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a b s t r a c t

We obtain very strong coloring theorems at successors of singular cardinals from failures
of certain instances of simultaneous reflection of stationary sets. In particular, the simplest
of our results establishes that if µ is singular and µ+ → [µ+]2

µ+
, then there is a regu-

lar cardinal θ < µ such that any fewer than cf(µ) stationary subsets of Sµ
+

≥θ must reflect
simultaneously.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Our main results establish a strong connection between square-brackets partition relations at successors of singular
cardinals and simultaneous reflection of stationary sets. The general question of whether the failure of simultaneous
reflection of stationary subsets of a cardinal κ can be used to negate square-brackets partition relations at κ has been around
since the 1980s — Todorčević [29] (see also Shelah [26]) established that κ 9 [κ]2κ holds in the presence of a non-reflecting
stationary set, and the question of whether the hypothesis can beweakened to a failure of simultaneous reflection is natural.
Shelah’s study of coloring theorems at small inaccessible cardinals (mainly in Chapters III and IV of [27]) contains many
partial results in this vein; he obtains coloring theorems from failures of simultaneous reflection using some additional
assumptions on the cardinal κ . Our techniques build on his work by modifying his techniques for inaccessible cardinals so
that they can be applied to successors of singular cardinals. Our main theorem results from the union of these techniques
with a generalization of our previouswork in the area (much of which has been joint with Shelah). The payoff is a substantial
improvement in our understanding: we get much stronger conclusions from much weaker hypotheses. Along the way, we
obtain a version of the main result of [8] which holds even for successors of singular cardinals of countable cofinality. This
is accomplished by changing the sort of club-guessing sequence used in those papers, and by refining our arguments so that
they work in this new context. In forthcoming work, we use the techniques developed here to settle several other questions
left open by [8,10].
In this introductory section, our goal is to provide enough background that the preceding paragraph makes sense. We

assume that the reader has an acquaintance with basic set-theoretic notation; any of the standard references (say [14,20],
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or [16]) are more than sufficient. Some of the objects of importance to us have been denoted in a variety of ways throughout
the literature, so we take a moment to set our conventions.

Notation. Let λ and κ be cardinals.

(1) [λ]κ := {A ⊆ λ : |A| = κ}.
(2) Sλκ := {α < λ : cf(α) = κ}.

We also utilize minor variants of the above notation, but these should all be self-explanatory.

One more convention is quite important for us: by ‘‘I is an ideal on κ ’’, we mean ‘‘I is a proper ideal on κ containing all
bounded subsets of κ ’’. We have chosen this notation for convenience, since it eliminates many trivialities.
We now move on to the background material; we begin with the square-brackets partition relation κ → [λ]µθ of Erdős,

Hajnal, and Rado [11], which means that for any function F : [κ]µ → θ , (which we refer to as a coloring) we can find a set
H ⊆ κ of cardinality λ for which

ran(F � [H]µ) $ θ,

that is, when we restrict the function F to [H]µ, at least one color is omitted. These square-brackets partition relations arise
naturally when one investigates the extent to which Ramsey’s Theorem generalizes to uncountable sets, as the statement
‘‘κ → [λ]µθ ’’ asserts that a very weak form of Ramsey’s Theorem holds at the cardinal κ .
The negations of these partition relations are quite strong combinatorial hypotheses in their own right, and it is for this

reason that they have been studied extensively by set theorists:

The moral is that if one knows an ordinary negative partition relation then it is often worth asking whether a stronger assertion, a
negative square-brackets relation, is also true [12].

Consider for example, the statement κ 9 [κ]2κ . This asserts the existence of a function F : [κ]
2
→ κ (a coloring of the pairs

from κ using κ colors) with the property that F assumes every possible value on (the pairs from) every unbounded subset of
κ . This says that Ramsey’s Theorem fails in a very spectacular way at κ: it is possible to color the pairs of ordinals less than
κ utilizing κ colors such that any subset of κ of size κ is completely inhomogeneous with respect to the coloring. Theorems
that assert the existence of ‘‘complicated’’ colorings of pairs (or other finite sets) of ordinals (where the exact meaning of
‘‘complicated’’ depends on context) can be conveniently grouped under the sobriquet ‘‘coloring theorems’’, and our main
theorem is one such.
In Appendix 1 of [27], Shelah systematically studies several combinatorial principles stronger than the negated square-

brackets relations discussed above, and our results are most naturally stated using his notation.

Definition 1.1. If λ is an infinite cardinal, and κ + θ ≤ µ ≤ λ, then Pr1(λ, µ, κ, θ) asserts the existence of function
c : [λ]2 → κ such that whenever we are given a collection 〈tα : α < µ〉 of pairwise disjoint elements of [λ]<θ as well as an
ordinal ς < κ , then there are α < β for which c � tα × tβ is constant with value ς .

