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Abstract 

Kutylowski, M., Multihead one-way finite automata, Theoretical Computer Science 85 (1991) 

135-153. 

We consider one-way non-sensing multihead finite automata. Let 

P,={l”‘*l”**...*lOm# l”m*l”m-‘*...*l”: a,,...,a,EN}. 

We show that no k-head automaton can recognize the language P, if m>ik3. It partially confirms 

the conjecture of Rosenberg. It shows that the languages P, and the languages L,, where 

L,={w,*w2*..~*w,#w,*w,_1*~.~*w1: w,....,w&{o,l}*}, 

are of similar complexity for one-way multihead finite automata. We present a technique which can 

be used in some cases to estimate computational complexity of languages with respect to multihead 

automata. 

1. Introduction 

Multihead finite automata have been introduced in the early sixties by Piatkowski 
[ll]. Obviously, multihead one-way finite automata (l-MFA) can recognize much 
more than regular languages and many authors have tried to characterize this class of 
languages. This problem received no satisfactory answer. For instance, the well- 
known Pattern Matching Problem (see [4]) is still open. It concerns the language 

L,,={w#ywz: w,y,zE{o,l}*}. 
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It is unknown whether L,, can be recognized by some l-MFA. There are some partial 

answers [9,2], but it seems that we are still far from solving the problem. From the 

very beginning the problem of hierarchy with respect to the number of heads was 

considered for multihead automata. After many efforts [12-15, 3, 73 it was finally 

proved by Yao and Rivest [16] that “k+ 1 heads are better than k heads”. Their 

method was used afterwards by Hromkovii: [S, 63 to show that the class of languages 

recognized by k-head l-MFA is not closed under many simple operations. 

It turns out that the language {w # wR: w~(0, l}*} (where wR stands for word 

w written in the reverse order) cannot be recognized by any l-MFA. However, various 

simpler versions of this language have been used to show several results about 

multihead automata. Consider e.g. the language 

Ln={ W1*W2*...*W,#W,*W,_l*...*W1: Vj<m Wj~(O, l}*}. 

Intuitively, this language is difficult for l-MFA for the following reason. If automaton 

M accepting language L, works on input w1*w2*~..*w, # v,,,*v,_~*~~~*v~, then it has 

to check that for each j the blocks wj and Uj are equal. A straightforward method to 

verify this is to put two heads at the beginnings of blocks wj and Uj and then to move 

these heads simultaneously through words wj and Vj checking if the corresponding 

symbols are equal. Note that each pair of heads can be used only once. Indeed, after 

checking wj and vj one head has only blocks Vj- 1, Uj- 2, . . . , v1 left to read, while the 

other one has only blocks wj + 1, Wj+ 2, . . . , w, on its right side before the symbol #. 

This old idea was used by Yao and Rivest [16] to show that k-head one-way automata 

can recognize languages L, only for m <(:). Their hierarchy theorem was just a simple 

corollary of this fact. To carry out the proof they had to use the fact that for a fixed 

n there are about 2” words of length n in L,, even if we fix the length of blocks wj and 

vj. In this paper we try to answer if this argument must really be used. We consider 

relatively simple languages P,, where 

Each block in P, is a block of l’s, so only its length must be checked against the length 

of the corresponding block. The proof used for languages L, does not work for 

languages P, for the reason that there are relatively few words in P, of a given length. 

The above languages were considered already by Rosenberg [13] in his attempt to 

prove the hierarchy theorem for l-MFA. 

In this paper we consider only non-sensing automata (a sensing multihead automa- 

ton can determine when coincidence of its heads occurs, non-sensing automata cannot 

detect whether their heads stay at the same place). We consider the following problem. 

Problem 1.1. Given kg N. Find the maximal number m such that language P, can be 

recognized by some k-head (non-sensing) l-MFA. 

We prove in Theorem 2.2 that for m> k3/2 there is no k-head l-MFA recognizing 

language P,. On the other hand (see [16]), k-head automata are capable of recogniz- 
ing languages P, for m < (k2 - k)/2. We also prove (Theorem 3.1) that for each k there 
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is a k-head automaton which accepts a language P’G P,, where rn% k3/24. The 

language P’ contains language P,, c which is a fairly large subset of P,, namely, 

P,,,={l~l*laz*...*l”m*la~*...*lU’: Vk, l<m ak<c.al}. 

Anyway, the first-mentioned result shows that for non-sensing automata complexities 

of P, and L, are similar. The aim of this paper is not merely to give an answer to 

Problem 1.1, which is of rather technical importance. We have in mind a more general 

problem. 

Problem 1.2. Let L be a language of the form 

L={l Sl(n)*lS2(n)*...*lfm(n): neN} > 

wheref,, . . ..fm are some functions over N. Find a minimal number k such that language 

L can be recognized by a k-head (non-sensing) l-MFA or show that L cannot be 

recognized by such a device. 

We do not know a complete answer to Problem 1.2. However, the methods used to 

solve Problem 1.1 can be easily adopted to provide a technical framework allowing to 

give answers to many subcases of Problem 1.2. 

At this moment we have to mention the results obtained by Chrobak [l]. He 

considered very simple languages, namely, 

C,={lX2’5 i,xEN, lbidn}, 

containing only two blocks of different symbols. He proved that for each k there is an 

n such that C, can be recognized by some k-head l-MFA, but C,+ 1 requires already 

k + 1 heads. His proof was based on some geometric interpretation of the behaviour of 

l-MFA. We follow this idea of such an interpretation. Also by applying some methods 

of this paper it is possible to determine how many heads are necessary to recognize 

language C, [S]. 

2. The upper bound 

In this section we present our main result about recognizing languages P,. From 

now on, by automata we mean multihead deterministic non-sensing one-way finite 

automata (l-MFA). For the sake of completeness we recall their definition taken 

from [7]. 

