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Abstract

We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. 
We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. 
In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we 
construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field 
propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate 
collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to 
be 2.5–3 TeV.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Strings, by their very definition, are nonlocal objects: even classically they do not interact with 
each other at a specific spatial point, but rather over a region in space. Not surprisingly, nonlocal
structures are a recurrent theme in stringy theories/models. For instance, this is the case in string 
field theory (SFT) [1–3] and various toy models of string theory such as p-adic strings [4–7], 
zeta strings [8], and strings quantized on a random lattice [9–12]. More general nonlocal theo-
ries that do not respect Lorentz symmetry arise in noncommutative field theories [13,14], field 
theories with a minimal length scale [15] (such as doubly special relativity), fluid dynamics 
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and quantum algebras [16]. Many theorists have used these theories to probe different stringy 
phenomena such as tachyon dynamics [17–19], excitations on branes [20], Regge behavior [21], 
stringy solitons [19,22,23], and stringy thermodynamics [24–27]. In particular, by applying finite 
temperature field theory techniques several remarkable results were obtained. The p-adic parti-
tion function, at least at the 2-loop level, exhibited thermal duality [24]: Z(T ) ∼ Z(M2/4πT ), 
which was expected from stringy arguments [28], but had not been explicitly demonstrated be-
forehand. The partition function also reproduced known features of the so-called “Hagedorn 
Phase” [29,30], and provided new insights. Inspired by stringy nonlocal physics in this paper we 
adopt a phenomenological approach and take a few steps towards building a specific nonlocal 
extension of the Standard Model, and also investigate potential signatures of these theories at the 
Large Hadron Collider or LHC.

A Poincare invariant nonlocal formulation of the Standard Model was provided in [31], see 
also [32]. While [31,32] considers nonlocal gauge transformations, in our model the gauge trans-
formations remain local, it is the interactions that become nonlocal as was first discussed in [33,
34]. Finally, let us also point out that similar string-inspired nonlocal interactions was also stud-
ied before in [35], but the modifications were introduced in a somewhat ad-hoc fashion rather 
than deriving it from an action as we will in this paper.

Now, apart from the fact that the nonlocal modifications in the form of an exponential damp-
ing of the propagators are inspired by string theory, arguably the strongest candidate for a unified 
theory of gravity and particle physics, these theories have several attractive features. Unlike most 
other higher derivative theories, the nonlocal higher derivative models are expected to be free 
from ghosts [36,32], at least at the perturbative level, and are also thought to have a well-posed 
initial value problem [19,37–41]. What makes them particularly exciting is that the propagator in 
these nonlocal theories are exponentially damped at high momentum often making all the scat-
tering amplitudes finite. Thus these theories are strong candidates for a truly UV-complete field 
theory. The exponential damping can be interpreted as a smooth Lorentz-invariant way of incor-
porating the fact that at the smallest distance scales one does not expect a space–time continuum. 
Therefore arbitrary small spatio-temporal fluctuations are “unphysical” and needs to be elim-
inated. The traditional approach is via regularization/renormalization. In contrast, in nonlocal 
theories the mass scale, M , associated with the exponential damping of the propagator behaves 
like a physical parameter (in String theory it would be related to the string tension) eliminat-
ing smaller than M−1 length scale fluctuations. This leads to small differences in the scattering 
cross-sections between the local field theories and their nonlocal counterparts. These are the kind 
of differences that we are going to try to estimate in the context of LHC measurements.

It is important, however, to point out that even if these infinite-derivative theories do not end 
up describing the interactions at the most fundamental level, they could still be “effectively” cap-
turing dynamics of the more fundamental theory up to a certain scale. For instance, such kinetic 
modifications have been very successfully used in nuclear physics [42]. In this paper, we take 
this more modest approach where we look at higher derivative modifications to the kinetic part 
of the Standard Model action that can encapture nonlocal physics. Indeed, this is similar in spirit 
to the higher-dimensional operators that is widely used in the literature, see for instance [43], to 
parameterize new physics beyond the Standard Model. It is also worth pointing out that previ-
ously, the nonlocalization in such theories was studied as a regularization scheme [44–46] and 
was found to have some distinct advantages over some of the more traditional schemes such as 
dimensional regularization, ζ -function regularization and Pauli–Villars method.

Another motivation to studying such nonlocal effects in SM comes from trying to solve the 
“hierarchy” problem, as was initially pointed out in [31]. Just as a supersymmetry breaking
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scale, Msusy = O(TeV) can keep the mass of the Higgs stay small by ensuring the bosonic 
and fermionic loop contributions cancel beyond Msusy, the exponential suppression of all spa-
tial fluctuations shorter than M−1 in the nonlocal models can produce the same result if M =
O(TeV). This provides us with an additional motivation to study scenarios where M =O(TeV). 
Obviously, a complete resolution of the hierarchy problem also requires a mechanism that can 
explain why M is 15 orders of magnitude smaller than the Planck scale; the nonlocal interaction 
can only prevent quantum mass corrections from diverging, if a TeV nonlocal scale is present in 
the first place. However, this is still an interesting advantage of the nonlocal theories and in this 
regard the situation is no worse than SUSY.1

In this paper our first goal is to construct a nonlocal version of the abelian sector of the 
Standard Model taking care to preserve gauge invariance. Next, we will compute the differences 
in cross sections between the Nonlocal Standard Model (NLSM) and SM at high energy colliders 
and potential signatures of these models that may be visible in the next LHC run.