Our concern in this paper is with the case where λ = µ and θ > 2 in the above definition. In this situation, we see
that Pr1(λ, λ, κ, θ) is a strengthened version of λ 9 [λ]2κ , for one may take the sets tα to be singletons. One should think of
Pr1(λ, λ, κ, θ) as establishing a version of λ 9 [λ]2κ that works for ‘‘blocks’’ of size less than θ .
We will break off our discussion of these relations for a moment to pick up another thread that is important for our

work, namely, reflection of stationary sets. Jech’s [13] gives a nice introduction to this topic, and the paper [5] of Cummings,
Foreman, and Magidor is also an excellent resource.

Definition 1.2. Let S be a stationary subset of an uncountable regular cardinal κ .

(1) We say S reflects at α if α < κ has uncountable cofinality and S ∩ α is stationary in α.
(2) Refl(S) holds if every stationary subset of S reflects at some α.
(3) S is non-reflecting if S does not reflect at any α.

We observe here that any cardinal of the form κ+ for regular κ has a non-reflecting stationary subset: consider the set
Sκ
+

κ of all ordinals below κ+ of cofinality κ . This set does not reflect, as any α < κ+ of uncountable cofinality contains a
closed unbounded subset of ordinals each of cofinality less than κ . The situation at successors of singular cardinals is much
more delicate, and we will have much to say about this later.
It has been known for a long time that there are connections between stationary reflection and coloring theorems. For

example, Tryba [31] (and independently Hugh Woodin) established that κ 9 [κ]<ωκ whenever κ has a non-reflecting
stationary subset. Stevo Todorčević [29] was able to use his technique of minimal walks to improve this to colorings of
pairs: κ 9 [κ]2κ whenever κ has a non-reflecting stationary set, and hence, in particular, κ

+ 9 [κ+]2
κ+
whenever κ is a

regular cardinal. Shelah [26] simplified Todorčević’s argument a bit and obtained some other generalizations.
Research on coloring theorems for successors of regular cardinals has continued. For example, Shelah [28] has established

that Pr1(κ+2, κ+2, κ+2, κ) holds for every regular cardinal κ , while Justin Moore [23] obtained a significant strengthening
of Todorčević’s result for ℵ1 and solved a long-standing open problem in general topology.
Given our understanding of successors of regular cardinals, the following question is natural:
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Question 1. To what extent are analogous results true for successors of singular cardinals?

This question is still verymysterious, in large part due to the fact that the combinatorics of successors of singular cardinals
is very sensitive to underlying assumptions in set theory. For example, ifµ is singular andµ+ has a non-reflecting stationary
subset, then the work of Todorčević can be brought to bear and we can conclude that µ+ 9 [µ+]2

µ+
. However, assuming

the existence of large cardinals, Magidor [22] established the consistency of Refl(µ+) forµ singular, and so the situation for
successors of singular cardinals differs greatly from that at successors of regular cardinals.
Back in 1978, Shelah [24] was able to establish ℵω+1 9 [ℵω+1]2ℵω+1 from the assumption that 2

ℵ0 < ℵω . His later
development of pcf theory let him eliminate the additional assumption (see Chapter II of [27]), while also extending the
class of cardinals for which such results hold. Moreover, in ZFC, Shelah (Conclusion 4.1 in Chapter II of [27]) was able to
prove

Pr1(µ+, µ+, cf(µ), cf(µ)) holds for any singular cardinal µ. (1.1)

Notice that this is a strong negative partition relation using cf(µ) colors; the question ofwhether or not this can be improved
to a coloring using µ+ colors (that is, whether Pr1(µ+, µ+, µ+, cf(µ)) holds for µ singular) is still very much open, as are
the related questions concerning µ+ 9 [µ+]2

µ+
and µ+ 9 [µ+]<ω

µ+
. The main result of this paper obtains strong colorings

under very weak assumptions, but to describe the precise situation, we need some notation from [5].

Definition 1.3. Let κ be a regular uncountable cardinal, and let S be a stationary subset of κ . We say Refl(θ, S) holds if for
every sequence 〈Ti : i < θ〉 of stationary subsets of S, there exists an α < κ such that each Ti reflects at α. Similarly, we say
Refl(< θ, S) holds if for every σ < θ and every sequence 〈Ti : i < σ 〉 of stationary subsets of S, there exists an α < κ such
that each Ti reflects at α.

We can now state our main theorem, a theorem illustrating the connection between failures of simultaneous reflection
of stationary sets and the existence of complicated colorings.

Main Theorem. Assume µ is a singular cardinal.

(1) If Refl(< cf(µ), Sµ
+

≥θ ) fails for some θ < µ, then Pr1(µ+, µ+, θ, cf(µ)) holds.

(2) If Refl(<cf(µ), Sµ
+

≥θ ) fails for arbitrarily large θ < µ, then we obtain both Pr1(µ+, µ+, µ, cf(µ)) and µ+ 9 [µ+]2µ+ .

