Multihead one-way finite automata*

Mirosław Kutyłowski
Institute of Computer Science, University of Wroclaw, Przesmyckiego 20, 51-151 Wroclaw, Poland

Communicated by A. Meyer
Received May 1988
Revised April 1989

Abstract

Kutylowski, M., Multihead one-way finite automata, Theoretical Computer Science 85 (1991) 135-153.

We consider one-way non-sensing multihead finite automata. Let

$$
P_{m}=\left\{1^{a_{1}} * 1^{a_{2}} * \cdots * 1^{a_{m}} \# 1^{a_{m}} * 1^{a_{m-1}} * \cdots * 1^{a_{1}}: a_{1}, \ldots, a_{m} \in \mathbb{N}\right\} .
$$

We show that no k-head automaton can recognize the language P_{m} if $m>\frac{1}{2} k^{3}$. It partially confirms the conjecture of Rosenberg. It shows that the languages P_{m} and the languages L_{m}, where

$$
L_{m}=\left\{w_{1} * w_{2} * \cdots * w_{m} \# w_{m} * w_{m-1} * \cdots * w_{1}: w_{1}, \ldots, w_{m} \in\{0,1\}^{*}\right\}
$$

are of similar complexity for one-way multihead finite automata. We present a technique which can be used in some cases to estimate computational complexity of languages with respect to multihead automata.

1. Introduction

Multihead finite automata have been introduced in the early sixties by Piatkowski [11]. Obviously, multihead one-way finite automata (1-MFA) can recognize much more than regular languages and many authors have tried to characterize this class of languages. This problem received no satisfactory answer. For instance, the wellknown Pattern Matching Problem (see [4]) is still open. It concerns the language

$$
L_{s m}=\left\{w \# y w z: w, y, z \in\{0,1\}^{*}\right\} .
$$

[^0]It is unknown whether $I_{s m}$ can be recognized by some 1-MFA. There are some partial answers [9, 2], but it seems that we are still far from solving the problem. From the very beginning the problem of hierarchy with respect to the number of heads was considered for multihead automata. After many efforts [12-15, 3, 7] it was finally proved by Yao and Rivest [16] that " $k+1$ heads are better than k heads". Their method was used afterwards by Hromkovič [5,6] to show that the class of languages recognized by k-head 1-MFA is not closed under many simple operations.

It turns out that the language $\left\{w \# w^{\mathrm{R}}: w \in\{0,1\}^{*}\right\}$ (where w^{R} stands for word w written in the reverse order) cannot be recognized by any 1-MFA. However, various simpler versions of this language have been used to show several results about multihead automata. Consider e.g. the language

$$
L_{m}=\left\{w_{1} * w_{2} * \cdots * w_{m} \# w_{m} * w_{m-1} * \cdots * w_{1}: \forall j \leqslant m w_{j} \in\{0,1\}^{*}\right\} .
$$

Intuitively, this language is difficult for 1-MFA for the following reason. If automaton M accepting language L_{m} works on input $w_{1} * w_{2} * \cdots * w_{m} \# v_{m} * v_{m-1} * \cdots * v_{1}$, then it has to check that for each j the blocks w_{j} and v_{j} are equal. A straightforward method to verify this is to put two heads at the beginnings of blocks w_{j} and v_{j} and then to move these heads simultaneously through words w_{j} and v_{j} checking if the corresponding symbols are equal. Note that each pair of heads can be used only once. Indeed, after checking w_{j} and v_{j} one head has only blocks $v_{j-1}, v_{j-2}, \ldots, v_{1}$ left to read, while the other one has only blocks $w_{j+1}, w_{j+2}, \ldots, w_{m}$ on its right side before the symbol \#. This old idea was used by Yao and Rivest [16] to show that k-head one-way automata can recognize languages L_{m} only for $m \leqslant\binom{ k}{2}$. Their hierarchy theorem was just a simple corollary of this fact. To carry out the proof they had to use the fact that for a fixed n there are about 2^{n} words of length n in L_{m}, even if we fix the length of blocks w_{j} and v_{j}. In this paper we try to answer if this argument must really be used. We consider relatively simple languages P_{m}, where

$$
P_{m}=\left\{1^{a_{1}} * 1^{a_{2}} * \cdots * 1^{a_{m}} \# 1^{a_{m}} * \cdots * 1^{a_{1}}: a_{1}, \ldots, a_{m} \in \mathbb{N}\right\} .
$$

Each block in P_{m} is a block of 1's, so only its length must be checked against the length of the corresponding block. The proof used for languages L_{m} does not work for languages P_{m} for the reason that there are relatively few words in P_{m} of a given length. The above languages were considered already by Rosenberg [13] in his attempt to prove the hierarchy theorem for 1-MFA.

In this paper we consider only non-sensing automata (a sensing multihead automaton can determine when coincidence of its heads occurs, non-sensing automata cannot detect whether their heads stay at the same place). We consider the following problem.

Problem 1.1. Given $k \in \mathbb{N}$. Find the maximal number m such that language P_{m} can be recognized by some k-head (non-sensing) 1-MFA.

We prove in Theorem 2.2 that for $m>k^{3} / 2$ there is no k-head 1 -MFA recognizing language P_{m}. On the other hand (see [16]), k-head automata are capable of recognizing languages P_{m} for $m \leqslant\left(k^{2}-k\right) / 2$. We also prove (Theorem 3.1) that for each k there
is a k-head automaton which accepts a language $P^{\prime} \subseteq P_{m}$, where $m \approx k^{3} / 24$. The language P^{\prime} contains language $P_{m, c}$ which is a fairly large subset of P_{m}, namely,

$$
P_{m, c}=\left\{1^{a_{1}} * 1^{a_{2}} * \cdots * 1^{a_{m}} * 1^{a_{m}} * \cdots * 1^{a_{1}}: \forall k, l \leqslant m \quad a_{k} \leqslant c \cdot a_{l}\right\} .
$$

Anyway, the first-mentioned result shows that for non-sensing automata complexities of P_{m} and L_{m} are similar. The aim of this paper is not merely to give an answer to Problem 1.1, which is of rather technical importance. We have in mind a more general problem.

Problem 1.2. Let L be a language of the form

$$
L=\left\{1^{f_{1}(n)} * 1^{f_{2}(n)} * \cdots * 1^{f_{m}(n)}: n \in \mathbb{N}\right\},
$$

where f_{1}, \ldots, f_{m} are some functions over \mathbb{N}. Find a minimal number k such that language L can be recognized by a k-head (non-sensing) 1-MFA or show that L cannot be recognized by such a device.

We do not know a complete answer to Problem 1.2. However, the methods used to solve Problem 1.1 can be easily adopted to provide a technical framework allowing to give answers to many subcases of Problem 1.2.

At this moment we have to mention the results obtained by Chrobak [1]. He considered very simple languages, namely,

$$
C_{n}=\left\{1^{x} 2^{i x}: i, x \in \mathbb{N}, 1 \leqslant i \leqslant n\right\},
$$

containing only two blocks of different symbols. He proved that for each k there is an n such that C_{n} can be recognized by some k-head 1-MFA, but C_{n+1} requires already $k+1$ heads. His proof was based on some geometric interpretation of the behaviour of 1-MFA. We follow this idea of such an interpretation. Also by applying some methods of this paper it is possible to determine how many heads are necessary to recognize language $C_{n}[8]$.

2. The upper bound

In this section we present our main result about recognizing languages P_{m}. From now on, by automata we mean multihead deterministic non-sensing one-way finite automata (1-MFA). For the sake of completeness we recall their definition taken from [7].

Definition 2.1. A one-way k-head deterministic non-sensing automaton is a device $M=\left\langle k, K, \Sigma, \delta, q_{0}, \$, F\right\rangle$, where $k \geqslant 1$ is the number of heads, K, Σ and F are finite sets of states, input symbols and accepting states $(F \subseteq K)$, respectively, q_{0} is the initial state, $\$$ (not in Σ) is the right endmarker for the inputs, and δ is a mapping from $K \times(\Sigma \cup\{\$\})^{k}$ into $K \times\{0,1\}^{k}$. An input to M is a string $a_{1} a_{2} \ldots a_{n}$ of symbols in Σ delimited on the right end by the symbol $\$$. We can think of $a_{1} a_{2} \ldots a_{n} \$$ as written on
the tape (with each symbol occupying one tape square) and the heads moving left to right on the tape. One execution step of M is described as follows. Let M be in state q with heads H_{1}, \ldots, H_{k} scanning symbols b_{1}, \ldots, b_{k} (in $\Sigma \cup\{\$\}$). Suppose $\delta\left(q, b_{1}, \ldots, b_{k}\right)=\left(p, d_{1}, \ldots, d_{k}\right)$. Then for each $j \leqslant k$, automaton M moves head H_{j} exactly d_{j} squares to the right and enters state p (we assume that no head scanning $\$$ can move further to the right). We say that a word $a_{1} a_{2} \ldots a_{n}$ is accepted or recognized by M if when M started on $a_{1} a_{2} \ldots a_{n} \$$ in state q_{0} with all heads placed at a_{1}, after some number of steps it reaches an accepting state. Language L is recognized by automaton M if for every word $\boldsymbol{x}, \boldsymbol{x} \in L$ if and only if, \boldsymbol{x} is accepted by M.