Our paper is organized as follows. In Section 2, with the purpose of illustration we introduce 
the string-inspired nonlocal modification in a scalar toy model. We discuss the renormalization 
prescription in these theories and show how it leads to small differences from the usual field 
theoretic results in scattering cross sections. Next, in Section 3, we construct a nonlocal version of 
the abelian sector of the SM which preserves gauge invariance. We also obtain the Feynman rules 
for this model. In Section 4, we compute some of the cross sections in NLSM that is relevant to 
high energy collider experiments. We obtain lower bounds on the parameters of NLSM from the 
current experimental data. In Section 5, we summarize our results and discuss future directions.

2. Nonlocal scalar field theory

2.1. Action

Canonical examples of nonlocal actions that appear in string literature can be written as

S =
∫

dDx

[
1

2
φK(�)φ − Vint(φ)

]
, (2.1)

in the “+ − − −” metric signature convention that we will employ throughout this manuscript. 
The kinetic operator K(�) contains an infinite series of higher derivative terms. For instance, 
K(�) = −e�/M2

for stringy toy models based on p-adic numbers [4–6] or random lattices [9–12,
21], and K(�) = −(� + m2)e�/M2

in String Field theory [1–3] (for a review see [50]), where 
m2 (< 0) and M2 (> 0) are proportional to the string tension. Here we are going to take a 
phenomenological approach and investigate particle physics implications if M = O(TeV). As 
mentioned in the introduction, the first motivation comes from the fact that although these the-
ories contain higher derivatives, they do not contain ghosts (at least perturbatively) and are able 
to retain the improved UV behavior expected in higher derivative theories. To see this explic-
itly, one can consider a fourth order scalar theory with K(�) = −�(1 + �

m2 ). The corresponding 
propagator reads

1 In this context it is worth noting that while usually the string scale is thought to be only a few orders of magnitude 
smaller than the Planck scale, there are several stringy compactification schemes where the string scale can be made 
much lower. Different mechanisms have been proposed to explain the hierarchy between the Planck and the electro-weak 
scale by postulating that the Planck scale is not a fundamental but rather a derived scale which happen to obtain a large 
value due to warping [47,48] or cosmological evolution in the “early” universe [49].
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�(p2) ∼ −m2

p2(p2 − m2)
∼ −1

p2 − m2
+ 1

p2
(2.2)

From the pole structure of the propagator it is clear that the theory contains two physical states, 
but unfortunately the massive state has the “wrong” sign for the residue indicating that it is a 
ghost. Once interactions are included, it makes the classical theory unstable, and the quantum 
theory non-unitary. The stringy kinetic modifications, on the other hand, combine to be an ex-
ponential which is an entire function without any zeroes. In other words, it does not introduce 
any new states, ghosts or otherwise, and only ameliorates the UV behavior with an exponential 
suppression.

The second motivation, as was also alluded to in the introduction, has to do with the fact that in 
these nonlocal theories corrections to the mass of a scalar field typically goes as ∼M2. Therefore, 
such modifications provide a way to ameliorate the hierarchy problem if M = O(TeV). To see 
this explicitly, let us start with a simple nonlocal λφ4 theory of scalar fields:

S =
∫

d4x

[
−1

2
φe

�+m2

M2 (� + m2)φ − λ

4!φ
4
]

(2.3)

Here the normalization of φ is so chosen that the residue at the p2 = m2 pole is unity. In Eu-
clidean space (p0 → ip0) the propagator is given by

�(p2) = − ie
− p2+m2

M2

p2 + m2
(2.4)

while the vertex factor is, as usual, given by −iλ.

2.2. Two point function and the hierarchy problem

To understand how the quantum loop computations work, let us first compute the one loop 
2-pt function with zero external momentum. We have2

�2 = − iλ

2

∫
d4k

(2π)4

e
− (k2+m2)

M2

k2 + m2
= −i

λe
− m2

M2

16π2

∫
dk

k3e
− k2

M2

k2 + m2
(2.5)

The above integral is finite and has an analytical expression

�2 = −i
λM2e

− m2

M2

32π2

[
1 + e

m2

M2

(
m2

M2

)
Ei

(
− m2

M2

)]
(2.6)

where Ei is the exponential-integral function defined via

Ei(z) = −
∞∫

−z

e−t

t
dt (2.7)

where the Cauchy Principal Value is taken.
The mass correction is naively given by

δm2 = i�2 = λ

32π2

[
e
− m2

M2 +
(

m2

M2

)
Ei

(
− m2

M2

)]
M2 (2.8)

2 In going from Minkowski to Euclidean integral we also have to replace d4p with id4p.
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The Ei function has a mild divergence as z → 0, but zEi(z) → 0 as z → 0. Thus we see that 
when M � m

δm2 = λ

32π2
M2 (2.9)

In other words, the “mass correction” grows linearly with M . Thus if M = O(TeV), the model 
can address the hierarchy problem as was discussed in [31], (2.9) provides an explicit corrob-
oration. Just like with the SUSY breaking scale, this provides an encouragement to search for 
nonlocal effects at LHC.

There is a subtle point worth noting: Due to the exponential cutoff in the “bare” propagator, 
δm2 is not exactly i�2. Resumming all the 1PI diagrams with the bare propagators sandwiched 
between the 1PI contributions, one obtains the physical propagator, �phys(p

2), to be

�phys(p
2) = − ie

− p2+m2

M2

p2 + m2 + i�2e
− p2+m2

M2

(2.10)

In other words the 1-loop correction to the mass depends on the momentum, and is given by

δm2(p2) = λ

8π2

M2

2

[
e
− m2

M2 +
(

m2

M2

)
Ei

(
− m2

M2

)]
e
− p2+m2

M2 (2.11)

which reduces to (2.8) at p2 = −m2.

