP-theory give a complete description of the flow of system (3) near
a compact normally hyperbolic subset of S, when ¢ \ 0. See, for instance, [5]. In Sections 2
and 3 we prove that small perturbations of a discontinuous vector fields near a point g € X, U 33
(the sets of regular points of the kind escaping and sliding, respectively) can be analyzed like a
perturbation of a normally hyperbolic point. For precise definitions see Section 2.

In Section 4 we prove Theorem C and analyze the regularizations of generic vector fields
using the blow-up method.

The blowing up method transforms the regularized vector field X (x,y,¢) into a new
3-dimensional vector field Y (r, 6, y) which has trajectories being the solutions of a SP-problem.

Finally we address the interested reader to the results of Denkowska and Roussarie in [3]
where the method of blowing up for families of vector fields is extensively discussed.

We emphasize that if ¢; and ¢, are two distinct regularizations then the phase portraits on the
blowing up loci are the same.

We remark that in this paper, as usual in GSP-theory, the notation p means that the time is
t € R and p’ means that the time is T = ¢ /¢. Moreover, in the phase portrait, double arrow means
that the trajectories are of the fast dynamical system and simple arrow means that the trajectories
are of the slow dynamical system.

2. The sliding vector field

We start this section with basic facts of discontinuous vector fields.
We distinguish the following regions on the discontinuity set X:

(1) X1 € X is the sewing region if (X1 F)(X2F) > 0on X.
(i1)) X € X is the escaping region if (X1 F) > 0and (X2F) <0 on X.
(iii) X3 C X is the sliding region if (X1F) <0 and (X2F) > 0on Xs3.

Definition 3. Consider X € £2". The sliding vector field associated to X is the vector field X*
tangent to X3 and defined at ¢ € X3 by X*(q) = m — g with m being the point where the segment
joining g + X1(q) and g + X(q) is tangent to X'3.

It is clear that if g € X3 then g € X for —X and then we can define the escaping vector field
on X, associated to X by X¢ = —(—X)*. In what follows we use the notation X * for both cases.
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A singular point ¢ € X of X is a saddle provided one of the following conditions is satisfied:
(i) ¢ € X, and g is an attractor for X, (ii) ¢ € 3 and ¢ is a repeller for X% .
A point g € ¥ is a fold point of X; (fori =1ori =2)if X; F(g) =0 but XI.ZF(q) #0.

Definition 4. Consider X € £2”. We say that ¢ € ¥ is a regular point if

() X1F(g9)X2F(q) >0, or
(i) g € X3 (respectively on g € X5) and g is not a singular point of the sliding (respectively
escaping) vector field.

Definition 5. Consider X € £2". A point g € X' is an elementary singular point of X if ¢ is either
a fold of X; (fori =1 or i =2) or a hyperbolic singular point of X% .

Proof of Theorem A. Consider X € 2" with X; = (f;, gi) € x”, i = 1, 2. Suppose that a;t +
-+« + at* is the polynomial expression of ¢ on I C R with 0 € I. The trajectories of X, on V,
are the solutions of the differential system

x=1+2)/2+eF/e)(f1 — f2)/2,
y=1(81+8)/2+¢(F/e)(g1 — g2)/2.
The time rescaling 7 =t /¢¥ gives
X=hi =i+ )2+ (@F " - +aFY) (fi — f2)/2,
Y =hy=e"g1+8)/2+ (@ Fe" ' + -+ aF*) (g1 — 82)/2.

Thus we take & = (hy, h») and have that h(x, y,0) =0 for all (x, y) € X¥. The eigenvalues of
the linear part of & for € = 0 are the solutions of the equation

A2 — (ax/2)(X1 — X2) F*(p)r = 0.

It follows that zero is an eigenvalue of multiplicity at least one. From the other side our
hypothesis ensures that there exists a non-zero eigenvalue. So we get a normally hyperbolic
scenario and we may apply the Fenichel theory (see [5, Lemma 5.3, p. 67]) to get the desired
coordinates. O

Lemma 6 (Fundamental lemma). Consider X € 24 and & € C satisfying VE(X| — X») =
I (X1 — Xo). If x =x and y =y — E(x, y) then the differential system

x=fi+ 2)/2+eF/e)(f1 — f2)/2,
y=10(g1+g2)/2+¢o(F/e)(g1—g2)/2 ¥

is written as

ex=e[(fi+ /2 +eF/e)(fi — f)/2],
y=1(81+82)/2— 0&/3x)(fi + f)/2 — (3E/3y) (&1 + §2)/2,
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where the line over the function means that the respective function is given in such new coordi-
nates.

Proof. If x =x and y =y — &(x, y) we get

x=(fi+2+eF/e)(fi— )2

and

y=(51+8)/2 — QE/3x)(fi + f2)/2 — (0E/3y) (g1 + &2)/2
— o(F/e)/2(VE(X1 — X2) — (X1 — X2)).