Theorem 2.2. Suppose $m>k^{3} / 2$. Then language P_{m} cannot be recognized by any k-head (non-sensing) 1-MFA.

The rest of this section is devoted to a proof of this theorem. Assume that M is a k-head automaton recognizing P_{m}. Consider input words of the form $\boldsymbol{x}=1^{a_{1}} *^{a_{2}} * \cdots * 1^{a_{2 m}}$. The subwords $1^{a_{1}}, 1^{a_{2}}, \ldots, 1^{a_{2 m}}$ are called blocks of \boldsymbol{x}, so \boldsymbol{x} is built from $2 m$ such blocks. The l th block $(l \leqslant 2 m)$ of \boldsymbol{x} is denoted by B_{l}. Also the right endmarker $\$$ forms one additional block. Let the reading heads of M be called H_{1}, H_{2}, \ldots, H_{k}.

Consider the computation on \boldsymbol{x} performed by \boldsymbol{M}. It can be divided into several stages with each stage terminating when some head crosses a boundary between two adjacent blocks of \boldsymbol{x}. There are k heads, so after at most $2 m k$ stages each computation must terminate. Without loss of generality we may assume that M can reach a final state only when it enters a new stage of computation.

Now we shall construct C_{M}, a computation tree of M with so-called distance functions and case conditions giving a full description of each possible computation performed by $M . C_{M}$ is a finite tree of height at most $2 m k$. For a node a of C_{M} let ht (a) denote the height of a, i.e. $\mathrm{ht}(a)=l$ if a is the l th node on the path leading from the root of C_{M} to node a. Each node of C_{M} corresponds to the beginning of some stage of computation for some class of inputs. The root of C_{M} corresponds to the beginning of the first stage (which is the same for all inputs). Its successors correspond to the second stages and so on: a node a of C_{M} corresponds to the stage ht (a). With each node a of C_{M} we associate
(i) a state of M denoted by $\operatorname{st}(a)$,
(ii) distance functions $f_{a, n, l}$ for $n \leqslant k, l \leqslant 2 m+1$,
(iii) case conditions.

Each case condition is an expression of the form

$$
h\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)=0 \quad \text { or } \quad h\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)>0,
$$

where the variables $x_{1}, x_{2}, \ldots, x_{2 m}$ stand for the lengths of blocks $B_{1}, B_{2}, \ldots, B_{2 m}$. We shall set $f_{a, n, l}\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)$ to be the distance between head H_{n} and the end of the l th block of $1^{x_{1}} * \cdots * 1^{x_{2 m}}$ at the beginning of stage $\mathrm{ht}(a)$, if H_{n} lies in this block. If H_{n} does not lie in this block, then $f_{a, n, l}$ is undefined.

Let $p(a)$ denote the path connecting node a with the root of C_{M}. Define X_{a} to be the set of all words $\boldsymbol{x}, \boldsymbol{x}=1^{a_{1}} * 1^{a_{2}} * \cdots * 1^{a_{2 m}}$, such that for each case condition $g\left(x_{1}, \ldots, x_{2 m}\right)$ associated with a node lying on path $p(a), g\left(a_{1}, a_{2}, \ldots, a_{2 m}\right)$ holds. The key point of the construction of C_{M} are the following properties.

Claim 2.3. (i) Suppose a is a node of C_{M}. Then for every $\boldsymbol{x} \in X_{a}, \boldsymbol{x}=1^{a_{1}} *^{a_{2}} * \cdots * 1^{a_{2 m}}$, at the beginning of the stage corresponding to node a, automaton M is in state st (a) and for each $n \leqslant k$ the distance functions $f_{a, n, l}\left(a_{1}, a_{2}, \ldots, a_{2 m}\right)$ describe correctly the position of head H_{n}.
(ii) Each distance function is a "simple" expression (for a definition see below) and each case condition is of the form

$$
\xi\left(x_{1}, \ldots, x_{2 m}\right)=0 \quad \text { or } \quad \xi\left(x_{1}, \ldots, x_{2 m}\right)<c,
$$

where $\bar{\xi}$ is a simple expression.
Before the definition recall that $r(d, c)$ is the remainder on dividing d by c.
Definition 2.4. (i) Remainder functions are defined inductively as follows. $R\left(x_{1}, \ldots, x_{2 m}\right)$ is a remainder function if

$$
R\left(x_{1}, \ldots, x_{2 m}\right)=c \cdot r\left(\sum_{j \leqslant n} \xi_{j}, e\right)
$$

where $c \in \mathbb{Z}, n, e \in \mathbb{N}$ and each ξ_{j} is a remainder function, an integer or an integer multiplied by some $x_{i}, i \leqslant 2 m$.
(ii) We say that $\xi\left(x_{1}, \ldots, x_{2 m}\right)$ is a simple expression if it takes the form

$$
\xi\left(x_{1}, \ldots, x_{2 m}\right)=\left(\sum_{i \leqslant n} \xi_{i}\left(x_{1}, \ldots, x_{2 m}\right)\right) / d
$$

where $n, d \in \mathbb{N}$ and for each $i \leqslant n$ expression ξ_{i} takes one of the possible forms: $c \cdot x_{j}, c$ or $R\left(x_{1}, \ldots, x_{2 m}\right)$, where $c \in \mathbb{Z}, j \leqslant 2 m$ and R is a remainder function.

To define C_{M} we construct inductively a finite sequence of trees $T_{0} \subseteq T_{1} \subseteq T_{2} \subseteq \ldots$ The last tree in this sequence is C_{M}. Each T_{i} is an initial subtree of C_{M}, i.e. if $a \in C_{M}$ and $a \in T_{i}$, then $p(a) \subseteq T_{i}$. Therefore, to prove Claim 2.3 for C_{M} it suffices to show it for each T_{i}, i.e. with C_{M} replaced by T_{i}.
T_{0} is a tree consisting only of r, the root of C_{M}. Clearly, st (r) is the initial state of M, the set of the case conditions associated with r is empty, the distance functions are defined as follows.

$$
\begin{array}{ll}
f_{r, n, 1}\left(x_{1}, \ldots, x_{2 m}\right)=x_{1} & \text { for } n \leqslant k \\
f_{r, n, j}\left(x_{1}, \ldots, x_{2 m}\right) & \text { is undefined for } j>1
\end{array}
$$

Now we assume that we have constructed $T_{i}(i \geqslant 1)$. If for every leaf a of T_{i} the state st (a) is final, then the construction of C_{M} is finished and $C_{M}=T_{i}$. Otherwise, we single out a leaf a such that st (a) is not a final state. Tree T_{i+1} will be constructed by adding some number of successors to node a. Throughout the construction we shall consider exclusively input words from X_{a}. Let $n=h t(a)$. If $\boldsymbol{x} \in X_{a}, \boldsymbol{x}=1^{a_{1}} * 1^{a_{2}} * \cdots * 1^{a_{2 m}}$, then M enters stage n of computation over \boldsymbol{x} in state $\operatorname{st}(a)$ with the head positions determined by values $f_{a, t, j}\left(a_{1}, a_{2}, \ldots, a_{2 m}\right)$ for $t \leqslant k, j \leqslant 2 m$. We do not know which head first reaches a boundary between blocks at the end of stage n. There are many possibilities, each of them giving rise to a different group of successors of a. So assume that S is a set of heads and for each j, head H_{j} crosses a boundary between blocks at the end of stage n iff $H_{j} \in S$. We shall describe all successors of node a corresponding to this situation. Let $H_{t} \in S$; head H_{t} crosses the boundary between blocks B_{l} and B_{l+1} at the end of stage n. Hence, during this stage H_{t} makes $f_{a, i, l}=f_{a, t, l}\left(a_{1}, \ldots, a_{2 m}\right)$ moves. Note that since each block contains only 1's (except the first symbol and the block $\$$), after some initial p_{0} steps the behaviour of M in stage n becomes periodic. Of course, $f_{a, t, l}$ can be too small to reach the first period cycle. For each $p \leqslant p_{0}$ there is a successor of a in T_{i+1} describing the situation when stage n terminates after exactly p machine steps. So assume that machine M makes p steps ($p \leqslant p_{0}$) and stage n terminates. We describe the corresponding node a^{\prime} of T_{i+1} added to T_{i}. For each head H_{s} of M let e_{s} be the number of moves made by H_{s} during those p machine steps in stage n. Iet e_{s}^{\prime} be the number of moves made by H_{s} during $p-1$ such steps. The distance functions of a^{\prime} are defined as follows.

For $s \notin S$

$$
\begin{array}{ll}
f_{a^{\prime}, s, j}=f_{a, s, j}-e_{s} & \text { if } f_{a, s, j} \text { is defined, } \\
f_{a^{\prime}, s, j} & \text { is undefined otherwise. }
\end{array}
$$

For $s \in S$ function $f_{a^{\prime}, s, j+1}$ is defined iff $f_{a, s, j}$ is defined and $f_{a^{\prime}, s, j+1}=x_{j+1}$. The case conditions associated with a^{\prime} are defined as follows:

$$
\begin{array}{lll}
f_{a, s, j}-e_{s}>0 & \text { for } s \notin S, \\
f_{a, s, j}-e_{s}=0 \quad \text { and } \quad f_{a, s, j}-e_{s}^{\prime}>0 & \text { for } s \in S .
\end{array}
$$

In the above conditions j is chosen such that $f_{a, s, j}$ is defined. Clearly, node a^{\prime} satisfies Claim 2.3(i). For Claim 2.3(ii) note that a sum of a simple expression and a constant is a simple expression.