(3) If cf(µ) > ℵ0 and Refl(< cf(µ), S
µ+

≥θ ) fails for arbitrarily large θ < µ, then (2) can be improved to Pr1(µ+, µ+, µ+, cf(µ)).

(4) If cf(µ) = ℵ0 and Refl(< cf(µ), S
µ+

≥θ ) fails for arbitrarily large θ < µ, then there is a function d : [µ+]3 → µ+ such that
whenever 〈tα : α < µ+〉 is a pairwise disjoint family of finite subsets of µ+ and ς < µ+, there are α < β < γ such that

(∀ε ∈ tα)(∀ζ ∈ tβ)(∀ξ ∈ tγ )[d(ε, ζ , ξ) = ς ].

The proof builds on work of the author and Shelah [9,10,8]. In particular, the main theorem of [8], when taken together
with results in Sections 2 and 3 of the current paper, is strong enough to imply our main theorem in the case where µ has
uncountable cofinality. The paper [10] partially extended the results of [8] to the case where µ has countable cofinality
(the combination of the main theorem in [10] with the results of Sections 2 and 3 in the current paper results in something
weaker than Pr1(µ+, µ+, µ+, cf(µ))); the current paper gets around the obstacle in [10] caused by the countable cofinality
of µ.
The proof of most parts of the main theorem will proceed according to the following sketch:

Sketch of the argument

Let µ be a singular cardinal.

(1) In ZFCwe prove that there are a function c : [µ+]2 → µ+ and an ideal I (related to club-guessing) such that whenever
〈tα : α < µ+〉 is a family of pairwise disjoint elements of [µ+]<cf(µ), for almost every (in the sense of I) β∗ < µ+ there
are α < β such that c � tα × tβ is constant with value β∗.

(2) If the desired colorings fail to exist, then we can conclude that the ideal I from (1) possesses some strong combinatorial
properties.

(3) These properties are strong enough to imply the needed instances of simultaneous reflection of stationary subsets ofµ+.

The main theorem of [8] establishes (1) for the case where the cofinality of µ is uncountable, while the main theorem
of [10] gives a conclusion weaker than (1). Statement (2) will be obtained from (1) by modifying one of the arguments
from [8]. Statement (3) relies on extending some results from Section 3 of Chapter IV of Shelah’s [27]; the results seem to
be new, though they have a ‘‘folklore-ish’’ flavor.
Moving on, we now give an account of the organization of this paper. In Sections 2 and 3, we prove a series of results

culminating in a proof of (3) above. Section 4 proves a club-guessing result needed to define the ideal I . Section 5 pins down
the assumptions that we need for our main theorems, and lays some groundwork for later arguments as well. Section 6
introduces much of the minimal walks machinery that we need, as well as providing a proof of a crucial preliminary result.
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Section 7 furnishes some backgroundmaterial concerning scales and elementary submodels, and Section 8 provides a proof
of (1), as well as a few other odds and ends that we use in the proof of our main theorem. Section 9 closes the paper by
finishing the proof of our primary result.
Finally, some historical remarks are in order. Clearly, the research in this paper rests on that of Saharon Shelah, and

although the main theorem is an advance in our knowledge, the proof is obtained via a synthesis of techniques drawn from
several places in his vast body of work. The line of investigation which resulted in this paper originated in our work with
Shelah in [9], where I noticed that the argument in Section 4 of Chapter III in [27] which purported to extend the main
coloring theorem in that section to cardinals of the formµ+ for ℵ0 = cf(µ) < µ did not work. A close study of the problem
led to the isolation of the coloring theorems in [8], and in the joint paper [10] we exploited a combinatorial trick to provide
a partial rescue of the result from [27]. Some years earlier, Shelah had suggested the idea of ‘‘off-center’’ club-guessing as a
possible way of repairing the error in [27], but nothing came of the idea at the time because the combinatorics did not work
as we hoped. While writing up [10], the author realized that the ‘‘off-center’’ approach might be viable when combined
with the combinatorics of that paper. The work in Sections 3–9 shows that this was indeed the case — in Theorem 6 we
get a version of the main result from [8] which holds for successors of singular cardinals of countable cofinality. The jump
from this to getting results on simultaneous reflection of stationary sets is based on other work of Shelah — Sections 2 and
3 of this paper can be viewed as teasing out additional consequences from arguments appearing in Section 3 of Chapter III
from [27].

2. Weak saturation and indecomposability

Our goal in this section is a modest one — we will take two fairly well-known properties of ideals and show, using
elementary arguments, that their conjunction is equivalent to several useful properties. The results appearing in this section
have the flavor of folklore results; Shelah maps out some of the implications appearing here in Chapter III of his [27], but he
stops short of proving that many of the properties that he was considering are in fact equivalent. Theorem 1 at the end of
this section gathers the results in a single place.
Before proving anything, we take a moment to discuss some notational conventions and expressions that will appear

over and over in our results. This terminology is fairly standard, so readers familiar with such things can just skip ahead.