Definition 2.1. A one-way k-head deterministic non-sensing automaton is a device 

M = (k, K, C, 6, qo, $, F ), where k3 1 is the number of heads, K, C and F are finite sets 

of states, input symbols and accepting states (F SK), respectively, q. is the initial 

state, $ (not in C) is the right endmarker for the inputs, and 6 is a mapping from 

K x (Cu(%})” into K x (0, l}“. An input to M is a string aIaz...a, of symbols in 

C delimited on the right end by the symbol $. We can think of a, a2.. .a,,$ as written on 
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the tape (with each symbol occupying one tape square) and the heads moving left 

to right on the tape. One execution step of M is described as follows. Let M be in 

state q with heads H,, . . . . Hk scanning symbols b,, . . . . bk (in Cu { $}). Suppose 

d(q,bi, . . . ,b,J=(p,&, . . . . dk). Then for each j< k, automaton M moves head Hj 

exactly dj squares to the right and enters state p (we assume that no head scanning 

$ can move further to the right). We say that a word a, a,...a, is accepted or 

recognized by M if when M started on a, a2... a,$ in state q0 with all heads placed at 

a,, after some number of steps it reaches an accepting state. Language L is recognized 

by automaton M if for every word x, XEL if and only if, x is accepted by M. 

Theorem 2.2. Suppose m > k3/2. Then language P, cannot be recognized by any k-head 
(non-sensing) l-MFA. 

The rest of this section is devoted to a proof of this theorem. Assume that M is 

a k-head automaton recognizing P,. Consider input words of the form 
~=I~I*l~2*...*1~2m . The subwords l”‘, l“‘, . . . . la*- are called blocks of x, so x is built 

from 2m such blocks. The Ith block (I< 2m) of x is denoted by Br. Also the right 

endmarker $ forms one additional block. Let the reading heads of M be called Hi, 

H Hk. 2, . . . . 
Consider the computation on x performed by M. It can be divided into several 

stages with each stage terminating when some head crosses a boundary between two 

adjacent blocks of x. There are k heads, so after at most 2mk stages each computation 

must terminate. Without loss of generality we may assume that M can reach a final 

state only when it enters a new stage of computation. 

Now we shall construct Cw, a computation tree of M with so-called distance 

functions and case conditions giving a full description of each possible computation 

performed by M. CM is a finite tree of height at most 2mk. For a node a of CM let ht(a) 

denote the height of a, i.e. ht(a) = 1 if a is the Ith node on the path leading from the root 

of CM to node a. Each node of CM corresponds to the beginning of some stage of 

computation for some class of inputs. The root of CM corresponds to the beginning of 

the first stage (which is the same for all inputs). Its successors correspond to the second 

stages and so on: a node a of Ciu corresponds to the stage ht(a). With each node a of 

CM we associate 

(i) a state of M denoted by St(a), 

(ii) distance functions fa,n, I for n < k, I< 2m + 1, 

(iii) case conditions. 

Each case condition is an expression of the form 

&i,xz, . . . . xZm)=O or h(x1,x2, . . . . xZm)>O, 

where the variables xi, x2, . . . , x2,,, stand for the lengths of blocks Bi, B2, . . . . BZm. We 

shall setf,,,,i(x1,x2, . . ..xZm ) to be the distance between head H, and the end of the lth 

block of lx’*...* lx’- at the beginning of stage ht(a), if H, lies in this block. If H, does 

not lie in this block, thenf,,.,, is undefined. 
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Let p(a) denote the path connecting node a with the root of CM. Define X, to be the 

set of all words x, x= l“l* 1’2*...*1’2m, such that for each case condition g(xr , . . . , xZm) 

associated with a node lying on path ~(a), g(ar , a2, . . , uzm) holds. The key point of the 

construction of CM are the following properties. 

Claim 2.3. (i) Suppose a is a node ofC,. Thenfor every XGX,, ~=1~‘*1~~*~~~*1~~~, at 

the beginning of the stage corresponding to node a, automaton M is in state st(a) and for 
each n 6 k the distance functions fn, ,,, [(al, a2, . . . , a2,,,) describe correctly the position of 

head H,. 
(ii) Each distance function is a “simple” expression (for a definition see below) and 

each case condition is of the form 

4(x 1, . . ..xh)=O or 4(x1, . . ..xh)<c. 

where 4 is a simple expression. 

Before the definition recall that r(d,c) is the remainder on dividing d by c. 

Definition 2.4. (i) Remainder functions are defined inductively as follows. 

R(x 1, . . . , x2,,,) is a remainder function if 

where CEZ, n,eEN and each 5j is a remainder function, an integer or an integer 

multiplied by some xi, i<2m. 
(ii) We say that S(x1,...,x2,,,) is a simple expression if it takes the form 

1 ti(Xl, ...,X~rn) 4 
i<n 

where n, d E N and for each id n expression 4i takes one of the possible forms: c. Xj, c or 

R(xr, . ..> x2,,,), where CGZ, j< 2m and R is a remainder function. 