Now we have to consider the case when $f_{a, t, l}$ is big enough to reach the periodic behaviour during stage n. We have to determine the number of moves made by each head. Consider head H_{s}. Before M reaches the first moment of the periodic part of the execution, H_{t} makes some c_{t} moves and H_{s} makes some c_{s} moves (c_{t}, c_{s} are constants). So there are still $f_{a, t, l}-c_{t}$ cells left for H_{t} in block B_{l}. During each period cycle, H_{t} makes u_{t} moves while H_{s} makes u_{s} moves, for some constants u_{t}, u_{s}. So, to the end of the last fully executed cycle H_{t} makes

$$
\left(f_{a, t, l}-c_{t}\right)-r\left(f_{a, t, l}-c_{t}, u_{t}\right)
$$

moves. It corresponds to $\left[\left(f_{a, t, t}-c_{t}\right) / u_{t}\right.$] full cycles (where $[p]$ stands for the integer part of p, the maximal $n \in \mathbb{Z}$ such that $n \leqslant p$). At the same time head H_{s} makes

$$
\left[\left(f_{a, t, l}-c_{t}\right) / u_{t}\right] \cdot u_{s}
$$

moves. During the last, not fully executed cycle each head makes some constant number of moves depending only on $r\left(f_{a, t, l}-c_{t}, u_{t}\right)$. Machine M needs some p_{1} steps to execute the cycle. For each $p<p_{1}$ there is a node in T_{i+1} corresponding to the situation when the last cycle terminates after p initial steps. We fix $p<p_{1}$ and we describe the corresponding node $a^{\prime \prime}$ of T_{i+1}. Let v_{s} be the number of moves made by H_{s} during p initial machine steps in the cycle, and let v_{s}^{\prime} be the number of moves made during $p-1$ such steps. Finally, we can say that during stage n head H_{s} makes

$$
c_{s}+\left[\left(f_{a, t, l}-c_{t}\right) / u_{t}\right] \cdot u_{s}+v_{s}
$$

moves. New distance functions associated with $a^{\prime \prime}$ are defined as follows. For heads $H_{s} \in S$ it is simple since these heads enter new blocks. Let $s \notin S$. Then the new distance function $f_{a^{\prime \prime}, s, j}$ is undefined if $f_{a, s, j}$ is undefined and

$$
f_{a^{\prime \prime}, s, j}=f_{a, s, j}-c_{s}-\left[\left(f_{a, t, l}-c_{t}\right) / u_{t}\right] \cdot u_{s}-v_{s}
$$

otherwise. The case conditions associated with $a^{\prime \prime}$ are the following.
For each $s \notin S$ and j such that $f_{a, s, j}$ is defined

$$
\begin{aligned}
& f_{a, s, j}-c_{\mathrm{s}}-\left[\left(f_{a, t, l}-c_{\mathrm{t}}\right) / u_{\mathrm{t}}\right] \cdot u_{\mathrm{s}}-v_{\mathrm{s}}=0, \\
& f_{a, s, j}-c_{\mathrm{s}}-\left[\left(f_{a, t, t, l}-c_{t}\right) / u_{t}\right] \cdot u_{s}-v_{s}^{\prime}>0
\end{aligned}
$$

For $s \in S$ and j such that $f_{a^{\prime \prime}, s, j}$ is defined

$$
f_{a^{\prime \prime}, s, j}>0
$$

It follows from the construction that Claim 2.3(i) holds for T_{i+1}. So it remains to prove that each of the above-defined case condition and distance function is of the desired form. What we need is the following lemma.

Lemma 2.5. (i) A sum of simple expressions is a simple expression.
(ii) If ξ is a simple expression and $c \in \mathbb{Z}$, then $c \cdot \xi$ is also a simple expression.
(iii) If ξ is a simple expression, $c \in \mathbb{Z}, d \in \mathbb{N}$, then $[(\xi-c) / d]$ is a simple expression.

Proof. (i) and (ii) are obvious. For (iii) consider $\xi=\left(\sum \xi_{j}\right) / e$. Then

$$
\begin{align*}
{[(\xi-c) / d] } & =\frac{\xi-c-r(\xi-c, d)}{d} \\
& =\frac{\left(\sum \xi_{j}\right) / e-c-r\left(\left(\sum \xi_{j}\right) / e-c, d\right)}{d} \\
& =\frac{\sum \xi_{j}-c e-e \cdot r\left(\left(\sum \xi_{j}-c e\right) / e, d\right)}{d e} . \tag{2.1}
\end{align*}
$$

Now we have to prove that $e \cdot r\left(\left(\sum \xi_{j}-c e\right) / e, d\right)$ is of the appropriate form. For $\alpha, \beta, \sigma \in \mathbb{N}, \alpha / \beta \in \mathbb{N}$ we have $r(\alpha / \beta, \sigma)=r(\alpha, \beta \sigma) / \beta$. So

$$
e \cdot r\left(\left(\sum \xi_{j}-c e\right) / e, d\right)=e \cdot r\left(\sum \xi_{j}-c e, e d\right) / e=r\left(\sum \xi_{j}-c e, e d\right) .
$$

The last expression is a remainder function, so by $(2.1),[(\xi-c) / d]$ is a simple expression.

By Lemma 2.5, each constructed distance function and case condition has the desired form and Claim 2.3(ii) holds for the tree T_{i+1}.
We have just described the construction of tree C_{M}. Since each node of C_{M} has finitely many successors and the height of C_{M} is not greater than $2 m k, C_{M}$ is a finite tree.

While looking at the work of M it is troublesome to consider all remainder functions which occur within the case conditions and the distance functions. We shall find a way to elude this difficulty. Let \mathscr{R} be the set of all these remainder functions. Take $g \in \mathbb{N}$ such that if $R \in \mathscr{R}$, say $R\left(x_{1}, \ldots, x_{2 m}\right)=c \cdot r\left(\sum \xi_{j}, e\right)$, then e divides g.

Definition 2.6. Let $X^{\prime}=\left\{1^{a_{1}} * 1^{a_{2}} * \cdots * 1^{a_{2 m}}: \forall i g \mid a_{i}\right\}$ and $P^{\prime}=P_{m} \cap X^{\prime}$.
Essentially, in the rest of this section we shall use only inputs from X^{\prime}. The reason for that will become clear when we formulate the following lemma.

Lemma 2.7. For each $R \in \mathscr{R}$ there is a constant c_{R} such that for every $\boldsymbol{x} \in X^{\prime}$, $\boldsymbol{x}=1^{a_{1}} * 1^{a_{2}} * \cdots * 1^{a_{2 m}}$, we have $R\left(a_{1}, \ldots, a_{m}\right)=c_{R}$.

Proof. By induction on complexity of R : Suppose $R\left(x_{1}, \ldots, x_{2 m}\right)=c \cdot r\left(\sum_{j}, e\right)$. If $\xi_{j}\left(x_{1}, \ldots, x_{2 m}\right)=d \cdot x_{j}$, then $\xi_{j}\left(a_{1}, \ldots, a_{2 m}\right)=d \cdot a_{j}$. But $e \mid g$ and $g \mid a_{j}$, so $e \mid d \cdot a_{j}$. If ξ_{j} is a remainder function, then by the induction hypothesis $\xi_{j}\left(a_{1}, \ldots, a_{2 m}\right)$ has a constant value not depending on $a_{1}, \ldots, a_{2 m}$. Hence, each $\xi_{j}\left(a_{1}, \ldots, a_{2 m}\right)$ is either a constant not depending on $a_{1}, \ldots, a_{2 m}$ or a number divisible by e. So the lemma holds for R.

Definition 2.8. If ϕ is a distance function

$$
\begin{equation*}
\phi\left(x_{1}, \ldots, x_{2 m}\right)=\left(\sum_{i} \xi_{i}\left(x_{1}, \ldots, x_{2 m}\right)\right) / d \tag{2.2}
\end{equation*}
$$

then ϕ^{\prime}, the reduced distance function, is obtained from ϕ by replacing in (2.2) each remainder function ξ_{i} by the constant $c_{\xi_{i}}$ given by Lemma 2.7. Similarly, we define the reduced case conditions.

Lemma 2.9. If $\boldsymbol{x} \in X^{\prime}, \boldsymbol{x}=1^{a_{1}} * 1^{a_{2}} \ldots \ldots * 1^{a_{2 m}}$, then for each distance function ϕ

$$
\phi\left(a_{1}, a_{2}, \ldots, a_{2 m}\right)=\phi^{\prime}\left(a_{1}, a_{2}, \ldots, a_{2 m}\right)
$$

and for each case condition ψ we have

$$
\psi\left(a_{1}, a_{2}, \ldots, a_{2 m}\right) \Leftrightarrow \psi^{\prime}\left(a_{1}, a_{2}, \ldots, a_{2 m}\right) .
$$

Proof. It follows immediately from the definition.
The most important fact about the reduced distance functions and the reduced case conditions is that they involve only linear functions. It considerably simplifies the situation.