Definition 2.1. Let I be an ideal on κ .

(1) I∗ denotes the filter dual to I .
(2) Expressions of the form ‘‘ϕ holds for I-almost all α < κ ’’ mean that the set of α < κ for which ϕ holds is in I∗. If I is clear
from context, we may omit explicit reference to it and say only ‘‘ϕ holds for almost all α < κ ’’.

(3) If A and B are subsets of κ , then A ⊆I B (A is a subset of B modulo I) means that A \ B ∈ I , and we say that A =I B (A and B
are equal modulo I) if both A ⊆I B and B ⊆I A.

(4) Similarly, if f and g are ordinal-valued functions with domain κ , we say that f ≤I g if f (α) ≤ g(α) for almost all α < κ .
The expression f =I g is also given the obvious meaning.

Variants of the above notation should also be interpreted in the canonical fashion.

We look now at the first of two properties which form our main interest in this section.

Definition 2.2. Let I be an ideal on the cardinal κ , and let θ be a cardinal. The ideal I is weakly θ-saturated if there is no
partition of κ into θ disjoint I-positive sets.

Weak saturation provides a measure of how closely the filter I∗ dual to I comes to being an ultrafilter. For example, I∗ is
an ultrafilter if and only if I is weakly 2-saturated, while the ideal of bounded subsets of κ fails to be weakly κ-saturated.
This concept has not been studied as systematically as its better-known relative ‘‘saturation’’, but we shall see that it is quite
important in its own right. The following observation starts us on our way.

Proposition 2.3. Let I be an ideal on the cardinal κ . The following statements are equivalent for a regular cardinal θ :

(1) I is weakly θ-saturated.
(2) Any⊆-increasing θ-sequence 〈Ai : i < θ〉 of subsets of κ is eventually constant modulo I.
(3) If θ ≤ cf(τ ), then any⊆-increasing τ -sequence 〈Ai : i < τ 〉 of subsets of κ is eventually constant modulo I.

Proof. The proof is trivial. For example, one proves that (1) implies (2) via contradiction: If (2) fails, then we can refine
〈Ai : i < θ〉 to a subsequence 〈Bi : i < θ〉 with the property that Bi ⊆I Bi+1 and Bi+1 \ Bi /∈ I for each i < θ . The collection
〈Bi+1 \ Bi : i < θ〉 quickly leads to a contradiction of (1). �

The next concept that we need for our discussion is that of indecomposability, defined as follows:

Definition 2.4. Let I be an ideal on κ , and let θ be a cardinal. The ideal I is said to be θ-indecomposable ifwhenever 〈Ai : i < θ〉
is a θ-sequence of subsets of κ with

⋃
i<θ Ai /∈ I , there is a setw ⊆ θ of cardinality less than θ with

⋃
i∈w Ai /∈ I . In the case

where θ is a regular cardinal, this is equivalent to the statement that the ideal I is closed under increasing unions of length θ .
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Indecomposability has been considered many times in the literature (see [3,21] for example), although one usually finds
the definition phrased in terms of filters rather than ideals, and very often the authors restrict themselves to considering
ultrafilters instead of the more general case.

Proposition 2.5. Let I be an ideal on the cardinal κ . The following two statements are equivalent for a regular cardinal θ :

(1) I is θ-decomposable.
(2) There is a θ-sequence 〈Ai : i < θ〉 of I-equivalent I-positive sets with⋂

i<θ

⋃
i≤j<θ

Aj = ∅. (2.1)

Proof. Suppose I is θ-decomposable. Since θ is regular, this means there is an increasing sequence 〈Bi : i < θ〉 of elements
of I whose union B is I-positive. If we define

Ai := B \ Bi,

then 〈Ai : i < θ〉 has the required properties.
For the other direction, suppose we are given 〈Ai : i < θ〉 as in (2). Let B = A0, and define

Bi = B \
⋃
i≤j<θ

Aj.

Note that Bi ∈ I as B and Ai are equivalent modulo I . The sequence 〈Bi : i < θ〉 is also increasing, and by (2.1) we have

B =
⋃
i<θ

Bi.

Since B /∈ I , we conclude that I is θ-decomposable. �

Our main concern in this section is a consideration of the conjunction of ‘‘θ-indecomposable’’ and ‘‘weakly θ-saturated’’
for a regular cardinal θ . The next proposition shows us that this combination is has some strength — it is equivalent to
improvements of both Propositions 2.3 and 2.5.

Proposition 2.6. Let I be an ideal on the cardinal κ . The following statements are equivalent for a regular cardinal θ .