To define CM we construct inductively a finite sequence of trees TO c T1 E Tz c “. 
The last tree in this sequence is CM. Each Ti is an initial subtree of CM, i.e. if aEC, and 

UE Ti, then p(a) G Ti. Therefore, to prove Claim 2.3 for CM it suffices to show it for each 

Ti, i.e. with CM replaced by Ti. 
TO is a tree consisting only of r, the root of C M. Clearly, st(r) is the initial state of M, 

the set of the case conditions associated with r is empty, the distance functions are 

defined as follows. 

fr,n,~(~~,...,~~m)=~~ for n<k, 

fr,n,jCX19 ...9XZm) is undefined for j> 1. 
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NOW we assume that we have constructed ri (i> 1). If for every leaf a of Ti the state 

St(a) is final, then the construction of CM is finished and CM = Ti. Otherwise, we single 

out a leaf a such that St(a) is not a final state. Tree Ti+ 1 will be constructed by adding 

some number of successors to node a. Throughout the construction we shall consider 

exclusively input words from X,. Let n=ht(u). If XEX,, ~=l~‘*l~~*~~~*l~~~, then 

A4 enters stage n of computation over x in state St(u) with the head positions 

determined by values h, f, j(al, u2, . . . , u2,,,) for t d k, j d 2m. We do not know which 

head first reaches a boundary between blocks at the end of stage n. There are many 

possibilities, each of them giving rise to a different group of successors of a. So assume 

that S is a set of heads and for each j, head Hj crosses a boundary between blocks at 

the end of stage n iff HjES. We shall describe all successors of node a corresponding to 

this situation. Let H,ES; head H, crosses the boundary between blocks BI and BI+ 1 at 

the end of stage n. Hence, during this stage H, makesf,,,,,=f,, f, I(ul, . . . . uzm) moves. 

Note that since each block contains only l’s (except the first symbol and the block $), 

after some initial p. steps the behaviour of M in stage n becomes periodic. Of course, 

f a,r,1 can be too small to reach the first period cycle. For each p < p. there is a successor 

ofuin Ti+l describing the situation when stage n terminates after exactly p machine 

steps. So assume that machine M makes p steps (pbp,) and stage n terminates. We 

describe the corresponding node a’ of Ti+ 1 a dded to Ti. For each head H, of M let e, 

be the number of moves made by H, during those p machine steps in stage n. Let el be 

the number of moves made by H, during p - 1 such steps. The distance functions of a’ 

are defined as follows. 

For s#S 

fa’,s,j=f~,s,j-ee, if fa,s,j is defined, 

&,s,j is undefined otherwise. 

For SES function fa,,s,j+ 1 is defined iff fa,s,j is defined and fa,, s, j+ I= Xj+ 1. 
The case conditions associated with a’ are defined as follows: 

.Ls,j-es>O for s$S, 

f,,,,j-es=0 and f,,,,j-ei>O for SES. 

In the above conditions j is chosen such that fa,,,j is defined. Clearly, node a’ satisfies 

Claim 2.3(i). For Claim 2.3(ii) note that a sum of a simple expression and a constant is 

a simple expression. 

Now we have to consider the case when fa,*,, is big enough to reach the periodic 

behaviour during stage n. We have to determine the number of moves made by each 

head. Consider head H,. Before M reaches the first moment of the periodic part of the 

execution, H, makes some c, moves and H, makes some c, moves (c,, c, are constants). 

So there are still h, 1, 1 - c, cells left for H, in block BI. During each period cycle, H, 
makes U, moves while H, makes u, moves, for some constants a,, u,. So, to the end of 

the last fully executed cycle H, makes 
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moves. It corresponds to [(&t,l- c,)/u,] full cycles (where [p] stands for the integer 

part of p, the maximal FEZ such that n<p). At the same time head 25, makes 

C(fa,t,I-CtM ‘4 

moves. During the last, not fully executed cycle each head makes some constant 

number of moves depending only on u(_/~,~,[ - c,, u,). Machine M needs some pi steps 

to execute the cycle. For each p<pl there is a node in ri+ 1 corresponding to the 

situation when the last cycle terminates after p initial steps. We fix p <pl and we 

describe the corresponding node u” of Ti+ 1. Let u, be the number of moves made by 

H, during p initial machine steps in the cycle, and let I& be the number of moves made 

during p- 1 such steps. Finally, we can say that during stage n head H, makes 

c,+c(&t,l- ct)I~J.k+% 

moves. New distance functions associated with a” are defined as follows. For heads 

H,ES it is simple since these heads enter new blocks. Let s$S. Then the new distance 

function h”,s, j is undefined if fa,s,j is undefined and 

fa”,s,j~fa,s,j~c~~~c(f,,t,l~c~~/u~I~u~~uu, 

otherwise. The case conditions associated with a” are the following. 

For each s+!S and j such that fa,s,j is defined 

fa,s,j-C,-CC(f,,t,L-C*)/~tl’U,-u~=o, 

~,s,j-cs-C(~,r,I-Ct)I~tl’U~-uU:>O. 

For SES and j such that fa,,,s,j is defined 

.L’r.s,j>o. 

It follows from the construction that Claim 2.3(i) holds for rj+ 1. So it remains to 

prove that each of the above-defined case condition and distance function is of the 

desired form. What we need is the following lemma. 

Lemma 2.5. (i) A sum of simple expressions is a simple expression. 
(ii) If 5 is a simple expression and CEZ, then c’ 5 is also a simple expression. 

(iii) If 5 is a simple expression, CEZ, de N, then [([ - c)/d] is a simple expression. 

Proof. (i) and (ii) are obvious. For (iii) consider 5 = (C tj)/c. Then 

[(~_c),d]=5-c-r(-d) 
d 

=(C5jKe-c-r((CTj)/e-C,d) 

d 

=~s’j-ce-e.r((C5j-ce)/e,d) 
de (2.1) 
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Now we have to prove that e. r((C tj-ce)/e, d) is of the appropriate form. For 

CI, 8, QE N, c(//?E N we have u(a/fi, a) = r(a, /?o)/j?. So 

The last expression is a remainder function, so by (2.1), [(r -c)/d] is a simple 

expression. 0 

By Lemma 2.5, each constructed distance function and case condition has the 

desired form and Claim 2.3(ii) holds for the tree Ti + 1. 

We have just described the construction of tree CM. Since each node of CM has 

finitely many successors and the height of C,,, is not greater than 2mk, CM is a finite 

tree. 