Assume that l is a node of C_{M}. Then let $X_{I}^{\prime}=X_{l} \cap X^{\prime}$. Let Ψ_{l} be the set of all reduced case conditions associated with nodes lying on path $p(l)$. Clearly,

$$
X_{l}^{\prime}=\left\{1^{a_{1}} * 1^{a_{2}} * \cdots * 1^{a_{2 m}} \in X^{\prime}: \forall \phi^{\prime} \in \Psi_{l} \quad \phi^{\prime}\left(a_{1}, a_{2}, \ldots, a_{2 m}\right)\right\} .
$$

Before we proceed we recall terminology of geometry which we shall use. If $\phi\left(x_{1}, \ldots, x_{n}\right)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}$ (where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{Q}$) and $c \in \mathbb{Q}$, then the set $\left\{\boldsymbol{x} \in \mathbb{Q}^{n}: \phi(\boldsymbol{x})=c\right\}$ is called a hyperplane in \mathbb{Q}^{n}. The sets $\left\{\boldsymbol{x} \in \mathbb{Q}^{n}: \phi(\boldsymbol{x})>c\right\}$ and $\left\{\boldsymbol{x} \in \mathbb{Q}^{n}\right.$: $\phi(x) \geqslant c\}$ are called halfspaces with the edge $\left(x \in \mathbb{Q}^{n}: \phi(x)=c\right\}$. An intersection of a finite number of halfspaces is a polyhedron. Hence, for each polyhedron U there are $\phi_{1}, \phi_{2}, \ldots, \phi_{j}$, linear combinations of x_{1}, \ldots, x_{n}, and $c_{1}, \ldots, c_{n} \in \mathbb{Q}$ such that $U=\left\{\boldsymbol{x} \in \mathbb{Q}^{n}\right.$: $\left.\forall i \leqslant j \phi_{i}(\boldsymbol{x}) \$_{i} c_{i}\right\}$, where each $\$_{i}$ is $<$ or $\leqslant U$ is called a layer if there is $\phi\left(x_{1}, \ldots, x_{n}\right)$, a linear combination of x_{1}, \ldots, x_{n}, and $c_{1}, c_{2} \in \mathbb{Q}$ such that $U=\left\{\boldsymbol{x} \in \mathbb{Q}^{n}: c_{1} \leqslant \phi(\boldsymbol{x}) \leqslant c_{2}\right)$. So a layer is simply a set of points which lie between two parallel hyperplanes. A polygon is a polyhedron of dimension 2. A face of a polyhedron U is either the empty set or a polyhedron obtained by replacing some of the inequalities that define U with equations. A proper face of U is a face not equal to the empty set or U. A maximal proper face of U is called a facet of U. For $S \subseteq \mathbb{Q}^{n}$ the affine hull of S, aff (S), is the set of all $z \in \mathbb{Q}^{n}$ which can be expressed as $z=\sum_{x \subset S^{\prime}} \lambda_{x} \cdot x$ satisfying $\sum_{x \subset S^{\prime}} \lambda_{x}=1$ for some finite $S^{\prime} \subseteq S$. S is an affine subspace of \mathbb{Q}^{n} if $\operatorname{aff}(S)=S$. We define the dimension $\operatorname{dim} S$ of $S \subseteq \mathbb{Q}^{n}$ to be the dimension of aff (S), its affine hull.

Each word $1^{a_{1}} * 1^{a_{2}} * \cdots * 1^{a_{2 m}}$, corresponds to the string $\left(a_{1}, a_{2}, \ldots, a_{2 m}\right) \in \mathbb{Q}^{2 m}$. For several reasons it will be more convenient to consider elements of $\mathbb{Q}^{2 m}$ rather than words. This enables us to use simple geometric techniques. For that reason we shall identify word $1^{a_{1}} * \cdots * 1^{a_{2 m}}$ with the point $\left(a_{1}, \ldots, a_{2 m}\right) \in \mathbb{Q}^{2 m}$. Also the sets $X^{\prime}, X_{l}^{\prime}, P^{\prime}$ shall be treated as subsets of $\mathbb{Q}^{2 m}$.

Let $V=\left\{\boldsymbol{x} \in \mathbb{Q}^{2 m}: \forall i x_{i}=x_{2 m-i+1}\right\}$. Clearly, $P^{\prime}=V \cap X^{\prime}$ and V is an affine subspace of $\mathbb{Q}^{2 m}$ of dimension m. Recall that $X_{l}^{\prime}=\left\{\boldsymbol{x} \in X^{\prime}: \forall \phi \in \Psi_{l} \phi(\boldsymbol{x})\right\}$. Define

$$
U_{I}=\left\{\boldsymbol{x} \in \mathbb{Q}^{2 m}: \forall \phi \in \Psi, \phi(\boldsymbol{x})\right\} .
$$

Then, obviously, $X_{l}^{\prime}=U_{l} \cap X^{\prime}$. Recall that each $\phi \in \Psi_{l}$ defines in $\mathbb{Q}^{2 m}$ a hyperplane or a halfspace depending on whether ϕ is an equation or an inequality. Hence, U_{l} is a polyhedron in $\mathbb{Q}^{2 m}$. Automaton M recognizes language P_{m}, so

$$
\begin{aligned}
& X^{\prime}=\bigcup\left\{X_{l}^{\prime}: l \text { is a leaf of } C_{M}\right\}, \\
& P^{\prime}=\bigcup\left\{X_{l}^{\prime}: l \text { is an accepting leaf of } C_{M}\right\} .
\end{aligned}
$$

Polyhedrons U_{l} might not cover $\mathbb{Q}^{2 m}$ but by the first of the above equalities they cover X^{\prime}. Now we shall seek l, an accepting leaf of C_{M}, such that U_{l} is large enough for our purposes. Before that we must prove some auxiliary facts of geometry.

Lemma 2.10. Suppose $g \in \mathbb{N}$. Take a finite set of layers in \mathbb{Q}^{n}, say $F_{1}, F_{2}, \ldots, F_{t}$. Then there is a point $\boldsymbol{x} \in \mathbb{Q}^{n} \backslash \bigcup_{i} F_{i}$ such that $\forall i \leqslant n g \mid x_{i}$.

Proof. By simple induction on n : For $n=1$ the lemma is obviously true, so assume that $n>1$. Consider hyperplanes $W_{i}: W_{i}=\left\{x \in \mathbb{Q}^{n}: x_{1}=g \cdot i\right\}$. If the edges of F_{j} are not parallel to hyperplane $\left\{\boldsymbol{x} \in \mathbb{Q}^{n}: x_{1}=0\right\}$, then $F_{j} \cap W_{i}$ is a layer in W_{i} for each i. If the edges of F_{j} are parallel to this hyperplane, then for almost all i sets F_{j} and W_{i} are disjoint. So there is $i \in \mathbb{N}$ such that the sets $W_{i} \cap F_{1}, W_{i} \cap F_{2}, \ldots, W_{i} \cap F_{t}$ are layers in W_{i}. Hyperplane W_{i} is isomorphic to \mathbb{Q}^{n-1}, so by the induction hypothesis there is $\boldsymbol{x} \in W_{i} \backslash \bigcup\left(W_{i} \cap F_{i}\right)=W_{i} \backslash \bigcup F_{i}$ such that $g \mid x_{i}$ for $i=2,3, \ldots, n$. But $\boldsymbol{x} \in W_{i}$ so $g \mid x_{1}$.

Let $\mathbb{Q}_{+}^{n}=\left\{\boldsymbol{x} \in \mathbb{Q}^{n}: \forall i \leqslant n x_{i} \geqslant 0\right\}$. Since $X^{\prime} \subseteq \mathbb{Q}_{+}^{2 m}$, we shall virtually stay in $\mathbb{Q}_{+}^{2 m}$.
Lemma 2.11. Lemma 2.10 holds also if we replace \mathbb{Q}^{n} by $\mathbb{Q}^{n}+$.
Proof. \mathbb{Q}^{n} is a union of finitely many subsets isomorphic to $\mathbb{Q}^{n}+$. So if we could cover \mathbb{Q}_{+}^{n} by finitely many layers we could do the same with \mathbb{Q}^{n}.

Definition 2.12. Let L be a polyhedron, say $L=\bigcap_{i \in J}\left\{\boldsymbol{x}: \phi_{i}(x) \$_{i} c_{i}\right\}$ where each $\$_{i}$ is \leqslant or $<$. If $z \in L$ then by $\mathscr{L}(L, z)$ we mean the polyhedron (Fig. 1)

$$
\mathscr{L}(L, z)=\bigcap_{i \in J}\left\{x: \phi_{i}(x) \geqslant \phi_{i}(z)\right\} .
$$

Fig. 1.