Using the partial differential equation we get the desired formula. O

Analogously if VE(X| — X») =IT1(X] — X3) and x =x — &(x, y) and y = y then the differ-
ential system (8) is written as

X=(fi+ f)/2— QE/ax)(fi + f2)/2 — (3 /3y) (&1 + 22)/2.
ey =e[(g1 +82)/2 +o(F/e)(&1 — 22)/2].

Proof of Theorem B. Consider X € §2; and suppose that ¢ is a polynomial of degree k in a
small interval I CR withO e 1.

There exists £ :R? — R satisfying & € C”, L(¢) =0 and the partial differential equation
VE(X1 — Xo) =I1;(X1 — X»), for i =1 or i =2. We suppose without lost of generality that
i=2.

The trajectories of the regularized vector field X, on V,, are the solutions of the differential
system (8).

We consider the coordinates (x,y) given by x = x, y =y — &(x, y), and then we apply
Lemma 6. O

In order to the simplify the computation we suppose ¢ (x) =x for —1/2 <x < 1/2.

Example 1. Consider the class of discontinuous vector fields X € 2", X; = (fi, g), i =1,2,
with F(x,y) =x and g; = g» = g. One can see that £ = 0 is a solution of the partial differential
equation (7). It implies that in canonical coordinates we get a SP-problem.

Example 2. Consider the class of discontinuous vector fields X € 2", X; = (fi, gi), i =1,2,
with F(x,y)=y, fi= fo = f,and g = —g>» = g. As before, £ =0 is a solution of the partial
differential equation (7) and in canonical coordinates we get the SP-problem

x=f(x,y), ey =yg(x,y).

Example 3. Take X (x, y) = (1, x), X2(x,y) = (-1, —3x), and F(x, y) = y. The discontinuity
setis {(x,0) | x € R}. We have X| F = x, Xo F = —3x, and then the unique non-regular point
is (0, 0). We apply Theorem B.
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The vector field (2) is X¢(x, y) = (y/e,2xy/e — x). The partial differential equation (7) with
i =2 becomes 2(0&/0x) + 4x(0&/0y) = 4x. A solution &€ € C is given by &(x, y) = x2. Thus
we take the coordinate change X = x, y = y — x2. The trajectories of X, in these coordinates are
the solutions of the singular system

X =7y +x2, y=—x.

3. A special subclass of discontinuous vector fields

In this section we consider the class of discontinuous vector fields X; = (fi, gi), i = 1,2,
satisfying the additional condition

F(x,y)=x, g1=8=g. ©)
For simplicity we assume that ¢(x) =x for —1/2 <x < 1/2.

Proposition 7. Let X € 2" satisfying the hypotheses of Theorem A and X, its @-regularization
written like (3). We have:

(i) if p € X3 then p is an attractor of X for the fast flow;

(ii) if p € X then p is a repeller of X for the fast flow;

(iii) if p € X' is a regular point then either p is an attractor, or p is a repeller or p is a sewing
point.

Proof. The linear part of the corresponding singular problem (3) at p € X' and with ¢ = 0 has
two eigenvalues: A1 = 0 and Ay = (1/2)(X1 — X2)F(p). The eigenvalue A determines the
slow manifold (or discontinuous set, according the terminology used) and the eigenvalue A,
determines if p is attractor (A < 0) or repeller (A > 0). If p € X5 then (X;1F)(p) < 0 and
(X2F)(p) > 0 and thus Ap < 0. If p € X, then (X1 F)(p) > 0 and (X2F)(p) < 0 and thus
A2 > 0. Suppose that p € X is not an attractor or a repeller. It means that p € (X, U X3)¢. Thus
(X1F)(X2F) > 0 and then p is a sewing point. [

In what follows X € (§£24)* means that X € §2; with the additional condition (9).
A direct computation gives the following result.

Corollary 8. Consider X € (£24)*. The trajectories of X, given by (2), on |F(q)| < &/2 are the
solutions of the singular system

ex=fx,y,8), y=gxy (10)
with f(x,y,e) =e(fi+ f2)/2+x(fi — f2)/2and g € C".
Proposition 9. Consider X € (£24)*. We have:
(a) The slow manifold of (10) is the set
ZU{(x,y): filx,y) = folx, 0}

(b) p € Xy ifandonlyif fi(p)f2(p) > 0.
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(¢) pe Xy ifandonlyif fi(p) > 0and f>(p) <O.
(d) p € Xz ifandonlyif fi(p) <0and f2(p) > 0.
@ If pe X1U XU X3 and f1(p) # f2(p) then p is a normally hyperbolic point of (10).