2.3. Four point scattering amplitude

It is instructive to compute the 4pt-scattering amplitude in the nonlocal theory and compare 
the results with the local field theoretic calculations. In the process we will also see why the 
quantum loops in these nonlocal theories remain finite and provide small corrections to their local 
counterparts. Let us start with the one loop four point function, �4 for zero external momenta. 
This is given by

�4 = iλ2e
− 2m2

M2

2

∫
d4k

(2π)4

e
− 2k2

M2

(k2 + m2)2
= iλ2e

− 2m2

M2

16π2

∫
dk

k3e
− 2k2

M2

(k2 + m2)2
(2.12)

Again, one can compute it exactly:

�4 = − iλ2e
− 2m2

M2

32π2

[
1 +

(
1 + 2m2

M2

)
e

2m2

M2 Ei

(
−2m2

M2

)]
(2.13)

�4 is indeed finite and is essentially the 1-loop contribution to the effective potential at the quartic 
level. One observes that �4 diverges mildly (similar to a logarithm) as m/M → 0. This is again to 
be expected from the local field theory results. A few important points however emerge: First, the 
UV and IR divergences are tied together, the IR divergence is expected as m → 0, while the UV 
divergence corresponds to M → ∞, we now have a single divergent combination. Second, it is 
clear that since the dependence on our “cut-off” scale is mild, it will provide different predictions 
for the scattering amplitude (as compared to usual renormalization) but the corrections are going 
to be small.

Let us next look at the scattering amplitude when say two particles with momenta p1 and p2
scatter. The s-channel loop integral is given by
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A(s) = iλ2e
− 2m2

M2

2

∫
d4k

(2π)4

e
− k2

M2 e
− (k+P )2

M2

(k2 + m2)((P + k)2 + m2)
(2.14)

where P = p1 + p2. There is no analytical expression for the above, but one way to make 
progress is to introduce Schwinger parameters and rewrite the above integral as

A(s) = iλ2e
− 2m2

M2

2

∫
d4k

(2π)4

∞∫
0

dξ1

∞∫
0

dξ2 e
− k2

M2 e
− (k+P )2

M2 e−(k2+m2)ξ1e−((k+P)2+m2)ξ2

(2.15)

We therefore need to just perform some Gaussian integrals. In a straight forward way one finds

A(s) = iM4λ2e
− 2m2

M2

32π2

∞∫
0

dξ1

∞∫
0

dξ2
e−m2(ξ1+ξ2)e

s

M2
(1+ξ1M2)(1+ξ2M2)

2+M2(ξ1+ξ2)

(2 + M2(ξ1 + ξ2))2
(2.16)

Here s = −P 2 is the usual (Minkowski) Mandelstam variable.
The main point here is that the scattering cross-section depends on three parameters m2, M2, λ

as opposed to only two parameters in the local field theory, m2
r , λr , the r referring to renormalized 

quantities. This means that in general we will have a different result as compared to conventional 
renormalization. However, the dependence on M2 is weak, and that is why one reproduces the 
local field theory results in the large M limit. At this point it is also worth pointing out that 
interactions that are traditionally considered non-renormalizable produce finite loops once the 
propagators are made nonlocal. For instance, loops for a φ6/M2

6 interaction are finite, and also 
give rise to a valid perturbative loop expansion as long as M � M6, see [21,25] for similar cal-
culations in the context of p-adic strings. This suggests that “nonlocalization” may be a way to 
eliminate quantum divergences in nonrenormalizable theories which may have profound implica-
tions for fundamental physics such as gravity, see [51–53,31,54–57] for efforts in this direction.

2.4. QFT vs. NLFT

We want to compare the results in a theory where M is a physical parameter versus the usual 
renormalization prescription where M effectively behaves as a regulator.

To see this, let us first write down the complete 2-particle scattering amplitude. At the 1-loop 
level, this is a sum of three diagrams, the s, the t and the u channel. The amplitude thus reads

iM = −iλ + [A(s) + A(t) + A(u)] (2.17)

Changing the integration variable from ξ → M2ξ , we have

A(s) = iλ2e−2m2

32π2

∫
dξ1

∫
dξ2

e−m2(ξ1+ξ2)e
s

M2
(1+ξ1)(1+ξ2)

2+ξ1+ξ2

(2 + ξ1 + ξ2)2
(2.18)

where m ≡ m/M .
While no analytic solution to the above exist, we can come up with an upper bound for the 

above integral as follows:
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A(s) = iλ2e−2m2

32π2

∫
dξ1

∫
dξ2

∑
n

e−m2(ξ1+ξ2)

(2 + ξ1 + ξ2)2

1

n!
(

s

M2

(1 + ξ1)(1 + ξ2)

2 + ξ1 + ξ2

)n

(2.19)

= iλ2e−2m2

32π2

∑
n

1

n!
( s

M2

)n
∫

dξ1

∫
dξ2

e−m2(ξ1+ξ2)

(2 + ξ1 + ξ2)2

(
(1 + ξ1)(1 + ξ2)

2 + ξ1 + ξ2

)n

(2.20)

Let us evaluate the integral

In ≡
∫

dξ1

∫
dξ2

e−m2(ξ1+ξ2)

(2 + ξ1 + ξ2)2

(
(1 + ξ1)(1 + ξ2)

2 + ξ1 + ξ2

)n

<

∫
dξ1

∫
dξ2 e−m2(ξ1+ξ2) (1 + ξ2)

n−2

= −em2
E2−n

(
m2)

m2
, (2.21)

where

En(z) ≡
∞∫

1

dt
e−zt

tn
. (2.22)