Lemma 2.13. If L is a polyhedron, $z \in L$, then
(i) $\mathscr{L}(L, z) \subseteq L$.
(ii) If $\mathscr{L}(L, z)$ is not the point z itself, then

$$
\begin{equation*}
\mathscr{L}(L, z)=\bigcup\{p: p \text { is a halfine with the end } z, p \subseteq L\} . \tag{2.3}
\end{equation*}
$$

(iii) If $z, s \in L$ then $\mathscr{L}(L, s)$ is equal to $\mathscr{L}(L, z)$ translated by vector $\overrightarrow{\boldsymbol{z}}$.
(iv) If $\mathscr{L}(L, z) \subseteq V$ and $\operatorname{dim} \mathscr{L}(L, z)=m$, then $\mathscr{L}(L, z) \cap X^{\prime} \neq \emptyset$.

Proof. Let L be defined as in Definition 2.12. Part (i) is obvious. For part (ii) we show first the inclusion \subseteq. Suppose $y \in \mathscr{L}(L, z), y \neq z$. Take the halfline p with the end z such that $y \in p$. Consider function ϕ_{i} on p. It is linear. We have $\phi_{i}(y) \geqslant \phi_{i}(z)$, so ϕ_{i} is not decreasing along p. So $\phi_{i}(\boldsymbol{u}) \geqslant \phi_{i}(\boldsymbol{z})$ for every $\boldsymbol{u} \in p$. It holds for every i so $p \subseteq \mathscr{L}(L, z) \subseteq L$. Hence, p witnesses that y is an element of the union on the right side of (2.3). For the inclusion \supseteq assume that p is a halfline with the end $z, p \subseteq L$. Consider function ϕ_{i} on p. It is linear and has values not smaller than c_{i}. So function ϕ_{i} cannot decrease along p. IIence, its values are not smaller than $\phi_{i}(z)$. So we get $p \subseteq \mathscr{L}(L, z)$.

For (iii) we show first that $\mathscr{L}(L, z)+\vec{z} \subseteq \mathscr{L}(L, s)$. Take $\boldsymbol{u} \in \mathscr{L}(L, z)$. Then $\phi_{i}(\boldsymbol{u}) \geqslant \phi_{i}(z)$ for each i. Note that $\phi_{i}(\boldsymbol{u}+\overrightarrow{\boldsymbol{z} s})-\phi_{i}(\boldsymbol{u})=\phi_{i}(\boldsymbol{s}) \quad \phi_{i}(z)$, because ϕ_{i} is a linear function. So

$$
\begin{aligned}
& \left(\phi_{i}(\boldsymbol{u}+\overrightarrow{z s})-\phi_{i}(\boldsymbol{u})\right)+\phi_{i}(\boldsymbol{u}) \geqslant\left(\phi_{i}(s)-\phi_{i}(z)\right)+\phi_{i}(z), \\
& \phi_{i}(\boldsymbol{u}+\overrightarrow{\boldsymbol{z s}}) \geqslant \phi_{i}(\boldsymbol{s}) .
\end{aligned}
$$

So $(\boldsymbol{u}+\overrightarrow{\boldsymbol{z}}) \in \mathscr{L}(L, \boldsymbol{s})$. Hence, $\mathscr{L}(L, z)+\overrightarrow{z s} \subseteq \mathscr{L}(L, s)$. In the same way we get $\mathscr{L}(L, s)+\vec{s} \subseteq \mathscr{L}(L, z)$. So $\mathscr{L}(L, s)+\vec{s} \vec{z}+\vec{z} \subseteq \mathscr{L}(L, z)+\vec{z}$. Then $\mathscr{L}(L, s) \subseteq \mathscr{L}(L, z)+\vec{z}$.

For (iv) note that, since $\operatorname{dim}(\mathscr{L}(L, z))=m$ and $\mathscr{L}(L, z)$ is a polyhedron in V, there is a point s which is an interior point of $\mathscr{L}(L, z)$ in the sense of topology of V. Then $\phi_{i}(s)>\phi_{i}(z)$ for each i (otherwise, s would lie on one of the facets of $\mathscr{L}(L, z)$). By (ii), there is a halfline p beginning with z and containing point s. Function ϕ_{i} grows to infinity on p. Since ϕ_{i} 's are linear functions, we can find a number $\eta \in \mathbb{Q}, \eta>0$, such that for each pair of points $\boldsymbol{x}, \boldsymbol{y},\left|\phi_{i}(\boldsymbol{x})-\phi_{i}(\boldsymbol{y})\right| \leqslant \eta \cdot d(\boldsymbol{x}, \boldsymbol{y})$, where $d(\boldsymbol{x}, \boldsymbol{y})$ denotes the distance between \boldsymbol{x} and \boldsymbol{y}. Thercforc, we can find a point $\boldsymbol{u} \in p$ such that a ball K in V with center at \boldsymbol{u} and radius $\frac{1}{2} g \sqrt{m}$ is a subset of $\mathscr{L}(L, z)$. Indeed, it suffices to take \boldsymbol{u} such that $\phi_{i}(\boldsymbol{u})>\phi_{i}(z)+\frac{1}{2} \eta \cdot g \sqrt{m}$ for each i. If $\boldsymbol{x} \in K$, then

$$
\begin{aligned}
\phi_{i}(\boldsymbol{x}) & =\phi_{i}(\boldsymbol{u})+\left(\phi_{i}(\boldsymbol{x})-\phi_{i}(\boldsymbol{u})\right) \geqslant \phi_{i}(\boldsymbol{u})-\eta \cdot d(\boldsymbol{x}, \boldsymbol{u}) \\
& \geqslant \phi_{i}(\boldsymbol{z})+\frac{1}{2} \eta \cdot g \sqrt{m}-\frac{1}{2} \eta \cdot g \sqrt{m}=\phi_{i}(z) .
\end{aligned}
$$

So $x \in \mathscr{L}(L, z)$. Each ball in V of radius $\frac{1}{2} g \sqrt{m}$ contains a point from X^{\prime}. So the lemma follows.

Now consider $l_{0}, l_{1}, \ldots, l_{t}$, all accepting leaves of C_{M}. We may assume that each $\Psi_{l_{i}}$, the set of reduced case conditions leading to l_{i}, contains the inequalities $x_{j} \geqslant 0$ for $j \leqslant 2 m$. Consider now polyhedrons W_{i}, where $W_{i}=V \cap U_{l_{i}}$. Of course, $V \cap \mathbb{Q}_{+}^{2 m}$ is
isomorphic to \mathbb{Q}_{+}^{m} and $V \cap \mathbb{Q}_{+}^{2 m} \supseteq \bigcup_{i} W_{i} \supseteq V \cap \mathbb{Q}_{+}^{2 m} \cap X^{\prime}$. For each W_{i} fix a point $\boldsymbol{w}_{i} \in W_{i}$.

Claim 2.14. For some i polyhedron $\mathscr{L}\left(W_{i}, w_{i}\right)$ has dimension m.
Proof. Assume the converse. So each $\mathscr{L}\left(W_{i}, \boldsymbol{w}_{i}\right)$ is a subset of some layer. On the other hand, by the definition of $\mathscr{L}\left(W_{i}, \boldsymbol{w}_{i}\right)$, the set $W_{i} \backslash \mathscr{L}\left(W_{i}, \boldsymbol{w}_{i}\right)$ is included in a finite union of layers. Consequently, we can cover $V \cap \mathbb{Q}_{+}^{2 m} \cap X^{\prime}$ by a finite union of layers in $V \cap \mathbb{Q}_{+}^{2 m}$. This contradicts Lemma 2.11.

By the above claim we may assume that polyhedron $\mathscr{L}\left(W_{0}, \boldsymbol{w}_{0}\right)$ has dimension m. By Lemma 2.13 there is $\boldsymbol{x}_{0} \in W_{0} \cap X^{\prime}$. Then again by Lemma 2.13, $\mathscr{L}\left(W_{0}, \boldsymbol{x}_{0}\right)$ has dimension m. Leaf l_{0} is the leaf l we have been looking for, for which U_{l} is "large enough".

Polyhedron $U_{l_{0}}$ is defined by the reduced case conditions from $\Psi_{l_{0}}$. We split $\Psi_{l_{0}}$ into two subsets Φ_{1} and Φ_{2}. For $\phi \in \Psi_{l_{0}}$ we put ϕ into Φ_{1} if either the hyperplane defined by ϕ (if ϕ is an equation) is parallel to V or the halfspace defined by ϕ has the edge parallel to V. Otherwise, ϕ is in Φ_{2}. Let

$$
V_{i}=\left\{\boldsymbol{x} \in \mathbb{Q}^{2 m}: \forall \phi \in \Phi_{i} \phi(\boldsymbol{x})\right\}
$$

for $i=1$, 2. Obviously, $U_{l_{0}}=V_{1} \cap V_{2}$ and
(i) all facets of V_{1} are parallel to V,
(ii) no facet of V_{2} is parallel to V.

Before we proceed let us notice the following property.
Property 2.15. If a halfine $p \subseteq \mathbb{Q}^{2 m}$ contains a point from X^{\prime}, then it contains infinitely many of them, each two subsequent points staying at a constant distance (depending on p).