Proof. The slow manifold of (10) is the set S = {(x, y): f(x,y,0) =0} and thus § = {(x, y):
x(fi(x,y) — fa(x,y)) = 0}. To prove (b)—(d) we compute X F and X, F:

XiF = (fi,g)F =(1,0)(fi.g) = fi-

So we use the definition of X'y, X5 and X3. To finish the proof we have just to compute the linear
part of

x'=f(x,y,8), y =eg(x,y,¢)

at (x,y,¢e) = (0, y,0) which has the eigenvalue A = (1/2)(f1(0, y) — f2(0, y)) associated to
eigenvector (1,0). O

Proposition 10. Consider X € (24)*. The trajectories of the sliding vector field X* are the
solutions of the reduced problem of the SP-problem (10).

Proof. It is enough to observe that the y-component of all points on the line joining ( f1, g) and
(f2, g) is g and to apply the definitions. In fact, the trajectories of the sliding vector field X ¥ are
the trajectories of the vector field (0, g(x, y, 0)) and the reduced problem of the SP-problem is

x=0, y=g(x,y,0). O

Proposition 11. Consider X € (£24)*. We have that p € X is a fold point if and only if f1(p) =0
and the vector field X1 is not tangent to the level 0 of the function f.

Proof. We have that X1 F = f] and (X2F = Vfi.X1=0ifandonlyif Vf; L X;. O
Theorem 12. Consider X € (§24)* and the ¢-regularized system X, given by (2).

() If ¢ € X is a regular point of X then there exist a neighborhood V C R* with q € V and
&0 > 0 such that for 0 < ¢ < g9, X, does not have singular points in V.

(b) If g € (X5 U X3) is a hyperbolic singular point of X* then there exists eo > 0 such that for
0 <& < &9, X¢ has a saddle point or a node point near q.

Lemma 13. Consider X € (§£24)* and the ¢-regularized system X, given by (2). We have that
q € X is a regular point of X if and only if f1(q) f>(q) > 0 or g = (0, yo) with g(q) # 0.

Proof. A point g is a regular point of X if and only if (X1 FX2F)(q) >0org € X, U X3 and
it is not a singular point of X% . The first condition means that f;(q) f>(¢) > 0 and the second
one follows from Proposition 10. In fact, a singular point of X* is also a singular point of the
reduced problem

x =0, y=g(@,y)

for every normally hyperbolic point. O
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Consider X the vector field given by (3) and S its slow manifold given by (5). We assume
that, for every normally hyperbolic ¢ € S, (9f/dx)(gq,0) has k* eigenvalues with negative real
part and k" eigenvalues with positive real part.

Lemma 14. Let g € S be a hyperbolic singular point of the slow flow with j*-dimensional lo-
cal stable manifold W* and a j"-dimensional local unstable manifold W". If X is normally
hyperbolic at q then there exists an e-continuous family q. such that qo = q and q. has a
(j° + k*)-dimensional local stable manifold W) and a (j* + k")-dimensional local unstable
manifold WY.

For a proof see [5].

Proof of Theorem 12. (a) Suppose that ¢ € X' is a regular point. Lemma 13 implies that
f1(q) f2(q) > 0 or g = (0, yo) with g(g) # 0. Suppose that f1(g) f2(¢) > 0. So fi and f, have
the same sign and it implies that X¢(g) is transversal to the line x = 0 at any g near ¢, for suf-
ficiently small &€ > 0. And we use the flow box theorem. If g(g) # 0 then g(g) # O for any ¢
near g and so X.(q) # (0, 0).

(b) Consider g € (¥> U X3). Without lost of generality assume that ¢ € ¥3. Using Proposi-
tion 9 we have that g is normally hyperbolic. Lemma 14 implies that X, has a singular point g,
which approaches ¢ when ¢ N\ 0. If fi(g) > f2(g) then k¥ =0 and k* =1 and finally ¢, is a
repelling node if j* =1, j* =0orasaddleif j¥ =0, j* = 1. If f1(g) < f2(g) then k¥* =1 and
k" = 0 and then ¢, is an attracting node if j* =0, j® = 1 orasaddle if j* =1, j* = 0. The proof
for the case g € X5 is similar. O

4. Blowing up

In this section the desingularization of generic vector fields is discussed by means of the
blowing up method. We also present the proof of Theorem C.

Consider X = (X1, X») € 2" with X; = (fi, gi), i = 1,2, and local coordinates around
p € X such that F(x,y) =x and p = 0. Thus )?(x, y) = |x| X (x, y) and the trajectories of its
@-regularization X(x, v, €) satisfy the differential system

x=(fi+ )2+ e&/e)(fi — 2)/2,

y=1(81+82)/2+¢(x/e)(g1 — 82)/2,

£=0 (11)
fore >0and (x,y) e U C R?, where U is a neighborhood of (0, 0). We observe that system (11)
is not defined for ¢ = 0 and it is not an explicit SP-problem according to Definition 2. However
if we consider the directional blow-up §: R? - R3 given by (x,y,&) = B(x,y,€) = (X8, y,8),
system (11) becomes

Ex=(fi+ )/2+ 9@ (fi — f2)/2,
y=1(81+82)/2+¢(X)(g1 — &2)/2,
£=0.