While looking at the work of A4 it is troublesome to consider all remainder 

functions which occur within the case conditions and the distance functions. We shall 

find a way to elude this difficulty. Let .?-I! be the set of all these remainder functions. 

Take gEN such that if REW, say R(x 1,. . , x2,,,)= c.r(C 5j, e), then e divides g. 

Definition 2.6. Let X’={lal* la2*...*la2m: Vi 91 Ui} and P’=P,nX’. 

Essentially, in the rest of this section we shall use only inputs from X’. The reason 

for that will become clear when we formulate the following lemma. 

Lemma 2.7. For each RE.% there is a constant cR such that for every XEX’, 
x = 1”’ * I”2 * . . . * 1”2- , we have R(al, . . . . a,,,)=~~. 

Proof. By induction on complexity of R: Suppose R(x,, . . . . x*,,,)=c. r(C <j, e). If 

{j(xi, ..., xzm)=d’xj, then <j(ai, . . . . a,,)=d’aj.ButeIgandgJaj,soeId.aj.If4jis 

a remainder function, then by the induction hypothesis 5j(a,, . . . , azm) has a constant 

value not depending on a,, . . . , u2,,,. Hence, each tj(ai, . . ., az,) is either a constant not 

depending on a,, . . . , a2,,, or a number divisible by e. So the lemma holds for R. 0 

Definition 2.8. If 4 is a distance function 

#(~1,...,~2rn)= C4i(x1,...,~2rn) 
(i 

4 (2.2) 

then &‘, the reduced distance function, is obtained from 4 by replacing in (2.2) each 

remainder function ti by the constant cc, given by Lemma 2.7. Similarly, we define the 

reduced case conditions. 

Lemma 2.9. I~xEX’, ~=l~~*l~**~~~*l~*~, then for each distance function 4 

dQ1,a2, . . ..azm)=d4al.a2, . . ..a2d 
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and for each case condition $ we have 

$(aI,a2, . . . , hd=-$‘(a~, 4, . . . , a2A 

Proof. It follows immediately from the definition. 0 

The most important fact about the reduced distance functions and the reduced case 

conditions is that they involve only linear functions. It considerably simplifies the 

situation. 

Assume that 1 is a node of CM. Then let X; =X,nX’. Let Yr be the set of all reduced 

case conditions associated with nodes lying on path p(I). Clearly, 

X/=(1 =1*1-*...*1- EX’: V#E Yl qff(aI, a2, . . . . az,)}. 

Before we proceed we recall terminology of geometry which we shall use. If 

4(x1, . . ..x.)=c(~x~+c(~x~+...+cI,x, (where al, . . ..M.EQ) and ceQ, then the set 

{x~Q”: ~(x)=c} is called a hyperplane in Q”. The sets {x~Q”: ~(x)>c} and {xEQ”: 

4(x)ac} are called halfspaces with the edge (x~Q”: $(x)=c}. An intersection of 

a finite number of halfspaces is a polyhedron. Hence, for each polyhedron U there are 

$1, $J~, . . . . ~j, linear combinations of xi, . . . . x,, and cr, . . . . C,EQ such that U = {x~Q”: 

Vi<j ~i(x)%ici}, where each $i is < or <. U is called a layer if there is $(x1, . . ..x.,), 

a linear combination of xi, . . . ,x,,, and cl,cZ~Q such that U={XEQ”: c1<4(x)<c2). 

So a layer is simply a set of points which lie between two parallel hyperplanes. 

A polygon is a polyhedron of dimension 2. A face of a polyhedron U is either the empty 

set or a polyhedron obtained by replacing some of the inequalities that define U with 

equations. A proper face of U is a face not equal to the empty set or U. A maximal 

proper face of U is called afacet of U. For S G Q” the affine hull of S, aff(S), is the set of 

all ZE Q” which can be expressed as z = Cxes, 1,. x satisfying Cxes ix = 1 for some finite 

S’ E S. S is an affine subspace of Q” if aff(S)= S. We define the dimension dim S of 

SE Q” to be the dimension of aff(S), its affine hull. 

Each word 1”’ * l”** . . . * I”‘- corresponds to the string (aI, a2, . . , a2m)EQ2m. For 

several reasons it will be more’ convenient to consider elements of Qzm rather than 

words. This enables us to use simple geometric techniques. For that reason we shall 

identify word lOI*...* l”‘- with the point (al,. . . ,aZm)EQzm. Also the sets X’, Xi, P’ 

shall be treated as subsets of Qzm. 

Let V=(x~Q2”: Vi x~=x~~-~+~ }. Clearly, P’= VnX’ and V is an affine subspace 

of QZrn of dimension m. Recall that Xi = {xeX’: V~EY~ 4(x)>. Define 

u[= (x4*“: V$E YyI 4(x)}. 

Then, obviously, Xi = U,nX’. Recall that each 4~ Y, defines in Q’“’ a hyperplane or 

a halfspace depending on whether 4 is an equation or an inequality. Hence, Ul is 
a polyhedron in Qzm. Automaton M recognizes language P,, so 

X’ = u {Xi: 1 is a leaf of C,}, 

P’= IJ {X;: I is an accepting leaf of C,}. 
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Polyhedrons U1 might not cover Q2m but by the first of the above equalities they 

cover X’. Now we shall seek 1, an accepting leaf of CM, such that UI is large enough for 

our purposes. Before that we must prove some auxiliary facts of geometry. 

Lemma 2.10. Suppose gEN. Take ajinite set of layers in Cl”, say F1, F2, . . . . F,. Then 
there is a point XEQ”\ Ui Fi such that Vidn g 1 Xi. 