(1) I is weakly θ-saturated and θ-indecomposable.
(2) Whenever 〈Bi : i < θ〉 is an increasing θ-sequence of subsets of κ , there is an i∗ such that

i∗ ≤ i < θ H⇒ Bi =I
⋃
j<θ

Bj. (2.2)

(3) Whenever 〈Ai : i < θ〉 is a θ-sequence of I-positive subsets of κ , we have⋂
i<θ

⋃
i≤j<θ

Aj 6= ∅. (2.3)

Proof. Assume (1) holds, and let 〈Bi : i < θ〉 be an increasing θ-sequence of subsets of κ . Since I is weakly θ-saturated, we
know that this sequence is eventually constant modulo I , so fix i∗ < θ with the property that

i∗ ≤ i < θ H⇒ Bi∗ = Bi mod I.

Let B =
⋃
i<θ Bi, and note that (2) is established if we can prove that B\Bi∗ is in I . This is done through θ-indecomposability,

for B \ Bi∗ can be expressed as the union of an increasing θ-sequence of elements of I:

B \ Bi∗ =
( ⋃
i∗≤i<θ

Bi

)
\ Bi∗ =

⋃
i∗≤i<θ

(Bi \ Bi∗).

Next, assume that condition (2) holds for our ideal, and assume byway of a contradiction that 〈Ai : i < θ〉 is a θ-sequence
of I-positive subsets of κ for which (2.3) fails. For each i < θ , define

Bi := κ \
⋃
i≤j<θ

Aj.

The sequence 〈Bi : i < θ〉 is increasing, and furthermore
⋃
i<θ Bi = κ because (2.3) fails. By (2), there is an i∗ such that

Bi∗ =I κ . This is a contradiction, as Ai∗ is I-positive and disjoint to Bi∗ .
To finish the proof, we show that the failure of (1) implies the failure of (3). This is easily done — if I is not weakly

θ-saturated then any partition of κ into θ disjoint I-positive sets will contradict (3), and if I is θ-decomposable then we
contradict (3) by way of Proposition 2.5. �
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Notice that condition (2) says something stronger than the conclusion of Proposition 2.3 — the sequence of sets is not
only eventually constant modulo I , it is the case that eventually the individual sets Bi are equal to the union of the entire
sequence modulo I .
Condition (3) says that any ‘‘point–< θ ’’ collection of I-positive sets has size less than θ , for given a collection of θ (or

more) I-positive sets, there is a subcollection of size θ with non-empty intersection. This is a much stronger conclusion than
that obtained in Proposition 2.5 as we no longer need to assume that the sets involved are all I-equivalent.
Since prime ideals are weakly 2-saturated, we obtain the following (known) characterization of θ-indecomposability in

the context of ultrafilters.

Corollary 2.7. LetU be an ultrafilter on some cardinal κ , and let θ be a regular cardinal. ThenU is θ-decomposable if and only
if it is (θ, θ)-regular.

Proof. By definitionU is (θ, θ)-regular if and only if there is a family {Ai : i < θ} of elements ofU with the property that
the intersection of any subfamily of size θ is empty. This is precisely the negation of condition (2.3), and so the result follows
immediately as the ideal dual toU is trivially weakly θ-saturated. �

Our next move takes us to the realm of functions modulo ideals, on the cusp of pcf theory.

Proposition 2.8. Let I be an ideal on the cardinal κ . The following two statements are equivalent for any regular cardinal θ < κ:

(1) I is weakly θ-saturated and θ-indecomposable.
(2) Suppose 〈Sα : α < κ〉 is a sequence of sets of ordinals with |Sα| < θ for all α. Then any≤-increasing θ-sequence of functions
in
∏
α<κ Sα is eventually constant modulo I.

Proof. Both directions make use of condition (3) in Proposition 2.6. Let us suppose 〈Sα : α < κ〉 is as in (2), and assume by
way of a contradiction that f̄ = 〈fi : i < θ〉 is a≤-increasing sequence in

∏
α<κ Sα that is not eventually constant modulo I .

By passing to a subsequence we may assume

Ai := {α < κ : fi(α) < fi+1(α)} /∈ I for all i < θ.

Fix α < κ , and suppose α ∈ Ai ∩ Aj for some i < j < θ . Since h̄ is≤-increasing, we have

hi(α) < hi+1(α) ≤ hj(α). (2.4)

Since |Sα| < θ , we conclude that

|{i < θ : α ∈ Ai}| ≤ |Sα| < θ,

and therefore⋂
i<θ

⋃
i≤j<θ

Aj = ∅. (2.5)

Each Ai was assumed to be I-positive, so we have contradicted (1).
For the other direction, let us assume that (1) fails. By Proposition 2.6, we can find a sequence 〈Ai : i < θ〉 of I-positive

subsets of κ such that⋂
i<θ

⋃
i≤j<θ

Aj = ∅,

that is,

|{i < θ : α ∈ Ai}| < θ for all α < κ. (2.6)

We define a sequence h̄ = 〈hi : i < θ〉 of functions in κOrd by the following recursion:

Case 1: Initial stage
We define h0 to be identically 0.