(12)
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Taking ¢ as a parameter system (12) is clearly an explicit SP-problem. Moreover, the parame-
ter value € = 0 can be considered.

Proof of Theorem C. Consider X € 2" as in the previous remark and U C R? a small neigh-
borhood of (0,0). Let V = U x (0, +00) and M = B~1(V). Next, it is easy to deduce that
system (12) defines a SP-problem Y on M and the map @ = S|, sends orbits of Y| B-1(V) into
orbits of 5(\|V. O

4.1. The polar blow-up

Geometrically speaking, it is more convenient to consider the polar blow-up coordinates
@:[0,400) x [0,7] x R —> R3 given by x =rcosf and ¢ = rsinf. The map « induces the
vector field on [0, +00) x [0, 7] x R given by

60" =—sin6[(fi + f2)/2+ @(cotd)(f1 — f2)/2].
Y =r[(g1+82)/2+ p(cotd) (g1 — g2)/2].
r' =rcosb[(f1+ f2)/2+ ¢(cotd)(fi — f2)/2]. (13)

The parameter value ¢ = 0 is now represented by » = 0 and the induced vector field is described
below.

e On the region (r, 6, y) € ({0} x (0, 7) x R):
0 = —sinO[(fi + f2)/2+ @(cotd)(fi — f2)/2]. y' =0. (14)
e On the region (r, 6, y) € ({0} x {0} x R) U ({0} x {r} x R):
6'=0, Yy =0. (15)

We observe that the directional blow-up and the polar blow-up are essentially the same.
In fact, if we consider the map G : C = [0,400) x (0,7) x R — R3 given by G(r,0,m) =
(cotf, y,rsinf) then B o G =«.

C*Ol)R?’

| A

R3

In what follows we present a rough geometrical description of the phase portrait of the sys-
tem X, ¢. Its trajectories on the region {(x, y,0) | x < 0} (respectively on the region {(x, y,0) |
x > 0}) are determined by the orbits of —x.X5(x, y) (respectively x.X1(x, ¥)). We represent the
set {(0,y,0) | y € R} by S_lF X R ={(cosh,sinb, y) |0 € (0,7), y € R}. The curves & =0 and
6 = m are composed by singular points. The fast flow on S}r x R is given by the solutions of
system (14) and the slow flow is given by the solutions of
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0=—sin0[(fi + /2)/2 + ¢(cotd)(fi — £)/2].
y=1(g1+82)/2+ ¢(cotf)(g1 — g2)/2. (16)

If necessary we may consider additional blowing ups to get normally hyperbolic points on the
slow manifold. The following charts can be very useful to the understanding of the phase portrait
of the system according to the techniques introduced in [4].

o The rescaling family:

with 6, 3 € R?, s > 0 and [ € N. In this case the circle S' ={(@, y,s5); s =0, 6%+ 3> =1}
is the boundary of the Poincaré disk.
e The phase-directional:

6 =scosy, y=ssiny a7
with 0 € [0, 2] and s > 0.

In this case we can apply the tools of GSP-theory (Flow-box theorem, center manifolds,
Fenichel theory) in order to get the phase portrait of the regularized vector field.

4.2. Generic discontinuous vector fields

The dynamics of a discontinuous vector field X in a neighborhood of a point p € X' can be
analyzed by means of the regularization method. Our aim, in this section, is to apply the GSP-
theory to this analysis.

First of all we analyze the regular points of the discontinuous vector field.

We discuss some normal forms presented in [10] representing the codimension zero singular-
ities. For each one of these forms we blow-up the discontinuous set and describe the SP-problem
in the blowing up locus. We have that X y = (X, X2) € (§£24)* and so equations of (13) become

r6 = —sin0[(f1 + f2)/2+ (cotd)(fi — /2], ¥

8.

4.2.1. Sewing
Assume that p = (0,0) € X1, X1(x,y) = (1, 1) and X»(x, y) = (2, 1). The SP-problem in the
blowing up locus (13) is

rf = —sin6(3/2 — ¢(cot)/2), y=1.

The composition @(cotf) is a decreasing function with limy_, o+ ¢(cotd) = 1, and
limg_, ,— ¢(cotd) = —1. Thus —sind(3/2 — ¢(cotH)/2) < 0 for any 0 < 6 < . The fast flow,
on the blowing up locus, is invariant on each section y = constant. The phase portrait of the fast
and slow dynamics of the singular problem, for ¢ = 0, and the phase portrait of the regularized
vector field for small & > 0 are illustrated in Fig. 1.
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Fig. 1. Fast and slow dynamics of the SP-problem corresponding to the sewing case and its regularization.
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4.2.2. Escaping
Assume that p = (0,0) € X, X1(x,y) =(1,1) and X5(x, y) = (—1, 1). The SP-problem in
the blowing up locus (13) is

ré = —sinfg(cot ), y=1.