Proof. By simple induction on II: For n = 1 the lemma is obviously true, so assume that 

n>l. Consider hyperplanes W’i: Wi={x~Q”: xl=g.i}. If the edges of Fj are not 

parallel to hyperplane {xEQ’: x1 =O}, then Fjn Wi is a layer in Wi for each i. If the 

edges of Fj are parallel to this hyperplane, then for almost all i sets Fj and W’i are 

disjoint. SO there is iE N such that the sets Win F, , Win F2, . . . , Win F, are layers in 

Wi. Hyperplane Wi is isomorphic to Q”- i, so by the induction hypothesis there is 

x~Wi\U(WinFi)=Wi\UFisuchthatgIxifori=2,3,...,n.Butx~Wisog(x,. 0 

Let Q”+ ={XEQ”: Vi<n Xi>O}. Since X’GQ ‘;“, we shall virtually stay in O’;l. 

Lemma 2.11. Lemma 2.10 holds also if we replace Q” by Q”,. 

Proof. Q” is a union of finitely many subsets isomorphic to QT. So if we could cover 

QP: by finitely many layers we could do the same with UT’. 0 

Definition 2.12. Let L be a polyhedron, say L= nicJ {x: 4i(X)$ici) where each $i is 

d or <. If ZEL then by _Y(L,z) we mean the polyhedron (Fig. 1) 

2(L, Z) = n {X: tiiCx) > &i(Z)}. 
ieJ 

Fig. 1. 
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Lemma 2.13. If L is a polyhedron, EL, then 
(i) =.Y(L, z)G L. 

(ii) If 2?‘(L, z) is not the point z itself, then 

Y(L,z)= (_J{p: P is a haljline with the end z, p G L}. 

(iii) I. Z, SEL then -Y’(L,s) is equal to P’(L, z) translated by vector j?. 

(iv) ~.~(L,z)c Vand dimY(L,z)=m, then _Y(L,z)nX’#@. 

(2.3) 

Proof. Let L be defined as in Definition 2.12. Part (i) is obvious. For part (ii) we show 

first the inclusion E. Suppose YEP(L, z), y#z. Take the halfline p with the end z 

such that yip. Consider function $i on p. It is linear. We have ~i(y)3~i(z), so pi 

is not decreasing along p. So 4i(U)>4i(Z) for every u~p. It holds for every i so 

p c _Y(L, z) G L. Hence, p witnesses that y is an element of the union on the right side of 

(2.3). For the inclusion 2 assume that p is a halfline with the end z, pc L. Consider 

function $i on p. It is linear and has values not smaller than ci. So function & cannot 

decrease along p. Hence, its values are not smaller than pi. So we get p c Y(L, z). 
For (iii) we show first that 6p(L, z) +SC P’(L, s). Take UEY(L, z). Then pi>& 

for each i. Note that 4i(U+$)- 4i(U) = 4i(s) - 4;(Z), because pi is a linear function. SO 

So (u+?$)~dP(L,s). Hence, ~(L,z)+~G~(L,s). In the same way we get 

.Y(L,s)+~cY(L,z). So dp(L,s)+~+~~5?(L,z)+~ Then _Y(L,s)~2’(L,z)+jj? 

For (iv) note that, since dim(9(L, z))= m and _C?(L, z) is a polyhedron in V, there is 

a point s which is an interior point of _Y(L,z) in the sense of topology of V. Then 

4;(s) > #i(Z) for each i (otherwise, s would lie on one of the facets of _Y(L, z)). By (ii), 

there is a halfline p beginning with z and containing point s. Function 4i grows to 

infinity on p. Since 4;s are linear functions, we can find a number ~EQ, v > 0, such that 

for each pair of points x, y, I&(x)--~~(JJ) I dq. d(x, y), where d(x, y) denotes the 

distance between x and y. Therefore, we can find a point u~p such that a ball K in 

V with center at u and radius igfi is a subset of Y(L, z). Indeed, it suffices to take 

u such that &i(U)>4i(Z)+iY/.gJmfor each i. If _YEK, then 

~i(X)=~i(U)+(~i(X)-~i(u))~~i(U)-~.d(x,U) 

~~i(z)+~V]‘g~-_3r’gJm=~i(Z). 

SO XEP(L, z). Each ball in V of radius fg& contains a point from X’. So the lemma 

follows. 0 

Now consider IO, II, . . , I,, all accepting leaves of CM. We may assume that each Y[, , 
the set of reduced case conditions leading to Ii, contains the inequalities Xj>O for 

j<2m. Consider now polyhedrons Wi, where Wi = Vn Uli. Of course, VnQ:“’ is 
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isomorphic to Q”, and VnQ:“? ui WiZ VnQe2;“nX’. For each Wi fix a point 

WiE Wi. 

Claim 2.14. For some i polyhedron P’( Wi, wi) has dimension m. 

Proof. Assume the converse. SO each d;p( Wi, wi) is a subset of some layer. On the other 

hand, by the definition of 5?( Wi, wi), the set Wi\.li”( Wi, Wi) is included in a finite union 

of layers. Consequently, we can cover VnQ2+“nX’ by a finite union of layers in 

VnQ;m. This contradicts Lemma 2.11. 0 

By the above claim we may assume that polyhedron 9( W,,, wO) has dimension m. 
By Lemma 2.13 there is xOe W,nX’. Then again by Lemma 2.13, ~(Wo,xo) has 

dimension m. Leaf IO is the leaf 1 we have been looking for, for which UI is “large 

enough”. 

Polyhedron U[, is defined by the reduced case conditions from YJyI,. We split Y1, 

into two subsets Qp, and Q2. For 4~ Y10 we put 4 into Q1 if either the hyperplane 

defined by 4 (if 4 is an equation) is parallel to V or the halfspace defined by 4 has the 

edge parallel to V. Otherwise, &I is in Q2. Let 

for i = 1,2. Obviously, Ul, = VI n V2 and 

(i) all facets of VI are parallel to V, 

(ii) no facet of V2 is parallel to V. 

Before we proceed let us notice the following property. 