Case 2: Successor stages
Given hi, we define hi+1 via the formula

hi+1(α) =
{
hi(α)+ 1 if α ∈ Ai
hi(α) otherwise.

Case 3: Limit stages
If i is a limit ordinal, then we define hi by setting hi(α) = sup{hj(α) : j < i}.
Now let us define Sα := {hi(α) : α < θ}. Since (2.6) holds, our construction guarantees that |Sα| < θ for all α. Clearly h̄

is≤-increasing, and since no Ai is in I , the sequence is also not eventually constant modulo I . �

The proof of the above is easily modified to yield the following slightly strengthened result:
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Corollary 2.9. Suppose I is a weakly θ-saturated and θ-indecomposable ideal on κ for some regular cardinal θ , and let 〈Sα : α <
κ〉 be a sequence of sets of ordinals with |Sα| < θ . If h̄ = 〈hβ : β < τ 〉 is a≤-increasing sequence of functions in

∏
α<κ Sα with

cf(τ ) ≥ θ , then h̄ is eventually constant modulo I.

Another easy characterization obtained by slightly different methods is the following:

Proposition 2.10. The following statements are equivalent for an ideal I on κ and regular θ < κ:

(1) I is weakly θ-saturated and θ-indecomposable.
(2) Any function f : κ → θ is bounded below θ almost everywhere, that is, there is an ordinal β < θ such that f (α) < β for
almost all α < κ .

Proof. Assume f : κ → θ , and for each β < θ , let us define

Aβ := {α < κ : f (α) < β}.

The sequence 〈Aβ : β < θ〉 is increasing with union κ , so by (2) of Proposition 2.6, there is a β < θ such that κ \ Aβ ∈ I , and
therefore f (α) < β for almost all α < κ .
We prove the other direction by contrapositive— if (1) fails, then by (3) of Proposition 2.6we can find a family 〈Ai : i < θ〉

of I-positive subsets of κ such that⋂
i<θ

⋃
i≤j<θ

Aj = ∅. (2.7)

Now let us define a function f with domain κ by

f (α) = sup{β < θ : α ∈ Aβ}.

Since (2.7) holds, it follows that f maps κ into θ . However, f is not bounded below θ almost everywhere, as for each β < θ ,
we know

Aβ ⊆ {α < κ : β ≤ f (α)}

and Aβ is I-positive. �

The proof of the above easily yields something slightly stronger:

Corollary 2.11. Suppose I is a weakly θ-saturated θ-indecomposable ideal on κ for some regular θ < κ . If δ is an ordinal of
cofinality θ , then any function f : κ → δ is bounded below δ almost everywhere.

We close this section by formulating a theorem summarizing the above results.

Theorem 1. The following statements are equivalent for an ideal I on κ and a regular cardinal θ < κ .

(1) I is weakly θ-saturated and θ-indecomposable.
(2) Whenever 〈Bi : i < θ〉 is an increasing θ-sequence of subsets of κ , there is an i∗ such that

i∗ ≤ i < θ H⇒ Bi =I
⋃
j<θ

Bj. (2.8)

(3) Whenever 〈Ai : i < θ〉 is a θ-sequence of I-positive subsets of κ , we have⋂
i<θ

⋃
i≤j<θ

Aj 6= ∅. (2.9)

(4) If 〈Sα : α < κ〉 is a sequence of sets of ordinals with |Sα| < θ for all α, then any ≤-increasing θ-sequence of functions in∏
α<κ Sα is eventually constant modulo I.

(5) Any function f : κ → θ is bounded below θ almost everywhere.

3. Least functions and a coloring theorem

In this section, we show that ideals I of the sort considered in Theorem 1 necessarily entail the existence of a stationary
S∗ ⊆ κ for which strong versions of Refl(S∗) (involving simultaneous reflection of stationary subsets of S∗) hold. Once this
is established, the section closes by proving a weak version of our main theorem that does not require the complicated
machinery introduced later in the paper. Once again, we need to recall some terminology from the general theory of ideals.

Definition 3.1. Let I be an ideal on a cardinal κ .

(1) A function f : κ → κ is bounded modulo I if there is a ξ < κ such that {α < κ : ξ < f (α)} ∈ I .
(2) A function f : κ → κ is a least function modulo I if f is not bounded modulo I , but

g <I f H⇒ g is bounded modulo I.
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The following proposition shows the relevance of the preceding definition to the properties that we studied in the
preceding section. Shelah (Claim III.3.2A of [27]) obtains the same conclusion from a weaker hypothesis (his proof is the
natural generalization of work of Kanamori and Ketonen [15,17,18] to the context of ideals that are not necessarily prime),
but we include this proof in the interest of completeness and because our assumptions simplify the argument.