The slow manifold is {(8, y) € (0, 7) x R; 6 =6y, ¢(cotfy) = 0} and the reduced flow goes in
the positive direction of the y-axis. For the fast flow we observe that any point on the slow mani-
fold is a repelling singular point because the angular eigenvalue is d /d6(— sinf¢(cot0))|g—q, =
¢’ (0) > 0. The phase portrait of the fast and slow dynamics of the singular problem, for & =0,
and the phase portrait of the regularized vector field for small ¢ > O are illustrated in Fig. 2.

4.2.3. Sliding

Assume that p = (0,0) € X3, X1(x,y) = (—1,—1) and X»>(x, y) = (1, —1). The phase por-
trait of the fast and slow dynamics of the singular problem, for ¢ = 0, and the phase portrait of
the regularized vector field for small ¢ > O are illustrated in Fig. 3.

The first non-regular case appears when p is a singular point of X > . In this case p € X, U 33
and it is an attractor or a repeller, or p is a fold point. For each one of this subcases we have
a normal form in (£24)*.
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Fig. 2. Fast and slow dynamics of the SP-problem corresponding to the escaping case and its regularization.
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Fig. 3. Fast and slow dynamics of the SP-problem corresponding to the sliding case and its regularization.

4.2.4. Saddle

Assume that p = (0, 0) € X (respectively p = (0,0) € X3), X1(x,y) = (x + 1, —y) (respec-
tively X1(x,y) = (—x — 1,y)) and Xp(x,y) = (x — 1, —y) (respectively Xo(x,y) = (—x +
1, y)). The SP-problem in the blowing up locus (13) is

rf = —rsinf cosf — sinf¢(coth), y=-—y
(respectively
r6 = rsin@ cos @ + sinfp(coth), y=y).

The slow manifold is {(#,y) € (0,7) x R; 6 =60y, ¢(cotfy) = 0}. The reduced flow follows
the positive (respectively negative) direction of the y-axis if y < 0 and follows the negative
(respectively positive) direction of the y-axis if y > 0. For the fast flow we observe that any
point on the slow manifold is a repelling (respectively an attracting) singular point because the
angular eigenvalue is ¢’(0) > 0 (respectively —¢’(0) < 0). The phase portrait of the fast and slow
dynamics of the singular problem, for ¢ = 0, and the phase portrait of the regularized vector field
for small ¢ > 0 are illustrated in Fig. 4.
The last elementary case that we consider is:

\
/.

AN

o
N

»
i

:

Fig. 4. Fast and slow dynamics of the SP-problem corresponding to the saddle case p € X, and its regularization.
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Fig. 5. Fast and slow dynamics of the SP-problem corresponding to the fold case and its regularization.

4.2.5. Fold
Assume that p = (0,0), X1(x,y) = (y,1) and X»(x,y) = (1,1). The SP-problem in the
blowing up locus (13) is

rf=—sinf((y+1)/2+ p(cotd)(y — 1)/2), =1

The slow manifold is the curve y(p(cotf) + 1) = (¢(cotd) — 1). It is the graphic of a de-
creasing function which is 0 for 6 = 0 and tends to —oo when 6 — 7. The reduced flow goes in
the positive direction of the y-axis. For the fast flow we observe that 6 >0,for0 <6 <6(y) and
6 < 0, for 0(y) <0 < m, with 8(y) given implicitly by y(¢(cotf) + 1) — (¢(cotd) — 1) =0. The
phase portrait of the fast and slow dynamics of the singular problem, for ¢ = 0, and the phase
portrait of the regularized vector field for small & > 0 are illustrated in Fig. 5.

Observe that the point (6, y) = (0,0) is not a normally hyperbolic singular point since the
following equality occurs

0 .
ﬁ[— sinf((y + 1)/2 4 ¢(cotd) (y — 1)/2)] =0.
0,0

We perform an additional blow-up at (6, y,r) = (0, 0,0). Such blow-up is defined by formu-
las (17) with s > 0 and =& < ¢ < 7. In these coordinates we have

sin

s’ = —cossin(s cos )G (s, V), v =

id sin(s cos ¥)G (s, ¥)

N

with G (s, ¥) = S 4 o (cot(s cos ) 2V =L

One verifies that G (0, ¥) = 0 and that % |s=0 = sin . In order to determine the flow on the
blowing up locus we observe that, after a division by s, lims_,o ¢’ = sin? Y cosyr.