Property 2.15. Zf a halfline p c Q2m contains a point from X’, then it contains infinitely 
many of them, each two subsequent points staying at a constant distance (depending 

on P). 

The property easily follows from the fact that we are working in Q”“, not in lRZm. 

Lemma 2.16. V,nX’s V. 

Proof. We know that VIn V,nX’= U,,nX’c V. Assume that there is a point 

xG( V,nX’)\ V. 

Claim 2.17. There is a halfline p c _Y’( W,,, x0) with the beginning x0 not parallel to any 
facet of V,. 

Proof of Claim 2.17. To show the claim note that for each facet F of V2 the set 

{y~6p( W,,, x0): xoy’is parallel to F} has dimension less than m. A finite union of sets 

of dimension less than m cannot cover polyhedron S?( W,,, x0) of dimension m. Hence, 

there is a point YE_~( Wt,,xo) such that vector x,y’is not parallel to any facet of V2. 

Take p to be the halfline beginning with x0 and containing point y. 0 
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r 

P 

Fig. 2. The situation on plane q 

Proof of Lemma 2.16 (conclusion): Let q be the plane containing halfline p and point 

x (Fig. 2). Then, by Claim 2.17 V2nq is a polygon with edges not parallel to p. 

Since p E Ulo, p G Ul,n q G V2n q. Let r be the line parallel to p containing point x. It is 

geometrically evident that ( V2n q)nr is a halfline, say s. Since xEr, it follows from 

Property 2.15 that s contains infinitely many points from X’. On the other hand, line 

r is parallel to p so r is parallel to I’. Polyhedron V, has facets parallel to I’, line 

r contains point x from Vi, so r E VI. Hence, s E Vi n V2. We have noticed previously 

that snX’#@ So there is a point x’anX’s V’,nV2nX’=X~o. Leaf lo is accepting, so 

X’E V. We know that X’E V, pc V and V is an affine space. So q G V and hence, XE V 
contrary to the assumption about x. 0 

Polyhedron VI has interesting properties: VC VI and VI nX’ E V. Let g1 , g2, . . . , gs 

be all reduced case conditions defining VI (i.e. @i = {g1,g2, . . . ,g,}). 

Lemma 2.18. Each gj is a condition of the form 

hj(x 1, ..., x~,,,)<c or hj(Xl, . . ..x~.,,)=c’, 

where c’ = 0 and 

hj(x 1, ..., X2m)= C ai. jxi- 1 c(i, jX2m-i+l 
ibm i<m 

f or some cI1, j, . . . . a,, j~Q. 

Proof. We know that each hj is a linear combination of xi, . . ..x2.. Essentially, 

Lemma 2.18 says that in hj(x,, . . . , xZm) the coefficients of xi and x2,,_i+ I are the 

same except for their signs, which are different. Let hj(xl, . . . . x2,,,)= 

Ci$m C(iXi-Ci<mBiX2m-i+1. Now let us fix some i. Consider the points 

n.&,a2,..., a2,,& where a, = 1 for t = i, 2m - i + 1 and a, = 0 otherwise. For nE.Z all 
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these points are elements of V and gj holds for them. But gj takes for these points the 

form n. (ai - fii) < c or n. (ai - fli) = c'. Because it holds for every n, ai and pi must be 

equal. In the last case we must have c’ = 0. 0 

It is a simple observation that if gj takes the form hj(x,, . . ..x.,)<c, then c>O. 

Indeed, gj holds for XI= . . . = x2,,, = 0 and hj (0, . . . , 0) = 0. 

Lemma 2.19. There are m linearly independent polynomials among hI, h2, . . . . h,. 

Proof. Consider the set S={XEQ~“‘: Vi< q hi(x)=O}. Clearly, VCS and SG Vr. 

Assume that dimS>m. Then there is a point XES\V, XEX’. On the other hand, 

V,nX’z K a contradiction. So dim S=m and the number of linearly independent 

polynomials among hI, . . . . h, is equal to 2m-dimS=m. 0 

We may assume that hI, .,., h, are linearly independent. Let condition gi be 

generated at the beginning of stage si. By the critical moment of gi we mean the 

beginning of stage si. We may assume that s1 <s2 < ... <s,. 

Definition 2.20. Suppose H, H’ are heads of M. We say that.a pair (H, H’) is dead at 

some moment of computation of M if for some l< 2m head H stands on the right side 

of block BI while head H’ stands on the right side of block B2,,_[ + 1. 

Note that if a pair (H, H’) is dead at some moment, then it will remain dead for the 

rest of the computation. Intuitively, if a pair (H, H’) is dead then the heads H and H’ 
cannot be used to check that any two corresponding blocks are equal. However, it is 

not perfectly true. If variable Xj occurs in gj, then block Bj must be read by some head 

before the critical moment of gj. However, the length of Bj may be recorded by some 

other head by its position in some other block. In turn, this information can be 

transmitted elsewhere and so on. Therefore, information about block Bj can be used 

long after reading block Bj. This makes the analysis complex. 

Now we shall show that m<fk3. First consider gr. Suppose that xj occurs in g1 

with a nonzero coefficient. Hence, there is a head H which reads block Bj before the 

critical moment of g1 . The coefficient of x2,,-j+ 1 in g1 is the same by Lemma 2.18, so 

also not equal to zero. Hence, before the critical moment of gi some head H’ reads 

block B2m_j+l. We see that at the critical moment of g1 the pair (H, H’) is dead. Take 

a look what happens next. We show that after at most k next critical moments a new 

pair of heads becomes dead. 

Assume that H” is the head which reaches a new block at the beginning of stage sl. 