Since E2−n

(
m2) diverges as m → 0, only for n = 0, 1, it is clear that all the n > 1 terms are 

finite. The first two terms in (2.20) are indeed divergent, but they can be absorbed “within” a 
physical quantity. To see this let us define

λp ≡ −M(s = 4m2, t = u = 0)

= λ − λ2e−2m2

32π2

⎡
⎢⎣∫

dξ1

∫
dξ2

e−m2(ξ1+ξ2)
(

2 + e
4m2 (1+ξ1)(1+ξ2)

2+ξ1+ξ2

)
(2 + ξ1 + ξ2)2

⎤
⎥⎦ (2.23)

Expanding the exponential we find that the first two terms diverge:

λp = λ − λ2e−2m2

32π2

[∫
dξ1

∫
dξ2 e−m2(ξ1+ξ2)

(
3 + 4m2 (1+ξ1)(1+ξ2)

2+ξ1+ξ2

(2 + ξ1 + ξ2)2
+O(m4)

)]
(2.24)

However, this is precisely the divergence that one finds in the first two terms in the expression 
for the scattering amplitude

−M(s, t, u) = λ − λ2e−2m2

32π2

⎡
⎣∫

dξ1

∫
dξ2

e−m2(ξ1+ξ2)
(

3 − 4m2

M2
(1+ξ1)(1+ξ2)

2+ξ1+ξ2

)
(2 + ξ1 + ξ2)2

⎤
⎦

+O
(

s

M2
,

t

M2
,

u

M2

)
(2.25)

by virtue of the identity s + t + u = 4m2. It is therefore clear that one can rewrite the scattering 
amplitude as

−M(s, t, u) = λp + (terms regular as M → ∞) (2.26)
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This means that for large values of M the M is not going to grow with M , which would have 
made these theories untenable phenomenologically, but rather the corrections are going to be 
suppressed with M . This ensures that we will only get small nonlocal corrections to the usual 
field theory results.

So how are the renormalizable theories different from what we are proposing? In the standard 
renormalization prescription M (or any other regulator for that matter) is not a physical parameter 
but only used to keep track of the infinities. Thus, once the infinities are absorbed within the 
physical quantities, one takes appropriate limits of the regulators, M → ∞ in this case, to obtain 
results which no longer depend on the regulators. In contrast, if M is a physical parameter, 
then the non-divergent pieces retains it’s dependence on the regulator, M . If M is much too 
large as compared to the other mass scales involved (m, s, t, u), then the difference between 
the “physical” and “traditional” approach to renormalization will be negligible. However, if for 
instance, M = O(TeV), then we will start observing deviations between the two approaches in 
the current/future collider experiments.

To see this most explicitly, let us look at the n = 2 terms. We have

−M− λp = −λ2e−2m2

32π2

(
s2 + t2 + u2 − 16m4

2M4

)

×
∫

dξ1

∫
dξ2

e−m2(ξ1+ξ2)(1 + ξ1)
2(1 + ξ2)

2

(2 + ξ1 + ξ2)4

= − λ2e−2m2

128 × 15π2

(
s2 + t2 + u2 − 16m4

2m4

)(
4 + 8m2 − 27m4 − 28m6 − 4m8

− m6 e2 m2
Ei

(
−2m2

)(
80 + 60m2 + 8m4 .

))
(2.27)

Clearly, all the terms are finite when m → 0. According to the usual renormalization prescription, 
one takes the limit M → ∞ or m → 0. This would give us

−Mloc = λp − λ2
p

32 × 15π2

(
s2 + t2 + u2 − 16m4

2m4

)
+O(λ3

p) (2.28)

In our approach, however, we will have corrections:

−M= λp − λ2
p

32 × 15π2

(
s2 + t2 + u2 − 16m4

2m4

)[
1 − 43

4
m4 +O(m6 lnm)

]
+ . . .

(2.29)

Thus we see that while the nonlocal corrections to local field theory amplitudes are expected to 
be small, nevertheless they may be detectable!

3. Nonlocal Abelian gauge theory

3.1. Pure gauge

Standard Model, of course, is a gauge theory and our first task in constructing a nonlocal 
version of SM is, therefore, to “nonlocalize” gauge theories. In [31,45] this was achieved by ad-
vocating a nonlocal gauge transformation. Here we are going to pursue a more direct approach 
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which is more analogous to the way one introduces nonlocality in the scalar field action, ex-
cept that we will use covariant derivatives in the exponential kinetic operator instead of normal 
derivatives. This procedure makes the action manifestly gauge invariant under the usual local 
gauge transformation, but the interactions become nonlocal. This has the disadvantage that at 
1-loop the quantum amplitudes do not all remain finite and therefore will require implementing 
the usual regularization/renormalization procedure.3 This is not really a serious issue when it 
comes to gauge theories which are renormalizable, but it could be an important consideration 
if one attempts to construct a nonlocal quantum theory of gravity. Indeed, the nonlocal theories 
developed along the lines of [31,45,54] might be able to avoid this problem outright, but recent 
investigations in trying to understand the quantum divergences in nonlocal gravity theories of 
the form we are discussing here indicate that while 1-loop diagrams can diverge, once they are 
renormalized, the higher loops become finite.4 Finally, while our procedure can be extended to 
nonabelian gauge theories, that is technically much more challenging to implement as compared 
to the abelian gauge theories. Accordingly, in this paper we are going to limit ourselves to the 
latter.