It means that the angle component is increasing for ¥ € (=%, 7) with a singular point at

¥ =0.
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4.3. SP-problems for the codimension 1 normal forms of singular points

In Section 2 we defined the set of regular points and the set of elementary singular points for
a discontinuous vector field (X1, X;) having discontinuous set X . In this section we consider the
break of the conditions which give the elementary singular set. More specifically we analyze the
codimension 1 singular points.

Definition 15. We say that g € X' is a codimension 1 singular point if one of the following
conditions is satisfied.

(a) Saddle-node: X1 F(q)X2F(gq) <0 and g is a non-hyperbolic singular point of X% .
(b) Elliptical fold: X F(q) = X2F(q) =0, X2F(q) <0and X3F(q) > 0.

(c) Hyperbolic fold: X; F(q) = X2F (¢) =0, X?F(q) > 0 and X F(q) < 0.

(d) Parabolic fold: X1 F(q) = X2F(q) =0, X7F(¢q) > 0 and X3F(q) > 0.

Next we discuss the codimension one normal forms of singularities presented in [10]. For each
one of such form we blow-up the discontinuous set and describe the SP-problem in the blowing
up locus.

4.3.1. Saddle-node
We take ¢ = (0,0) € 23, X1(x,y) = (=1, —y?) and X»(x, y) = (1,0). The SP-problem in
the blowing up locus is

ré = sinfg(coth), ¥ =—(y*/2)(1 + p(coth)).

The slow manifold is the set {(0, y) € (0,7) x R; 6 =60y, ¢(cotfy) = 0}. The reduced flow on
2

the slow manifold 6 = 7 is y = — % Moreover, there exists a reduced singular point at (6, y) =
(6o, 0). The fast vector field is (6’,0) with 8’ > 0 for 0 <8 < 6y and 8’ < 0 for y < 6 < 7. The
fast and the slow dynamics are represented in Fig. 6.

|

./
]

T
w\< 0

r

|
(1 {

Fig. 6. Fast and slow dynamics of the SP-problem corresponding to the saddle-node case and its regularization.
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Fig. 7. Fast and slow dynamics of the SP-problem corresponding to the elliptical fold (+) case and its regularization.

4.3.2. Elliptical fold
We take ¢ = (0,0) € ¥, X1(x,y) = (—y, 1) and X2i(x,y) = (£y, £1). For X;' the SP-
problem in the blowing up locus is

rf = ysinf¢(coth), y=1.

The slow manifold is given by (8, y) = (6,0) or (6, y) = (%, y). The reduced flow, on % follows
the positive direction of the y-axis because y =1 > 0 and on y =0 it is composed by singular
points. The fast vector field is expressed by (#’,0) with 8’ > 0 if and only if y > 0 and 0 <
6 <% ory<0and 5 <6 <. The fast and the slow dynamics are represented in Fig. 7. The
regularized vector field does not have singular points.

For any 6 € [0, 7], the point (8, y) = (6, 0) is not a normally hyperbolic singular point be-
cause %[y sinf¢p(cotd)]],0) = 0. Since (0, y,r) = (%, 0, 0) is a self intersection point of the
slow manifold, we perform an additional blow-up on it. First of all we translate this point
to the origin with (61, y1) = (0 — 7, y). Next we consider the blow-up defined by formu-
las (17) with s > 0 and ¥ € [0, 27]. In these coordinates we have ¢ = ﬁG(s, ) with
G(s, ¥) = 2sin(s cos ¥ + F)p(cot(s cosyr + 7)). As before G(0, /) = 0 and now %h:o =
—3¢’(0) cos . Thus after a division by s, we have lim;_, o' = % sin? ¥ cos ¥ ¢’ (0). It means
that the angle component is increasing for ¥ € (=%, %) and decreasing for ¢ € (5, 37”).

We also consider an additional blow-up at (0, 0). We consider the blow-up defined by formu-
las (17) with s > 0 and ¢ € [-7, 5]. In these coordinates we have ' = ﬁG(s, ) with
G (s, ¥) = 2sin(s cos Y)@(cot(s cos ). We get G(0,¢) =0 and %lszo = 2cos . Thus af-
ter a division by s, we have lims_o %' = — sin® ¥ cos . It means that the angle component is
decreasing for ¥ € (—%, ). A similar analysis can be considered at the point (r, 0, 0).

For X, the SP-problem in the blowing up locus is

r6 = ysiné, y = gp(coth).
The slow manifold is the set y = 0. The reduced flow on y = 0 is composed by singular points.

The fast vector field is (8, 0) with 8 > 0 if and only if y > 0 and 6’ < 0 if and only if y < 0.
As in the previous case, we can perform additional blow-ups at the points (0, 0, 0) and (7, 0, 0).
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Fig. 8. Fast and slow dynamics of the SP-problem corresponding to the elliptical fold (—) case and its regularization.