Letf,, . . . ,fk _ 1 denote the distances of the other heads from the ends of the blocks they 

were in (some of fis might be equal to 0). If after this moment any reduced case 

condition is generated then it takes the form 

Z+CCtifitC or Z+Cclifi=C, 
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where ai~Q and z is an expression depending only on the blocks read after the 

beginning of stage s1 . Consider some gj for j > 1. Then hj= z + 1 Clip, where z is as 

above. Suppose z ~0. Then z contains some variable xt standing for the length of 

block B, read by some head, say H (3), after reaching stage s1 . The corresponding block 

Bzm-t+1 was read by some head Hc4), not necessarily after reaching stage si, may be 

before. Note that if block B2,,, _ f + 1 was read by head Hc4) after reaching stage sl, then 

the pairs (Hc3’, Hc4’) and (H, H’) must be different. Indeed, it is a consequence of the 

fact that the pair (H, H’) is dead after reaching stage s1 and these heads cannot read 

any corresponding blocks. 

Let gt be the first case condition such that at the critical moment of g1 a new pair of 

heads becomes dead. Each hj for 1 <j< t takes the form 

k-l 

hj=zj+ C Mi,jfi, 
i=l 

where zj contains only variables denoting the lengths of the blocks read after the 

beginning of stage s1 As we have noticed, Zj cannot contain simultaneously variables 

xi and xZm_ i+ 1 (i < m) since otherwise a new pair of heads would be dead at the critical 

moment of gj. 

Lemma 2.21. Functions Uj=CfZj Cli, jfi for 1 <j< t are linearly independent. 

Proof. Assume that these functions are linearly dependent, i.e. 

Y2”2+Y3u3+ . ..Sy._,u,-l=O 

for some y2, . . . . yt_l~Q, not all equal 0. We show that y2h2+~~~+yt_1ht_1=0. 
Consider variables x, and x~,,_~+ i (s<2m). Only one of them, say xs, can be used in 

expressions Zj (1 <j < t). Variables x, and x 2m_s+ 1 stand in Uj with some coefficients 

llj and Aj. Then 

k-l 

C YjAj 
j=2 

is the coefficient of x, in y2u2 +ysu3 + ... +yt- I u,_ 1. SO C Yjllj=O. Similarly, 

Cyj/ij=O. Note that now the coefficient of x~,,-~+~ in hj is the same as in Uj, i.e. /lj, 

sincehj=zj+ujand~Zm_s+l does not occur in zj. The coefficient of X, in hj is -nj by 

Lemma 2.18. But hj = zj+ uj and in uj variable x, has coefficient ;lj. So the coefficient of 

x, in Zj is equal to -Aj-Aj. On the other hand, we have 

Y2h2+...+Yt-~ht-~=y2(z2+~2)+...+Yt-~(z~-~+ut-~) 

The last expression does not contain ~~,,,._~+i since no Zj contains ~~,,_~+i. In turn 

the coefficient of X, is there equal to Cyj( -/ij-;lj)= -Cyjnj-CyjAj=O. Hence, 
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Yzhz + ... +yt_r h,_, does not contain x, and x~,,_~+~. Number s was arbitrary, so 

YZh2+ . ..+yr_rh._r=Oandhz, . . . . h, _ 1 are linearly dependent: a contradiction. 0 

It follows from Lemma 2.21 that we have r-2 linearly independent functions uj. 

Each nj is a linear combination of fi, . . . ,fk_l. Hence, t-2<k-1, so t<k+l. 
We have just proved that at the critical moment of gk+r a new pair of heads, 

different from (H,H’) must be dead. The above proof can be repeated virtually 

without change to show that for each n at least one pair of heads becomes dead after 

the critical moment of g,, and no later than the critical moment of gn+k. There are only 

k2/2 pairs of heads (we allow the first and the second elements in a pair to be the same). 

Hence, m, the number of critical moments is not greater than k. k2/2= k3/2. It 

completes the proof of Theorem 2.2. 

3. Recognizing P, 

Recall that P,,, (for CGN) is a sublanguage of language P, defined as follows: 

Pm,r={lal*... *la2meP,: V,n, 1<2m a,<c.a[}. 

We show in this section that for each. c we can recognize language P,, c using an 

automaton with about “A heads. It shows that in some sense the bound given in 

Theorem 2.2 is stringent. However, P,, c is only a sublanguage of P, and we do not 

know such an algorithm for P,. 

Theorem 3.1. Let k, CE N. There is a k-head l-MFA M recognizing a language P’ such 
that P,,, E P’ G P, and m 2 k3/24. 

Proof. We consider only inputs of the form 1”’ * ... * 1”2m, where a, < c. a, for each 

n, 162m. By blocks of such an input word we mean the subwords l”‘, l”‘, . . . , la2,. 

These blocks will be denoted by B1, Bz, . . . . B,,. Let 1 Bi 1 stand for the length of block 

Bi. SO M has to check that for each i<m, IBiI=IBz,_i+ll. 
First we describe how M can remember the length of some block Br. For that 

purpose we need three heads, say HI, HZ, H3, with HI positioned at the beginning of 

Br and two other heads placed at the beginning of some block B,. Information about 

the length of Br will be stored inside B,. More precisely, we record only [ IB,l/c] and 

r(lBI,c) is to be remembered by the finite memory of M. Firstly, HI and Hz move 

simultaneously until HI reaches the end of block Br. For each c moves of HI, head Hz 
makes only one move to the right. So when HI reaches the end of Br then the distance 

between H, and H3 is [I BI l/c]. Head H2 is still inside block B, since I Bl I -cc. I &I. Now 
we move simultaneously heads H2 and H3 with the same speed until Hz reaches the 

end of B,. The distance between H2 and H3 remains unchanged, so finally, H3 is 

placed at the distance [ jBll/c] from the end of block B,. If later we have to check that 