For abelian theories, since the field strength,

Fμν = ∂[μAν] , (3.30)

itself is gauge invariant, the implementation of the nonlocal modification is rather straightfor-
ward. The action,

Sg = −1

4

∫
d4x Fμνe

− �
M2

g Fμν (3.31)

is trivially gauge invariant. As usual, we need to supplement this with a gauge fixing procedure. 
As in the standard QED, one can introduce a gauge fixing function, G(A) = g(�)∂μAμ, via the 
delta function∫

Dα(x)δ(G(Aα))det

(
δG(Aα)

δα

)
= 1 , (3.32)

in the path integral

Z ≡
∫

DA eiS[A] . (3.33)

Only now we have to choose a higher derivative gauge fixing function of the form

G(A) = g(�)∂μAμ . (3.34)

This procedure was, in fact, outlined previously in [58] while discussing higher derivative gravity 
theories. The main point is that since the gauge transformed field,

3 The most important corrections that are relevant for LHC appears at the tree-level and therefore we don’t need to 
worry about loop graphs for phenomenological purposes.

4 For exponential kinetic theories, what essentially determines whether a diagram diverges or not depends on the sign 
of the exponent that appears in front of the momentum squares. For gauge/gravity theories discussed in this paper, while 
the propagators are exponentially suppressed, the vertices are enhanced approximately by the same factor, see (3.55) for 
instance. Thus if P and V represents the number of propagators and vertices, the sign is determined by V − P = 1 − L

according to topological identity, where L is the number of loops, see [53,55] for details. This means that while we expect 
the L = 1 graphs to be divergent, L > 1 graphs should be convergent! This is what current investigations [53] seem to 
suggest, although several subtle effects, including the importance of using the dressed propagator as opposed to the bare 
propagator, still require a comprehensive investigation.
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Aα
μ ≡ Aμ + 1

e
∂μα(x) , (3.35)

is only linear in α, it’s derivative with respect to α is a constant. Thus, as in usual QED, the 
determinant in our nonlocal theory is a also constant and can be taken out of the path integral:

Z ≡ det

(
δG(Aα)

δα

)∫
Dα

∫
DA eiS[A]δ(G(Aα)) . (3.36)

Following the usual gauge fixing procedure, since DAα = DA and S[Aα] = S[A], we obtain

Z = det

(
δG(Aα)

δα

)∫
Dα

∫
DA eiS[A]δ(G(A)) . (3.37)

Now noting that the same procedure holds for a general class of gauge fixing function

G(A) = g(�)∂μAμ − ω(x) , (3.38)

and then integrating over ω(x) using a Gaussian weight we obtain the gauge fixed path integral 
as

Z → N(ξ)det

(
g(�)�

e

)(∫
Dα

)∫
DA eiS[A]e

−i
∫

d4x G(A)2

2ξ (3.39)

The first three terms cancel out while calculating any scattering process when properly normal-
ized, and therefore, we have effectively a new gauge fixed action given by

S =
∫

d4x

[
−1

4
Fμνe

− �
M2

g Fμν − [g(�)∂μAμ]2

2ξ

]
(3.40)

Appropriate integration by parts lead us to the more convenient form

S = 1

2

∫
d4x

[
Aμe

− �
M2

g (�ημν − ∂μ∂ν)Aν + 1

ξ
Aμg2(�)∂μ∂νAν

]
(3.41)

At this point, it becomes appropriate to choose g(�) = e
− �

2M2
g with the result that the QED 

propagator only gets a nonlocal modification:

�g(p
2) = −iημνe

− p2

M2
g

p2 + iε
(3.42)

in the Feynman gauge ξ = 1.

3.2. Including fermions

Our next step towards constructing a nonlocal SM is to include fermions in the story. The 
most straight forward way to introduce the effect of nonlocality in the fermionic action would be 
to just add the nonlocal higher derivative terms in the free part of the action, as with the scalars:

S =
∫

d4x ψ̄ie
− �

M2
f (i/∂ − mi)ψi (3.43)
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where i represents the different fermion species.5

Unfortunately, the above nonlocal action is not gauge invariant. Thus, we have to work with 
the covariant derivatives:

∇μ = ∂μ + ieAμ and ∇2 = � + ie(∂ · A) + ieA · ∂ − e2A2 (3.44)

We can now nonlocalize the fermionic action while preserving gauge invariance:

Sf = 1

2

∫
d4x [iψ̄ie

− ∇2

M2
f /∇ψi + h.c.] ≡ Sψ + SψA , (3.45)

where Sψ contains the free part of the action independent of the gauge fields, while SψA contains 
interaction terms involving the gauge and the fermionic fields. Let us point out that the first term 
in the action is not real because the covariant d’Alembertian is non-hermitian, and thus one has to 
include the hermitian conjugate terms separately. The main complication with the above action 
arises when one tries to expand the exponential operator and the derivatives can chose to act on 
Aμ or not with various permutations and combinations possible. Fortunately, one can still rely 
on perturbative expansions in the fine structure constant, and therefore as a first approximation 
we can only keep terms that are linear in Aμ.

Thus we have

Sf ≈ i

2

∑
n

∫
d4x ψ̄i

(−)n∇2n

M2n
f n! /∂ψi + i

2

∫
d4x ψ̄ie

− �
M2
f (ie/Aψi) + h.c. +O(A2) (3.46)

Let us start with∫
d4x ψ̄i∇2n/∂ψi ≈

∫
d4x ψ̄i�n/∂ψi + ie

n−1∑
m=0

∫
d4x ψ̄i�m(∂ · A + A · ∂)�n−m−1/∂ψi

≈
∫

d4x ψ̄i�n/∂ψi + ie

n−1∑
m=0

∫
d4x (�mψ̄i)(∂ · A + A · ∂)�n−m−1/∂ψi

Thus putting everything together we have

Sf ≈ − e

2

∑
n

(−)n

M2n
f n!

n−1∑
m=0

∫
d4x (�mψ̄i)(∂ · A + A · ∂)�n−m−1/∂ψi

+ i

2

∫
d4x ψ̄ie

− �
M2
f /∇ψi + h.c. (3.47)

3.3. Feynman rules

The propagator for the fermions are easy to obtain, they are just the usual ones modulated by 
the nonlocal factor:

�f (pμ) = ie
− p2

M2
f /p

p2 + iε
(3.48)

5 In principle different fermion species could have different nonlocal scales, but for simplicity, here we are considering 
a single nonlocal mass scale for the fermions.
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For the interaction term the relevant action is

SψA ≈ − e

2

[∑
n

(−)n

M2n
f n!

n−1∑
m=0

∫
d4x (�mψ̄i)(∂ · A + A · ∂)�n−m−1/∂ψi

+
∫

d4x ψ̄ie
− �

M2
f /Aψi + h.c.