Proposition 3.2 (Shelah). Let I be an ideal on κ , and suppose I is θ-indecomposable and weakly θ-saturated for some regular
θ < κ . Then there is a function f ∗ : κ → κ such that

(1) for each β < κ we have f ∗(α) > β for almost all α < κ , and
(2) if g(α) < f ∗(α) for almost all α < κ , then there is a β < κ such that g(α) < β for almost all α < κ .

In particular, f ∗ is a least function modulo I.

Proof. When referring to statement (1), we will be a little imprecise and say that ‘‘f ∗ is an upper bound for the constant
functions modulo I ’’ and rely on the context to make it clear to which constant functions we are referring.

Lemma 3.3. Under our assumptions, if f is an upper bound for the constant functions modulo I for which (2) fails, then we can
find a function h : κ → Ord such that

• h is an upper bound for the constant functions modulo I,
• h(α) ≤ f (α) for all α < κ , but
• {α < κ : h(α) < f (α)} ∈ I+.

Proof. By our assumptions, we can find a function g : κ → Ord such that g <I f , but g is not bounded modulo I . We can
freely modify g on sets in I , so we may as well assume g(α) ≤ f (α) for all α < κ .
For each β < κ , let us define

Aβ = {α < κ : g(α) ≤ β}.

Since the sequence 〈Aβ : β < κ〉 is⊆-increasing, we can apply Proposition 2.3 and conclude that there is a β∗ such that

β∗ ≤ β < κ → Aβ =I Aβ∗ . (3.1)

Note that the complement of Aβ∗ is not in I because we assumed that g is not bounded modulo I . Furthermore, by (3.1) we
see that

{α ∈ κ \ Aβ∗ : g(α) ≤ β} ∈ I for all β < κ.

Thus, if we define

h(α) =
{
f (α) if α ∈ Aβ∗ , and
g(α) if α ∈ κ \ Aβ∗ ,

we have what we need. (Notice that we only needed the weak θ-saturation for the proof of this lemma.) �

Assuming by way of a contradiction that there is no function f ∗ answering conditions (1) and (2), we use the preceding
lemma to build a �I-decreasing sequence of functions 〈fξ : ξ < θ〉, each of which is an upper bound for the constant
functions modulo I , using the following inductive recipe:
Let f0 : κ → κ be the identity function. Since I contains all bounded subsets of κ , it is clear that f0 is an upper bound for

the constant functions modulo I .
Given the function fξ , we obtain fξ+1 by applying the preceding claim, and for a limit ordinal ξ < θ , we proceed as

follows:
For each α < κ , let us define

Sα := {fζ (α) : ζ < ξ} ∪ {κ},

and note that |Sα| < θ for each α < κ . Given β < κ , we can define a function hβ ∈
∏
α<κ Sα by

hβ(α) = min(Sα \ β).

One should view hβ as a ‘‘projection’’ of the function that is constantwith valueβ up into the product
∏
α<κ Sα . Our choice

of f0 guarantees that hβ(α) < κ for almost all α < κ . Finally, we note that the sequence 〈hβ : β < κ〉 is ≤-increasing, and
so an application of Proposition 2.8 tells us that there is an ordinal β(ξ) < κ such that hβ =I hβ(ξ) whenever β(ξ) ≤ β < κ .
We now define

fξ := hβ(ξ).

Notice that fξ is an upper bound for the constant functions modulo I , and moreover for each ζ < ξ , if β(ξ) ≤ fζ (α)
(something that happens for almost all α < κ), then it must be the case that

fξ (α) = hβ(ξ)(α) = min(Sα \ β(ξ)) ≤ fζ (α). (3.2)
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Thus fξ ≤I fζ for every ζ < ξ . Since ξ is a limit ordinal, our actions at successor stages guarantee that in fact fξ �I fζ
whenever ζ < ξ .
The preceding construction generates a sequence of functions 〈fζ : ζ < θ〉 as well as ordinals β(ξ) for each limit ordinal

ξ < θ . Let us define

β∗ := sup{β(ξ) : ξ < θ},

and for each limit ξ < θ , we set

Aξ := {α < κ : β∗ ≤ fξ+1(α) < fξ (α)}. (3.3)

First, note that each Aξ is I-positive, as fξ+1 �I fξ and fξ+1 is an upper bound for the constant functions modulo I . More
importantly, we have the following claim:

Claim 1. Suppose ξ < ξ ∗ < θ are limit ordinals. If α ∈ Aξ , then fξ∗(α) < fξ (α).

Proof. Suppose α ∈ Aξ , so β∗ ≤ fξ+1(α) < fξ (α). Since ξ ∗ is a limit ordinal, we know that ξ + 1 < ξ ∗. Furthermore, the
definition of β∗ tells us that

β(ξ ∗) ≤ fξ+1(α).