The property easily follows from the fact that we are working in $\mathbb{Q}^{2 m}$, not in $\mathbb{R}^{2 m}$.
Lemma 2.16. $V_{1} \cap X^{\prime} \subseteq V$.
Proof. We know that $V_{1} \cap V_{2} \cap X^{\prime}=U_{l_{0}} \cap X^{\prime} \subseteq V$. Assume that there is a point $\boldsymbol{x} \in\left(V_{1} \cap X^{\prime}\right) \backslash V$.

Claim 2.17. There is a halfine $p \subseteq \mathscr{L}\left(W_{l_{0}}, \boldsymbol{x}_{0}\right)$ with the beginning \boldsymbol{x}_{0} not parallel to any facet of V_{2}.

Proof of Claim 2.17. To show the claim note that for each facet F of V_{2} the set $\left\{\boldsymbol{y} \in \mathscr{L}\left(W_{l_{0}}, \boldsymbol{x}_{0}\right): \overrightarrow{\boldsymbol{x}_{0} \boldsymbol{y}}\right.$ is parallel to $\left.F\right\}$ has dimension less than m. A finite union of sets of dimension less than m cannot cover polyhedron $\mathscr{L}\left(W_{l_{0}}, x_{0}\right)$ of dimension m. Hence, there is a point $\boldsymbol{y} \in \mathscr{L}\left(W_{l_{0}}, \boldsymbol{x}_{0}\right)$ such that vector $\overrightarrow{\boldsymbol{x}_{0} \boldsymbol{y}}$ is not parallel to any facet of V_{2}. Take p to be the halfline beginning with \boldsymbol{x}_{0} and containing point \boldsymbol{y}.

Fig. 2. The situation on plane q.

Proof of Lemma 2.16 (conclusion): Let q be the plane containing halfline p and point \boldsymbol{x} (Fig. 2). Then, by Claim $2.17 V_{2} \cap q$ is a polygon with edges not parallel to p. Since $p \subseteq U_{l_{0}}, p \subseteq U_{l_{0}} \cap q \subseteq V_{2} \cap q$. Let r be the line parallel to p containing point \boldsymbol{x}. It is geometrically evident that $\left(V_{2} \cap q\right) \cap r$ is a halfline, say s. Since $x \in r$, it follows from Property 2.15 that s contains infinitely many points from X^{\prime}. On the other hand, line r is parallel to p so r is parallel to V. Polyhedron V_{1} has facets parallel to V, line r contains point \boldsymbol{x} from V_{1}, so $r \subseteq V_{1}$. Hence, $s \subseteq V_{1} \cap V_{2}$. We have noticed previously that $\boldsymbol{s} \cap X^{\prime} \neq \emptyset$. So there is a point $\boldsymbol{x}^{\prime} \in \boldsymbol{s} \cap X^{\prime} \subseteq V_{1} \cap V_{2} \cap X^{\prime}=X_{l_{0}}^{\prime}$. Lcaf l_{0} is accepting, so $\boldsymbol{x}^{\prime} \in V$. We know that $x^{\prime} \in V, p \subseteq V$ and V is an affine space. So $q \subseteq V$ and hence, $\boldsymbol{x} \in V$ contrary to the assumption about \boldsymbol{x}.

Polyhedron V_{1} has interesting properties: $V \subseteq V_{1}$ and $V_{1} \cap X^{\prime} \subseteq V$. Let $g_{1}, g_{2}, \ldots, g_{n}$ be all reduced case conditions defining V_{1} (i.e. $\Phi_{1}=\left\{g_{1}, g_{2}, \ldots, g_{\eta}\right\}$).

Lemma 2.18. Each g_{j} is a condition of the form

$$
h_{j}\left(x_{1}, \ldots, x_{2 m}\right)<c \quad \text { or } \quad h_{j}\left(x_{1}, \ldots, x_{2 m}\right)=c^{\prime},
$$

where $c^{\prime}=0$ and

$$
h_{j}\left(x_{1}, \ldots, x_{2 m}\right)=\sum_{i \leqslant m} \alpha_{i, j} x_{i}-\sum_{i \leqslant m} \alpha_{i, j} x_{2 m-i+1}
$$

for some $\alpha_{1, j}, \ldots, \alpha_{m, j} \in \mathbb{Q}$.
Proof. We know that each h_{j} is a linear combination of $x_{1}, \ldots, x_{2 m}$. Essentially, Lemma 2.18 says that in $h_{j}\left(x_{1}, \ldots, x_{2 m}\right)$ the coefficients of x_{i} and $x_{2 m-i+1}$ are the same except for their signs, which are different. Let $h_{j}\left(x_{1}, \ldots, x_{2 m}\right)=$ $\sum_{i \leqslant m} \alpha_{i} x_{i}-\sum_{i \leqslant m} \beta_{i} x_{2 m-i+1}$. Now let us fix some i. Consider the points $n \cdot\left(a_{1}, a_{2}, \ldots, a_{2 m}\right)$, where $a_{t}=1$ for $t=i, 2 m-i+1$ and $a_{t}=0$ otherwise. For $n \in \mathbb{Z}$ all
these points are elements of V and g_{j} holds for them. But g_{j} takes for these points the form $n \cdot\left(\alpha_{i}-\beta_{i}\right)<c$ or $n \cdot\left(\alpha_{i}-\beta_{i}\right)=c^{\prime}$. Because it holds for every n, α_{i} and β_{i} must be equal. In the last case we must have $c^{\prime}=0$.

It is a simple observation that if g_{j} takes the form $h_{j}\left(x_{1}, \ldots, x_{2 m}\right)<c$, then $c>0$. Indeed, g_{j} holds for $x_{1}=\cdots=x_{2 m}=0$ and $h_{j}(0, \ldots, 0)=0$.

Lemma 2.19. There are m linearly independent polynomials among $h_{1}, h_{2}, \ldots, h_{\eta}$.
Proof. Consider the set $S=\left\{\boldsymbol{x} \in \mathbb{Q}^{2 m}: \forall i \leqslant \eta h_{i}(\boldsymbol{x})=0\right\}$. Clearly, $V \subseteq S$ and $S \subseteq V_{1}$. Assume that $\operatorname{dim} S>m$. Then there is a point $\boldsymbol{x} \in S \backslash V, \boldsymbol{x} \in X^{\prime}$. On the other hand, $V_{1} \cap X^{\prime} \subseteq V:$ a contradiction. So $\operatorname{dim} S=m$ and the number of linearly independent polynomials among h_{1}, \ldots, h_{η} is equal to $2 m-\operatorname{dim} S=m$.

We may assume that h_{1}, \ldots, h_{m} are linearly independent. Let condition g_{i} be generated at the beginning of stage s_{i}. By the critical moment of g_{i} we mean the beginning of stage s_{i}. We may assume that $s_{1}<s_{2}<\cdots<s_{m}$.

Definition 2.20. Suppose H, H^{\prime} are heads of M. We say that a pair (H, H^{\prime}) is dead at some moment of computation of M if for some $l \leqslant 2 m$ head H stands on the right side of block B_{l} while head H^{\prime} stands on the right side of block $B_{2 m-l+1}$.

Note that if a pair $\left(H, H^{\prime}\right)$ is dead at some moment, then it will remain dead for the rest of the computation. Intuitively, if a pair $\left(H, H^{\prime}\right)$ is dead then the heads H and H^{\prime} cannot be used to check that any two corresponding blocks are equal. However, it is not perfectly true. If variable x_{j} occurs in g_{j}, then block B_{j} must be read by some head before the critical moment of g_{j}. However, the length of B_{j} may be recorded by some other head by its position in some other block. In turn, this information can be transmitted elsewhere and so on. Therefore, information about block B_{j} can be used long after reading block B_{j}. This makes the analysis complex.

Now we shall show that $m \leqslant \frac{1}{2} k^{3}$. First consider g_{1}. Suppose that x_{j} occurs in g_{1} with a nonzero coefficient. Hence, there is a head H which reads block B_{j} before the critical moment of g_{1}. The coefficient of $x_{2 m-j+1}$ in g_{1} is the same by Lemma 2.18, so also not equal to zero. Hence, before the critical moment of g_{1} some head H^{\prime} reads block $B_{2 m-j+1}$. We see that at the critical moment of g_{1} the pair $\left(H, H^{\prime}\right)$ is dead. Take a look what happens next. We show that after at most k next critical moments a new pair of heads becomes dead.

Assume that $H^{\prime \prime}$ is the head which reaches a new block at the beginning of stage s_{1}. Let f_{1}, \ldots, f_{k-1} denote the distances of the other heads from the ends of the blocks they were in (some of f_{i} 's might be equal to 0). If after this moment any reduced case condition is generated then it takes the form

$$
z+\sum \alpha_{i} f_{i}<c \quad \text { or } z+\sum \alpha_{i} f_{i}=c,
$$

where $\alpha_{i} \in \mathbb{Q}$ and z is an expression depending only on the blocks read after the beginning of stage s_{1}. Consider some g_{j} for $j>1$. Then $h_{j}=z+\sum \alpha_{i} f_{i}$, where z is as above. Suppose $z \neq 0$. Then z contains some variable x_{t} standing for the length of block B_{t} read by some head, say $H^{(3)}$, after reaching stage s_{1}. The corresponding block $B_{2 m-t+1}$ was read by some head $H^{(4)}$, not necessarily after reaching stage s_{1}, may be before. Note that if block $B_{2 m-t+1}$ was read by head $H^{(4)}$ after reaching stage s_{1}, then the pairs $\left(H^{(3)}, H^{(4)}\right)$ and $\left(H, H^{\prime}\right)$ must be different. Indeed, it is a consequence of the fact that the pair $\left(H, H^{\prime}\right)$ is dead after reaching stage s_{1} and these heads cannot read any corresponding blocks.