I B,I = 1 B2,,_[+ 1 1, then we can use head H, and some other head H placed at the 
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beginning of Bzm _, + 1. We start both of them, H making c moves for each single move 

of H3. If 1 Bl I= 1 BZm _ I + 1 1 then there are exactly r( 1 B1 1, c) symbols left inside B2,,, _ 1 + 1 in 

front of head H at the moment when H3 reaches the end of Bi. This can be easily 

verified using the finite memory of M. 
If W is one of the blocks B1, B2, . . , B2,,,, say Bl, then let w’ be the corresponding 

block BZm_l+l. The computation of M consists of k - 1 different stages. For each stage 

of execution there is a corresponding group of blocks. If W belongs to such a group for 

stagej then during stage j it is checked whether I WI = I W’l. Let the blocks correspond- 

ing to stage j be denoted by Bj, 1, Bj,z, . . . , Bj,.cj,. Each input word which we consider 

therefore takes the form 

B 1,1*B1,2*...*B1,~(1)*Bz,l*...*B2,o(2)*...*Bk-l,1*...*Bk-l,o(k-l)* 
\ / LpypJ L 2 

for stage 1 for stage 2 for stage k- 1 

B~-l,.(k-1)*...*B;,_1,1*B;_2,~(k-2)*...*B;_2,l*...*B;,.cl,*...*B;,1 
\ / L 2 \-y-J 

for stage k - 1 for stage k-2 for stage 1 

Values a(j) shall be determined later. 

Now we describe one stage of computation, say stage j. It has the following 

important properties. 

(i) Only heads HI, . . . . Hk_j+l are in use, all of them initially placed at the 

beginning of block Bj, 1. 

(ii) When stage j ends, head Hk_j+ 1 is at the end of Bj, 1 and will not be used during 

the next stages, the remaining heads HI, . . . , Hk _j are moved to the beginning of 

Bj+i,i. 
For the sake of simplicity put Bj,i = Di. Also let t = k-j+ 1. Stage j is divided into 

[(t - 2)/2] substages plus one additional “final” substage. 

. ..D1*Dz*. . . . . . . . . . . . . . . . . . . . . . . . . . .*Dacj) . . 
---b--- . ..M M 
final substage substage substage 2 substage 1 

CO - 2)/21 

Dku,*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*D’. . . 1 
----Y---...L-“-l M 

substage 1 substage 2 substage [(t -2)/2] final substage 

First substage: During this substage M checks if the lengths of blocks Da(j), Da(j)_ 1, 

...> Do(j)-I(r-2)/2]+1 match with the lengths of the corresponding blocks. At the 

beginning, head H, moves to the end of Do(j). In the meantime it reads blocks 

Da(j)-t(t-~),2]+1~ ...) Do(j) 

and uses heads Hz, H3, . . . , H,_ 1 to record their lengths inside D1. It is possible since 

2 [(t - 2)/2] + 1 d t - 1. Head H 1 is left unmoved at the beginning of D1 and will stay 

there until the final substage. Then head H, reads blocks 
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and simultaneously, using information stored by the heads lying inside D, their 
lengths are checked. 

Second substage: The second substage looks like the first one except for few details. 
At the beginning, head H,_ I moves to the end Of Da(j). In the meantime it reads blocks 

and uses heads H3, H4, . . . , H,_ 2 to record their length inside D2. Again, it is possible 
since 2 [(t - 4)/2] + 2 < t - 2. Head Hz is left unmoved at the beginning of D2 and will 
stay there until the final substage. Then head H, reads blocks 

Dkcj,-tcr-2)/2], ...> D’ - - O(J) [(t 2)121-t(t-4)121+1 

and simultaneously, using information stored by the heads lying inside D2, automaton 

M checks the block lengths. 
During subsequent substages M works similarly. Each time one head is moved to 

the end of D,,j, and one is left unmoved for the final substage. Also head H, reads some 

number of blocks. The remaining heads move one block forward because of the length 

checking. The number of such heads decreases by two each substage. Note that there 

must be at least four of them at the beginning of a substage. It follows that there are 

[(t - 2)/2] of these substages. 
Final substage: After the last nonfinal substage there are heads left at the beginnings 

ofD,> Dz . . , DLct _ 2j,21. Also in front of block DLcl _ 2J,21 + 1 there are at least two heads. 

We move one of them to the beginning of DlrlZ1 + 1. During this substage M checks that 

the blocks D1, D2, . . . . Dllizl+r have the same length as the corresponding blocks. It 
can be easily done since the number o(j) is chosen so that after the last nonfinal 
substage the head H, stands in front of D;,,21 + 1. After the checking is done M moves all 

heads (except H, and the other heads not already in use) to the end of D,,j,. 
Now we count for how many blocks Di automaton M checks that 1 Di I= 10: 1 during 

stage j. During the final substage M checks [t/2] + 1 blocks. During the first substage 

M checks [(t -2)/2] blocks, during the second one only [(t-4)/2] of them, then 

C(t - W21, C@ - W4, . . . So during stage j automaton M checks together 

a(j)=(l+[t/2])+([(t-2)/2]+[(t-4)/2]+...+1) 

blocks. Then 

a(j)=([t/2]+[(t-2)/2]+[(t-4)/2]+...+1)+1 

=f . [t/2] .([t/2] + l)+ 1 

>i t-l t-l 

-.( > ‘2 2 
2+1 +l 

J--I)(t+l)+l 
8 

t2- 1 t2 (k-j+ 1)2 

=s+l%= 8 ’ 
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The number of pairs of blocks checked during all stages can be estimated as follows: 

k-l 

c o(j)>-+- 
k2 (k-l)*+ . . . +c 

j=l 8 8 8 

=~(k2+(k-1)2+~~~+12)-~ 

=&k.(k+ l)Qk+l)-&$ 0 

The algorithm presented works effectively for large k. It can be improved slightly 

by combining it with a straightforward algorithm used for recognizing languages 

L (C161). 
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