Observing that X, = (—y, <p(§)) is reversible with respect to involution R(x,y) = (—x, y) we
conclude that the origin is a center of the regularized system. The fast and the slow dynamics are
represented in Fig. 8.

4.3.3. Hyperbolic fold
We take ¢ = (0,0) € ¥, X (x,y) = (y,1), and X;(x,y) = (2y,—1), and X, (x,y) =
(=2y, 1). For X = (X;, er) we have that the SP-problem in the blowing up locus is

r = —(y/2)sin6 (3 — p(coth)), y = p(coth).

The slow manifold is y = 0. The reduced flow is composed by singular points. The fast vector
field is (6’,0) with 6’ > 0 if y > 0 and with 6’ < 0 if y < 0. As before, we perform additional
blow-ups at the points (0, 0, 0) and (=, 0, 0). The fast and the slow dynamics are represented in
Fig. 9. The regularized vector field has only one singular point which is of the saddle type. For
X = (X1, X, ) we have that the SP-problem in the blowing up locus is

r6 = —(y/2)sinf(—1+3p(cotd)),  y=1.

The slow manifold is y = 0 or 6 = 6y with ¢(cotfy) = 1/3. The reduced flow goes in the positive
direction of the y-axis on 6 = 6y and is composed by singular points on y = 0. The fast vector
field is (8’,0) with 8’ <0 for0 <6 <6y and y>0or y<0and §y <6 < 7; and 8’ > 0 for
0<6O <6fpand y <0Oor by <6 <m and y > 0. Here we perform additional blow-ups at the
points (0,0, 0), (6p,0,0) and (;r,0,0). The dynamics of the system at the slow manifold at
(6o, 0, 0) can be easily visualized if a translation and the rescaling

6 =s0, y=sy, r=s>

are considered. The fast and the slow dynamics are represented in Fig. 10. The regularized vector
field does not have singular points.
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Fig. 9. Fast and slow dynamics of the SP-problem corresponding to the hyperbolic fold case with sign (4) and its
regularization.

Fig. 10. Fast and slow dynamics of the SP-problem corresponding to the hyperbolic fold case with sign (—) and its
regularization.

4.3.4. Parabolic fold
Initially we take ¢ = (0,0) € ¥, X (x,y) = (—y,—1) and Xs(x,y) = (2y,1). The SP-
problem in the blowing up locus is

rd = (y/2)sinf(—1 + 3p(cotd)), y = —p(cotb).

The slow manifoldis y = 0 or 8 = 6, ¢(cotfy) = 1/3. The reduced flow is composed by singular
points if y =0 and it goes in the negative direction of the y-axis if & = 6y. The fast vector field
can be obtained from the hyperbolic fold (—) case if a change of the orientation is considered.
The fast and the slow dynamics are represented in Fig. 11. We have that (%, 0) is the unique
singular point of the regularized vector field. Moreover, it is a focus or a center. In fact, it is easy

to see that the linear part of the regularization has eigenvalues A = + %i .
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Fig. 11. Fast and slow dynamics of the SP-problem corresponding to the parabolic fold case and its regularization.

Suppose now thata, b > 0 and X (x, y) = (—ay, —1) and X (x, y) = (—by, —1). In this case
the SP-problem in the blowing up locus is

. . —a—b b-—a .
rf = —ysinf + ——(coth) |, y=—1.
2 2
The slow manifold is y = 0 because | _bb:a“ | > 1 and then there is no solution of ¢(cotf) = _bli _a“ .

The reduced flow is composed by singular points if y = 0 and the fast vector field is (6, 0) with
0 >0if y>0and 0 < < 6y or y < 0. Observe that if we take a = b = 1 then the fast vector
field is the same as the elliptical fold (—) case. The fast and the slow dynamics are represented
in Fig. 12.

/

Fig. 12. Fast and slow dynamics of the SP-problem corresponding to the parabolic fold case with @ = b =1 and its
regularization.
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Example. In this example we try to give a rough idea how to get minimal sets by means of the reg-
ularization process. Consider X (x, y) = (3y2 —y—2,1)and Xa(x,y) = (—3y2 —y+2,-1).
As before we assume that F(x, y) = x. The regularized vector field is

1 1 1 1
Xg(x,y) = (E + 5¢)<§>>(3y2 e 2, 1) + (E — E(p(%))(—3y2 -y +2, —1).

Applying Theorem C we get that the SP-problem in the blowing up locus is

rf = —sinf(—y + p(cotf)(3y* —2)), = p(coth).