Let g_{t} be the first case condition such that at the critical moment of g_{t} a new pair of heads becomes dead. Each h_{j} for $1<j<t$ takes the form

$$
h_{j}=z_{j}+\sum_{i=1}^{k-1} \alpha_{i, j} f_{i},
$$

where z_{j} contains only variables denoting the lengths of the blocks read after the beginning of stage s_{1}. As we have noticed, z_{j} cannot contain simultaneously variables x_{i} and $x_{2 m-i+1}(i \leqslant m)$ since otherwise a new pair of heads would be dead at the critical moment of g_{j}.

Lemma 2.21. Functions $u_{j}=\sum_{i=1}^{k-1} \alpha_{i, j} f_{i}$ for $1<j<t$ are linearly independent.
Proof. Λ ssume that these functions are linearly dependent, i.e.

$$
\gamma_{2} u_{2}+\gamma_{3} u_{3}+\cdots+\gamma_{t-1} u_{t-1}=0
$$

for some $\gamma_{2}, \ldots, \gamma_{t-1} \in \mathbb{Q}$, not all equal 0 . We show that $\gamma_{2} h_{2}+\cdots+\gamma_{t-1} h_{t-1}=0$. Consider variables x_{s} and $x_{2 m-s+1}(s \leqslant 2 m)$. Only one of them, say x_{s}, can be used in expressions $z_{j}(1<j<t)$. Variables x_{s} and $x_{2 m-s+1}$ stand in u_{j} with some coefficients λ_{j} and Λ_{j}. Then

$$
\sum_{j=2}^{k-1} \gamma_{j} \lambda_{j}
$$

is the coefficient of x_{s} in $\gamma_{2} u_{2}+\gamma_{3} u_{3}+\cdots+\gamma_{t-1} u_{t-1}$. So $\sum \gamma_{j} \lambda_{j}=0$. Similarly, $\sum \gamma_{j} \Lambda_{j}=0$. Note that now the coefficient of $x_{2 m-s+1}$ in h_{j} is the same as in u_{j}, i.e. Λ_{j}, since $h_{j}=z_{j}+u_{j}$ and $x_{2 m-s+1}$ does not occur in z_{j}. The coefficient of x_{s} in h_{j} is $-\Lambda_{j}$ by Lemma 2.18. But $h_{j}=z_{j}+u_{j}$ and in u_{j} variable x_{s} has coefficient λ_{j}. So the coefficient of x_{s} in z_{j} is equal to $-\Lambda_{j}-\lambda_{j}$. On the other hand, we have

$$
\begin{aligned}
\gamma_{2} h_{2}+\cdots+\gamma_{t-1} h_{t-1} & =\gamma_{2}\left(z_{2}+u_{2}\right)+\cdots+\gamma_{t-1}\left(z_{t-1}+u_{t-1}\right) \\
& =\left(\gamma_{2} z_{2}+\cdots+\gamma_{t-1} z_{t-1}\right)+\left(\gamma_{2} u_{2}+\cdots+\gamma_{t-1} u_{t-1}\right) \\
& =\gamma_{2} z_{2}+\cdots+\gamma_{t-1} z_{t-1} .
\end{aligned}
$$

The last expression does not contain $x_{2 m-s+1}$ since no z_{j} contains $x_{2 m-s+1}$. In turn the coefficient of x_{s} is there equal to $\sum \gamma_{j}\left(-\Lambda_{j}-\lambda_{j}\right)=-\sum \gamma_{j} \Lambda_{j}-\sum \gamma_{j} \lambda_{j}=0$. Hence,
$\gamma_{2} h_{2}+\cdots+\gamma_{t-1} h_{t-1}$ does not contain x_{s} and $x_{2 m-s+1}$. Number s was arbitrary, so $\gamma_{2} h_{2}+\cdots+\gamma_{t-1} h_{t-1}=0$ and h_{2}, \ldots, h_{t-1} are linearly dependent: a contradiction.

It follows from Lemma 2.21 that we have $t-2$ linearly independent functions u_{j}. Each u_{j} is a linear combination of f_{1}, \ldots, f_{k-1}. Hence, $t-2 \leqslant k-1$, so $t \leqslant k+1$.
We have just proved that at the critical moment of g_{k+1} a new pair of heads, different from (H, H^{\prime}) must be dead. The above proof can be repeated virtually without change to show that for each n at least one pair of heads becomes dead after the critical moment of g_{n} and no later than the critical moment of g_{n+k}. There are only $k^{2} / 2$ pairs of heads (we allow the first and the second elements in a pair to be the same). Hence, m, the number of critical moments is not greater than $k \cdot k^{2} / 2=k^{3} / 2$. It completes the proof of Theorem 2.2.

3. Recognizing P_{m}

Recall that $P_{m, c}$ (for $c \in \mathbb{N}$) is a sublanguage of language P_{m} defined as follows:

$$
P_{m, c}=\left\{1^{a_{1}} * \cdots * 1^{a_{2 m}} \in P_{m}: \forall n, l \leqslant 2 m a_{n}<c \cdot a_{l}\right\} .
$$

We show in this section that for each c we can recognize language $P_{m, c}$ using an automaton with about $\sqrt[3]{m}$ heads. It shows that in some sense the bound given in Theorem 2.2 is stringent. However, $P_{m, c}$ is only a sublanguage of P_{m} and we do not know such an algorithm for P_{m}.

Theorem 3.1. Let $k, c \in \mathbb{N}$. There is a k-head $1-M F A M$ recognizing a language P^{\prime} such that $P_{m, c} \subseteq P^{\prime} \subseteq P_{m}$ and $m \geqslant k^{3} / 24$.

Proof. We consider only inputs of the form $1^{a_{1}} * \cdots * 1^{a_{2 m}}$, where $a_{l}<c \cdot a_{n}$ for each $n, l \leqslant 2 m$. By blocks of such an input word we mean the subwords $1^{a_{1}}, 1^{a_{2}}, \ldots, 1^{a_{2 m}}$. These blocks will be denoted by $B_{1}, B_{2}, \ldots, B_{2 m}$. Let $\left|B_{i}\right|$ stand for the length of block B_{i}. So M has to check that for each $i \leqslant m,\left|B_{i}\right|=\left|B_{2 m-i+1}\right|$.
First we describe how M can remember the length of some block B_{l}. For that purpose we need three heads, say H_{1}, H_{2}, H_{3}, with H_{1} positioned at the beginning of B_{l} and two other heads placed at the beginning of some block B_{n}. Information about the length of B_{l} will be stored inside B_{n}. More precisely, we record only $\left[\left|B_{l}\right| / c\right]$ and $r\left(\left|B_{l}\right|, c\right)$ is to be remembered by the finite memory of M. Firstly, H_{1} and H_{2} move simultaneously until H_{1} reaches the end of block B_{l}. For cach c moves of H_{1}, head H_{2} makes only one move to the right. So when H_{1} reaches the end of B_{1} then the distance between H_{2} and H_{3} is $\left[\left|B_{l}\right| / c\right]$. Head H_{2} is still inside block B_{n} since $\left|B_{l}\right|<c \cdot\left|B_{n}\right|$. Now we move simultaneously heads H_{2} and H_{3} with the same speed until H_{2} reaches the end of B_{n}. The distance between H_{2} and H_{3} remains unchanged, so finally, H_{3} is placed at the distance $\left[\left|B_{l}\right| / c\right]$ from the end of block B_{n}. If later we have to check that $\left|B_{l}\right|=\left|B_{2 m-l+1}\right|$, then we can use head H_{3} and some other head H placed at the
beginning of $B_{2 m-l+1}$. We start both of them, H making c moves for each single move of H_{3}. If $\left|B_{l}\right|=\left|B_{2 m-l+1}\right|$ then there are exactly $r\left(\left|B_{l}\right|, c\right)$ symbols left inside $B_{2 m-l+1}$ in front of head H at the moment when H_{3} reaches the end of B_{i}. This can be easily verified using the finite memory of M.