]
(3.49)

At this point it is useful to keep track of the hermitian conjugates. Let us start with the last term 
first:

SψA,2 ≡ − e

2

[∫
d4x ψ̄ie

− �
M2
f (/Aψi)

]
+ h.c.

= − e

2

[∫
d4x (e

− �
M2
f ψ̄i)(/Aψi) + ψ̄i/A(e

− �
M2
f ψi)

]
(3.50)

The corresponding Feynman vertex function reads

V2(k1, k2) = − ie

2

⎛
⎝e

k2
1

M2
f + e

k2
2

M2
f

⎞
⎠γ μ (3.51)

Next, let us look at the vertex factor coming from the first term:

V1(k1, k2) = − ie

2

∑
n

(k2μ + qμ)/k2

M2n
f n!

n−1∑
m=0

k2m
1 k

2(n−m−1)
2

= − ie

2

∑
n

k1μ/k2

M2n
f n!

n−1∑
m=0

k2m
1 k

2(n−m−1)
2 (3.52)

where qμ is the photon momentum.
One can now re-sum both the summations:

∑
n

1

M2n
f n!

n−1∑
m=0

k2m
1 k

2(n−m−1)
2 =

∑
n

1

M2n
f n!

(
k2n

1 − k2m
2

k2
1 − k2

2

)
= e

k2
1

M2
f − e

k2
2

M2
f

k2
1 − k2

2

to obtain

V1(k1, k2) = − ie

2
k1μ/k2

⎛
⎜⎜⎝e

k2
1

M2
f − e

k2
2

M2
f

k2
1 − k2

2

⎞
⎟⎟⎠ (3.53)

The corresponding hermitian conjugate term reads

S2,h.c. ≈ − e

2

[∑
n

(−)n

M2n
f n!

n−1∑
m=0

∫
d4x (∂.A + A.∂)(�m/∂ψ̄i)�n−m−1ψi

]
(3.54)

leading to an overall symmetrization with respect to k1, k2. The final vertex function reads
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V (k1, k2) = − ie

2

⎡
⎢⎢⎣(k1μ/k2 + k2μ/k1)

⎛
⎜⎜⎝e

k2
1

M2
f − e

k2
2

M2
f

k2
1 − k2

2

⎞
⎟⎟⎠ +

⎛
⎝e

k2
1

M2
f + e

k2
2

M2
f

⎞
⎠γ μ

⎤
⎥⎥⎦ (3.55)

In the k1, k2 
 Mf limit, the first term vanishes as it is O(k2/M2
f), and the second term reduces 

to the usual expression of the QED vertex, as expected.

4. Collider phenomenology of the Nonlocal Standard Model

In the previous sections, we have developed the formalism of nonlocal (abelian) gauge the-
ories. For the completion of the program, we need further developments of the formalism to 
implement non-abelian gauge theories and the Higgs mechanism. We leave it for future work, 
but in this section, we discuss potential phenomenological consequences, once the nonlocality
is implemented in the Standard Model, in particular, possible signatures of the NLSM at high 
energy collider experiments.

Let us consider a simple process of 2 by 2 fermion annihilation/creation, f f̄ → f ′f̄ ′, me-
diated by photon and Z-boson in the s-channel. For a toy version of the NLSM, we apply 
the modification found in the previous section to the vertices and propagators for photon and 
Z-boson. In a high energy process where fermion masses are approximately taken to be zero, the 
gauge interaction vertex given by (3.55) for a tree-level process remains the same as the Standard 
Model since the fermion momenta are always on-shell and therefore k2

i /M
2
f = m2

i /M
2
f ≈ 0. The 

photon propagator, however, is modified to have an extra suppression factor exp[−s/M2], as 
shown in (3.42). In our toy model approach, we adopt the suppression factor to both photon and 
Z-boson propagators with a common nonlocal scale M . As a result, the corresponding scattering 
cross section in the nonlocal (toy) Standard Model is given by

σNLSM(f f → f ′f ′) = e
− s

M2 × σSM(f f → f ′f ′), (4.56)

where σSM is the Standard Model cross section. The effect of nonlocality is encoded in this “form 
factor” e−s/M2

.6 For the readers convenience, we list formulas used in the calculation of σSM in 
Appendix A.

In the following analysis, we make our discussion general and also consider a form factor 
e+s/M2

with the opposite sign for M2. We have investigated quantum corrections in nonlocal 
scalar field theory in Section 2, where loop integrals lead to the exponential-integral function 
Ei(−m2/M2). This function is finite for m2/M2 > 0 and mildly diverges for m2/M2 → 0. In 
general, we can change the sign, M2 → −M2. Clearly, in this case, integrand grows exponen-
tially toward high energy, and we need to regularize the loop integral. However, note that the 
loop integral leads to Ei(m2/M2) and this function is also finite with a mild divergence for 
m2/M2 → 0, when we take the Cauchy Principal Value. Hence, as long as we follow the Cauchy 
Principal Value prescription (which we regard as part of the regularization scheme), quantum 
corrections are controlled by the nonlocal scale M , and the effect of nonlocality can be revealed 
in high energy collider experiments through the form factor e+s/M2

.
We first derive a lower bound on the nonlocal scale M by the results of the LEP experiments. 