Y which defines two functions

The slow manifold is given implicitly by ¢(cotf) =

3y2-2
14+ /1 +24¢2(cotd 1 —+/1+24¢2(cotd
i) = 0L0) and ya(0) = v lcod)
6¢(cot) 6¢(cotd)

The function y; (@) is increasing,

y1(0) =1, lim y(0) =400, lim y1(0) =—o00 and yj(7)=—1.
0%~ 6—>7%7F
The function y, () is increasing,

2 ) 2
»(0)=—=, lim y»(@)=0 and y(7)=.
3 6%% 3

We can extend y; to (0, ) as a differential function with yg(%) =0.
The fast vector field is (9’, 0) with 8’ > 0 if (9, y) belongs to

4 b/ T
[(07 5) x (y2(0), y16)) U <5,ﬂ) x (y2(6), +00) U (E,ﬂ) x (=00, yi (9))]

and with 8’ < 0 if (9, y) belongs to

[(O, %) x (y1(6), +00) U (0, %) x (=00, y2(0)) U (%n) x (ylw),yz(e))].

The reduced flow has one singular point at (0, 0) and it goes in the positive direction of the
y-axisif y € (—%, 0) U (1, oo) and goes in the negative direction of the y-axisif y € (—oo, —1)U
0. 9.

One can see that (6, y,r) = (0,1,0) and (@, y,r) = (0, —1,0) are not normally hyperbolic
points. So we perform additional blow-ups, as before. In Fig. 13 we have the fast and the slow
dynamics of the SP-problem.
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Fig. 13. Fast and slow dynamics of the SP-problem corresponding to the non-elementary graphics case.

5. Final remarks

In this section we discuss the existence of periodic orbits for the regularized system. The
existence of periodic orbits can be expected in some cases:

e X has a codimension 1 singular point ¢ € X of parabolic fold kind.

For simplicity this case will be discussed by means of the vector field written in the following
normal form:

Xl(xvy)z (_Y‘FO‘(?@ yva) 27_1 +0’(x’ Yﬂ)’z),

Xa2(x,y) = (3y +o|(e, v, ) [, 1+ 0| (x, y.@)[),

where a € R is an additional parameter.

Suppose that ¢(1) = Y 2, a,t". Thus the trajectories of X, are the solutions of the differential
system

¥=y+o|(x, y,a)|2 +(x/e)(—2y +o|(x, y,a)|2),
y =O+0|(x, y,a)|2 +g0(x/8)(—2+0|(x, y,a)|2).

We take the linear coordinate change y =,/ “E—‘ v1, X = x1. The differential system in these coor-
dinates is
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. aj 2 . aj 2
x1=,/?y1+0|(x,y,a) , y1=—‘/;x1+0|(x,y,a)! : (18)

If we consider the polar coordinate change then the phase portrait of (18) is composed by the
graphic of r, = f,(6, a). The return map 7 :RT — Ris given by 7 (p, a) = foQ2m,a) — p, and

the correspondent Lyapunov values are given by Vi (a) = w It is known that if there exist
n €N and a € R such that 7/(0,a) = --- = 7"~ 1(0,a) = 0 and 7" (0, a) # O then n is an odd
number. In this case we say that % is the multiplicity of the focus and there exist Ag, 5o > 0
such that for any A < Ag, § < g and 1 < s < n there exists a system which is §-close to (18) and
has n limit cycles in a A-neighborhood of (0, 0).

e The discontinuous set in a neighborhood of q € X is the slow manifold of the regularized
one and q is a canard point.

The second way to get regularizations with limit cycles is to consider discontinuous vector fields
for which the related singular problem presents a canard point g. It means that the singular
problem must be written like (3) and satisfies the conditions:

of O f og
3, @0 #0. —5(q,0)#0, 8(q,00=0, —(gq,0)#0.
y ax ax

“Canard Explosion” is a term used in chemical and biological literature to denote a very fast
transition, upon variation of a parameter, from a small amplitude limit cycle to a big amplitude
limit cycle. This phenomenon is related to the presence of a family of canard cycles and occurs
for example in the Van der Pol equation

X
X=y—— -7 y=¢(a—x).

In this case (x, y, &,a) = (0, 0,0, 0) is a canard point. There is a distinguished history of investi-
gations on this context [1,8].

o There exists a singular graph of X of elementary kind.

Consider X = (X1, X2) € £2" and Q € K a compact and connected region. Moreover, suppose
that

2noQ={a,p}, [.plcX, Oc(ap).

A singular graph y € Q is a set composed by an arc S of ¥ and a piece 1 of an orbit of X in
{(x,y) € K: F(x,y) > 0} such that X does not have singular points in S;. An elementary graph
is a singular graph y9 U O P, where y be the orbit of X| by 0 and P is such that y; intersects X
at P € (o, B). Sotomayor and Teixeira proved that if y is an elementary graph of X, then there
exists a neighborhood B of y in K and gy > 0 such that for any 0 < ¢ < &g the regularized vector
field X, has a unique periodic orbit in B. For a precise statement see [10, Lemma 4.4, p. 220].

We observe that, according to the terminology used in GSP-theory, this result produces a class
of singular problems for which closed singular orbits can be approached by regular orbits.
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