If W is one of the blocks $B_{1}, B_{2}, \ldots, B_{2 m}$, say B_{l}, then let W^{\prime} be the corresponding block $B_{2 m-l+1}$. The computation of M consists of $k-1$ different stages. For each stage of execution there is a corresponding group of blocks. If W belongs to such a group for stage j then during stage j it is checked whether $|W|=\left|W^{\prime}\right|$. Let the blocks corresponding to stage j be denoted by $B_{j, 1}, B_{j, 2}, \ldots, B_{j, \sigma(j)}$. Each input word which we consider therefore takes the form

$$
\begin{aligned}
& \underbrace{B_{1,1} * B_{1,2} * \cdots * B_{1, \sigma(1)} *}_{\text {for stage } 1} * \underbrace{B_{2,1} * \cdots * B_{2, \sigma(2)} * \cdots * \underbrace{B_{k-1,1} * \cdots * B_{k-1, \sigma(k-1)}}_{\text {for stage } k-1} *}_{\text {for stage } 2} * \\
& \underbrace{B_{k-1, \sigma(k-1)}^{\prime} * \cdots * B_{k-1,1}^{\prime}}_{\text {for stage } k-1} * \underbrace{B_{k-2, \sigma(k-2)}^{\prime} * \cdots * B_{k-2,1}^{\prime}}_{\text {for stage } k-2} \cdots \cdots * \underbrace{B_{1, \sigma(1)}^{\prime} * \cdots * B_{1,1}^{\prime}}_{\text {for stage } 1}
\end{aligned}
$$

Values $\sigma(j)$ shall be determined later.
Now we describe one stage of computation, say stage j. It has the following important properties.
(i) Only heads H_{1}, \ldots, H_{k-j+1} are in use, all of them initially placed at the beginning of block $B_{j, 1}$.
(ii) When stage j ends, head H_{k-j+1} is at the end of $B_{j, 1}^{\prime}$ and will not be used during the next stages, the remaining heads H_{1}, \ldots, H_{k-j} are moved to the beginning of $B_{j+1,1}$.
For the sake of simplicity put $B_{j, i}=D_{i}$. Also let $t=k-j+1$. Stage j is divided into $[(t-2) / 2]$ substages plus one additional "final" substage.

First substage: During this substage M checks if the lengths of blocks $D_{\sigma(j)}, D_{\sigma(j)-1}$, $\ldots, D_{\sigma(j)-[t \mathrm{t}-2) / 2]+1}$ match with the lengths of the corresponding blocks. At the beginning, head H_{t} moves to the end of $D_{\sigma(j)}$. In the meantime it reads blocks

$$
D_{\sigma(j)-[(t-2) / 2]+1}, \ldots, D_{\sigma(j)}
$$

and uses heads $H_{2}, H_{3}, \ldots, H_{t-1}$ to record their lengths inside D_{1}. It is possible since $2[(t-2) / 2]+1 \leqslant t-1$. Head H_{1} is left unmoved at the beginning of D_{1} and will stay there until the final substage. Then head H_{t} reads blocks

$$
D_{\sigma(j)}^{\prime}, D_{\sigma(j)-1}^{\prime}, \ldots, D_{\sigma(i)-[(t-2) / 2]+1}^{\prime}
$$

and simultaneously, using information stored by the heads lying inside D_{1} their lengths are checked.
Second substage: The second substage looks like the first one except for few details. At the beginning, head H_{t-1} moves to the end of $D_{\sigma(j)}$. In the meantime it reads blocks

$$
D_{\sigma(j)-[(t-2) / 2]-[(t-4) / 2]+1}, \ldots, D_{\sigma(j)-\lfloor(t-2) / 2]}
$$

and uses heads $H_{3}, H_{4}, \ldots, H_{t-2}$ to record their length inside D_{2}. Again, it is possible since $2[(t-4) / 2]+2 \leqslant t-2$. Head H_{2} is left unmoved at the beginning of D_{2} and will stay there until the final substage. Then head H_{t} reads blocks

$$
D_{\sigma(j)-[(t-2) / 2]}^{\prime}, \ldots, D_{\sigma(j)-[(t-2) / 2]-[(t-4) / 2]+1}^{\prime}
$$

and simultaneously, using information stored by the heads lying inside D_{2}, automaton M checks the block lengths.

During subsequent substages M works similarly. Each time one head is moved to the end of $D_{\sigma(j)}$ and one is left unmoved for the final substage. Also head H_{t} reads some number of blocks. The remaining heads move one block forward because of the length checking. The number of such heads decreases by two each substage. Note that there must be at least four of them at the beginning of a substage. It follows that there are $[(t-2) / 2]$ of these substages.

Final substage: After the last nonfinal substage there are heads left at the beginnings of $D_{1}, D_{2} \ldots, D_{[(t-2) / 2]}$. Also in front of block $D_{[(t-2) / 2]+1}$ there are at least two heads. We move one of them to the beginning of $D_{[t / 2]+1}$. During this substage M checks that the blocks $D_{1}, D_{2}, \ldots, D_{[t / 2]+1}$ have the same length as the corresponding blocks. It can be easily done since the number $\sigma(j)$ is chosen so that after the last nonfinal substage the head H_{t} stands in front of $D_{[t / 2]+1}^{\prime}$. After the checking is done M moves all heads (except H_{t} and the other heads not already in use) to the end of $D_{\sigma(j)}$.

Now we count for how many blocks D_{i} automaton M checks that $\left|D_{i}\right|=\left|D_{i}^{\prime}\right|$ during stage j. During the final substage M checks $[t / 2]+1$ blocks. During the first substage M checks $[(t-2) / 2]$ blocks, during the second one only $[(t-4) / 2]$ of them, then $[(t-6) / 2],[(t-8) / 2], \ldots$ So during stage j automaton M checks together

$$
\sigma(j)=(1+[t / 2])+([(t-2) / 2]+[(t-4) / 2]+\cdots+1)
$$

blocks. Then

$$
\begin{aligned}
\sigma(j) & =([t / 2]+[(t-2) / 2]+[(t-4) / 2]+\cdots+1)+1 \\
& =\frac{1}{2} \cdot[t / 2] \cdot([t / 2]+1)+1 \\
& \geqslant \frac{1}{2} \cdot \frac{t-1}{2} \cdot\left(\frac{t-1}{2}+1\right)+1 \\
& =\frac{(t-1)(t+1)}{8}+1 \\
& =\frac{t^{2}-1}{8}+1 \geqslant \frac{t^{2}}{8}=\frac{(k-j+1)^{2}}{8} .
\end{aligned}
$$

The number of pairs of blocks checked during all stages can be estimated as follows:

$$
\begin{aligned}
\sum_{j=1}^{k-1} \sigma(j) & \geqslant \frac{k^{2}}{8}+\frac{(k-1)^{2}}{8}+\cdots+\frac{2^{2}}{8} \\
& =\frac{1}{8}\left(k^{2}+(k-1)^{2}+\cdots+1^{2}\right)-\frac{1}{8} \\
& =\frac{1}{8 \cdot 6} k \cdot(k+1) \cdot(2 k+1)-\frac{1}{8} \geqslant \frac{k^{3}}{24}
\end{aligned}
$$

The algorithm presented works effectively for large k. It can be improved slightly by combining it with a straightforward algorithm used for recognizing languages $L_{m}([16])$.

References

[1] M. Chrobak, Hierarchies of one-way multihead automata languages, Theoret. Comput. Sci. 48 (1986) 153-181, also in: Proc. IC ALP'85, Lecture Notes in Computer Science, Vol. 194 (Springer, Berlin, 1985) 101-110.
[2] M. Chrobak and W. Rytter, Remarks on string-matching and one-way multihead automata, Inform. Process. Lett. 24 (1987) 325-329.
[3] R.W. Floyd, Review 14353 of the paper [13], Comput. Rev. 9 (1968) 280.
[4] Z. Galil, Open problems in stringology, in: A. Apostolico and Z. Galil, eds., Combinatorial Algorithms on Words (Springer, Berlin, 1974) 350-359.
[5] J. Hromkovič, Closure properties of the family of languages recognized by one-way two-head deterministic finite state automata, in: Proc. 10th MFCS, Lecture Notes in Computer Science, Vol. 118 (Springer, Berlin, 1981) 304-313.
[6] J. Hromkovič, One-way multihead deterministic finite automata, Acta Inform. 19(4) (1983) 377-384.
[7] O.H. Ibarra and C.E. Kim, On 3-head versus 2-head finite automata, Acta Inform. 4 (1975) 173-200.
[8] M. Kutylowski, One-way multihead finite automata and 2-bounded languages, Math. Systems Theory 23 (1990) 107-139.
[9] M. Li, Lower bounds by Kolmogorov complexity, in: Proc. ICALP'85, Lecture Notes in Computer Science Vol. 194 (Springer, Berlin, 1985) 383-393.
[10] C.G. Nelson, Onc-way automata on bounded languages, Tech. Report TR 14-76, Harvard Center for Res. and Computing, 1976.
[11] T.F. Piatkowski, N-head finite state machines, Ph.D. Thesis, University of Michigan, 1965.
[12] A.L. Rosenberg, Nonwriting extensions of finite automata, Ph.D. Thesis, Harvard University, 1965.
[13] A.L. Rosenberg, On multihead finite automata, IBM J. Res. Develop. 10 (1966) 388-394.
[14] I.H. Sudborough, Computation by multi-head writing finite automata, Ph.D. Thesis, Pennsylvania State University, 1971.
[15] I.H. Sudborough, One-way multihead writing finite automata, Inform. Control 30 (1976) 1-20.
[16] A.C. Yao and R.I.. Rivest, $K+1$ heads are better than K, J. Assoc. Comput. Mach. 25 (1978) 337-340.

[^0]: * This research received support from the Institute of Informatics, University of Warsaw under program RP. I. 09 . The final version of the paper was prepared under sponsorship of the Alexander von HumboldtStiftung during author's stay at Technische Hochschule Darmstadt, Germany.