The cross section of the process e+e− → qq̄ (q = u, d, c, s, b) is very precisely measured at the 

6 Similar effects appear in extensions of the Standard Model in the context of non-commutative geometry or TeV scale 
string theory. Our results in this section are found to be similar to those in, for example, [35,59].
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Fig. 1. Deviations of the production cross section in the nonlocal Standard Model from the Standard Model expectation, 
as a function of the nonlocal scale M at the ILC with 

√
s = 500 GeV (dashed lines) and 1 TeV (solid lines). The sign of 

the deviations corresponds to the form factor e±s/M2
.

LEP experiments with 
√

s = 189 GeV. We refer to the results by the OPAL Collaboration [60], 
where the measured cross section is consistent with the Standard Model prediction within a 
1.35% error. Since the nonlocal effect must be within this error, we find

M ≥ 189√− ln(0.9865)
GeV � 1.62 TeV (4.57)

for the form factor e−s/M2
, while

M ≥ 189√
ln(1.0135)

GeV � 1.63 TeV (4.58)

for the form factor e+s/M2
. These lower bounds will be increased (or the effect of the nonlocality

can be discovered) at future collider experiments. For example, we show in Fig. 1 deviations of 
the total cross section from the Standard Model expectation, σNLSM/σSM − 1, for the Interna-
tional Linear e+e− Collider (ILC) with 

√
s = 0.5 GeV (dashed line) and 1 TeV (solid line), as a 

function of the nonlocal scale M . The ILC, with its high precision, can allow us to test the effect 
of nonlocality up to M ∼ 10 TeV, assuming a 1% level of precision for the ILC experiments.

We can also investigate the LHC phenomenology, and consider the Drell–Yan process pp →
Z/γ ∗ → e+e− + X. The cross section of this process at the parton level, qq̄ → Z/γ ∗ →
e+e− (q = u, d, s), is enhanced/suppressed by the factor e± s

M2 in the toy Standard Model: 
σNLSM(qq̄ → e+e−; s) = exp[±s/M2] × σSM(qq̄ → e+e−; s). At the LHC, the differential 
cross section of the process as a function of the e+e− invariant mass is therefore going to be 
given by [61]

dσNLSM(pp → e+e−)

dMee

= 2
∑

q=u,d,s

1∫
M2

ee

E2
CMS

dx1
2M2

ee

x1E
2
CMS

fq

(
x1,Q

2
)

fq̄

(
2M2

ee

x1E
2
CMS

,Q2

)

× σNLSM(qq̄ → e+e−; ŝ = M2
ee), (4.59)

where ECMS is the collider energy, Mee is the invariant mass of the final state e+e−, and fq

denotes the parton distribution function of a quark q with the factorizations scale Q. Employing 
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Fig. 2. Deviations of the differential cross section in the nonlocal Standard Model from the Standard Model expectation 
for various values of M , The uncertainties of measurements at the ATLAS experiments, including a 2.8% uncertainty 
for the luminosity [63], are depicted as the shaded region (in yellow). The sign of the deviations corresponds to the form 
factor e±s/M2

. The dashed lines corresponds to M = 1.5, 2, 2.5 and 3 TeV, respectively, from top in the positive region, 
while from bottom in the negative region. (For interpretation of the references to color in this figure, the reader is referred 
to the web version of this article.)

CTEQ5M [62] for the parton distribution functions with Q = Mee , we calculate the differen-
tial cross section for ECMS = 8 TeV. Then, we define the deviation from the Standard Model 
prediction as

deviation = dσNLSM

dMee

/dσSM

dMee

− 1. (4.60)

At the LHC with 
√

s = 8 TeV, the differential cross section for the e+e− production process 
has been measured by the ATLAS experiment. The data with a total integrated luminosity of 
21.7 fb−1 have been analyzed, and the results are found to be consistent with the Standard Model 
expectations [63]. The uncertainties of the measurement for various Mee values are listed in 
Table A.12 of Ref. [63]. To find the LHC bound on the nonlocal scale M , we refer the results 
by the ATLAS experiments and require the deviation from the Standard Model predictions by 
the nonlocality to be within the uncertainties. Our results for various values of M are shown 
in Fig. 2 along with the measurement uncertainties (shaded in yellow). The dashed lines in the 
positive region correspond to M = 1.5, 2, 2.5 and 3 TeV, respectively, from top, for the form 
factor e+s/M2

. The ATLAS results set the lower bound on M � 3 TeV. The dashed lines in the 
negative region correspond to M = 1.5, 2, 2.5 and 3 TeV, respectively, from bottom, for the form 
factor e−s/M2

. In this case, we find the lower bound on M � 2.5 TeV. Note that the results shown 
as the dashed lines are independent of the LHC energy, but the deviation becomes larger as the 
invariant mass Mee is increasing. Future LHC experiments with 

√
s = 13–14 TeV will provide 

us with the data for higher Mee values, leading to more severe constraints (or possible signatures) 
on the nonlocal scale M .

5. Concluding remarks

In this paper we have taken the first few steps towards constructing a Nonlocal Standard 
Model where the nonlocality resides in the form of an infinite series of higher derivative terms 
that do not introduce any new degrees of freedom but exponentially damps UV fluctuations. 



128 T. Biswas, N. Okada / Nuclear Physics B 898 (2015) 113–131
The modifications are similar to what arises in non-commutative geometry, but they preserve 
Lorentz invariance, unlike noncommutative field theories. Our considerations were inspired by 
String theory where such nonlocal operators appear rather frequently such as in String Field 
theory and p-adic string theories. Now, typically one expect stringy nonlocalities to show up 
at much larger scales, but there are models where the string scale is O(TeV) and within reach 
of the collider experiments. A particularly nice feature of the nonlocal models is to be able to 
suppress quantum corrections to the mass of the scalar field beyond the scale of nonlocality. This 
gives us a special incentive to consider a low scale of nonlocality ∼O(TeV) as that would then 
resolve the hierarchy problem. In this respect the NLSM can be considered as an alternative to 
the supersymmetric extensions of SM.

Specifically, in this paper we first discussed a nonlocal scalar field theory model. We were able 
to demonstrate (i) the finiteness of quantum loops in these theories, (ii) the fact that we recover 
local field theories when the (mass) scale of nonlocality is taken to infinity, (iii) that there appears 
small corrections in the scattering cross sections as compared to the local field theory results, and 
finally (iv) that the corrections to the scalar masses indeed grow linearly with the mass scale of 
nonlocality and therefore one indeed has the potential to address the hierarchy problem within 
the nonlocal framework.

Next, we implemented nonlocal physics in abelian gauge theories involving massless 
fermions. We were able to obtain the appropriate Feynman rules for the vertices and propaga-
tors in these theories. In particular, for tree-level processes involving on-shell massless fermions, 
there were no nonlocal corrections to the vertex but the propagators received an exponential 
suppression. We then estimated how the modifications impacts collider phenomenology involv-
ing two fermion annihilation/creation processes. The LEP data on e+e− → qq̄ scattering and 
the current LHC data on qq̄ → e+e− gave us bounds on the scale of nonlocality to be around 
∼1.5 TeV and ∼3 TeV respectively. We also estimated that with future data coming from the 
14 TeV LHC run or a possible ILC run will allow us to probe deviations from SM up to a 
nonlocality scale of around 10 TeV.

Our construction of the NLSM is however incomplete. For instance, there is no reason to as-
sume that only the abelian sector is nonlocal, in fact, the photon is really a linear combination of 
the unbroken SU(2) and U(1) gauge fields. Thus it is imperative to be able to generalize the non-
local interaction to non-abelian gauge theories and implement the Higgs mechanism. One would 
also like to study how 1-loop processes play out in nonlocal theories. A first step towards this 
would be to study the U(1) × U(1) → U(1) symmetry breaking with Higgs field. Although this 
is only a toy model, such investigations should enable one to understand how nonlocal physics 
impacts Higgs phenomenology. Eventually the goal will be to construct a fully nonlocal version 
of SM including the non-abelian gauge sector and revisit the cross section calculations incorpo-
rating W±, Z mediated Feynman diagrams. In brief, given the current developments in collider 
experiments nonlocal Standard Models provides an exciting opportunity to explore and test new 
physics beyond the Standard Model which can have fundamental implications in terms of our 
understanding of quantum field theories.
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Appendix A. Helicity amplitudes

Here we provide formulas useful for calculations of the Standard Model cross section, 
σSM(f f̄ → f ′f̄ ′). We begin with a general formula interaction between a massive gauge bo-
son (Aμ) with mass mA and a pair of the SM fermions,

Lint = JμAμ = ψ̄f γ μ(g
f
LPL + g

f
RPR)ψf Aμ. (A.61)

A helicity amplitude for the process f (α)f̄ (β) → f ′(δ)f̄ ′(γ ) is given by

M(α,β;γ, δ) = gμν

s − m2
A + imA�A

J
μ
in (α,β)J ν

out(γ, δ), (A.62)

where α, β (γ, δ) denote initial (final) spin states for fermion and anti-fermion, respectively, and 
�A is the total decay width of the A boson. We have used ’t Hooft–Feynman gauge for the gauge 
boson propagator and there is no contribution from Nambu–Goldstone modes in the process with 
the massless initial (final) states. The currents for massless initial and final states are explicitly 
given by

J
μ
in (+,−) = −√

sg
f
R(0,1, i,0), J

μ
in (−,+) = −√

sg
f
L(0,1,−i,0),

J
μ
out(+,−) = −√

sg
f ′
R (0, cos θ,−i,− sin θ),

J
μ
out(−,+) = √

sg
f ′
L (0,− cos θ,−i, sin θ), (A.63)

where θ is the scattering angle, and the other helicity combinations are zero.
The couplings of the Standard Model Z boson with fermions are as follows:

gν
L = e

cos θW sin θW

1

2
, gν

R = 0,

gl
L = e

cos θW sin θW

(
−1

2
− sin2 θW (−1)

)
, gl

R = −e(−1) tan θW ,

gu
L = e

cos θW sin θW

(
1

2
− sin2 θW

2

3

)
, gu

R = −e
2

3
tan θW ,

gd
L = e

cos θW sin θW

(
−1

2
− sin2 θW

(
−1

3

))
, gd

R = −e

(
−1

3

)
tan θW , (A.64)

where e is the QED coupling, and θW is the weak mixing angle. In this paper, we have used the 
Z-boson mass (mZ = 91.2 GeV) and its total decay width �Z = 2.45 GeV. The couplings for the 
photon are

gν
L = gν

R = 0, gl
L = gl

R = −e, gu
L = gu

R = 2

3
e, gd

L = gd
R = −1

3
e (A.65)

with the QED coupling, e2/(4π) = 1/128.
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