From (3.2), we conclude that

fξ∗(α) ≤ fξ+1(α).

Thus, we have

fξ∗(α) ≤ fξ+1(α) < fξ (α),

and the proof is complete. �

The above claim makes it clear that no α < κ can belong to infinitely many of the sets Aξ . In particular, this collection of
I-positive sets contradicts part (3) of Theorem 1, and we are done. �

Our next move is to show that the conjunction of θ-indecomposability and weak θ-saturation has strong consequences
for stationary reflection. The following definition will allow us to state some conclusions more precisely:

Definition 3.4. Let I be an ideal on the cardinal κ .

(1) Comp(I) is the largest cardinal τ for which I is τ -complete, that is, for which I is closed under unions of fewer than τ
sets.

(2) Wsat(I) is the least cardinal θ for which I is weakly θ-saturated.
(3) Indec(I) = {τ < κ : I is τ -indecomposable}.
(4) S∗(I) = {α < κ : Wsat(I) ≤ cf(α) < α and cf(α) ∈ Indec(I)}.

Consider the set S∗(I) defined above for a moment. Notice that it is non-empty if and only if there is a regular θ < κ for
which I is both weakly θ-saturated and θ-indecomposable. Also, if S∗(I) is non-empty, then it is stationary. The omission of
regular cardinals from S∗(I) is only relevant if κ happens to be Mahlo; we define the set this way so that Theorem 2 applies
uniformly to any cardinal.

Theorem 2. Let I be an ideal on the cardinal κ . If there is a regular cardinal θ < κ such that I is weakly θ-saturated and
θ-indecomposable, then

(1) S∗(I) is stationary,
(2) there is a least function f ∗ : κ → κ modulo I, and
(3) if S is a stationary subset of S∗(I), then S ∩ f ∗(α) is stationary in f ∗(α) for almost all α < κ .

In particular,

(4) S∗(I) is a stationary subset of κ for which Refl(<Comp(T ), S∗(I)) holds.

Proof. We have already remarked that (1) is a consequence of the given hypotheses, and (2) is the conclusion of
Proposition 3.2. It should also be clear that (4) follows from (3), so we will spend our time establishing (3).
Let S be a stationary subset of S∗(I). Since (3) remains true if we establish its conclusion for a stationary subset of S, we

can take advantage of the fact that the cofinality function is regressive on S∗(I) and assume that S is a subset of Sκτ for some
τ . Notice that I is weakly τ -saturated and τ -indecomposable because of the definition of S∗(I).
It suffices to prove that whenever we are given a sequence 〈Cα : α < κ, α limit〉 with each Cα closed unbounded in α,

we have

S ∩ Cf ∗(α) 6= ∅ for almost all α < κ . (3.4)
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Given β < κ , let us define fβ : κ → κ by

fβ(α) =
{
min(Cf ∗(α) \ β) if β < f ∗(α),
0 otherwise.

Bear in mind that fβ(α) < f ∗(α) for almost all α < κ , and so our choice of f ∗ implies that fβ is bounded almost everywhere.
Thus, there is a function g : κ → κ with the property that for any β < κ ,

min(Cf ∗(α) \ β) < g(β) for almost all α < κ. (3.5)

Let E be the closed unbounded subset of κ consisting of those ordinals closed under the function g , and fix δ ∈ E ∩ S.
Since δ is closed under g , we know that

β < δ H⇒ β ≤ min(Cf ∗(α) \ β) < δ for almost all α < κ. (3.6)

Now we define another function h by

h(α) =
{
sup(Cf ∗(α) ∩ δ) if δ /∈ Cf ∗(α),
0 otherwise. (3.7)

The function hmaps κ to δ. Since cf(δ) = τ and I is τ -indecomposable, we conclude from Corollary 2.11 that there is a β < δ
for which

h(α) < β for almost all α < κ. (3.8)

Thus, almost all α < κ satisfy the following:

• β ≤ min(Cf ∗(α) \ β) < δ, and
• h(α) < β .

We finish the proof of (3.4) by establishing that δ ∈ Cf ∗(α) for all α < κ which satisfy both of these statements. Given
such an α, assume by way of a contradiction that δ /∈ Cf ∗(α). On one hand we must have

h(α) = sup(Cf ∗(α) ∩ δ) < β, (3.9)

while on the other, we have

β ≤ min(Cf ∗(α) \ β) < δ. (3.10)

This latter equation implies

β ≤ sup(Cf ∗(α) ∩ δ), (3.11)

and clearly (3.9) and (3.11) contradict each other. �

After we noticed the above theorem, we discovered that Shelah uses essentially the same argument in a different context
— it appears tucked into ‘‘Proof of 3.3 in Case β , Subcase (a): Second Proof’’ on page 149 of [27] in a result having to do with
weakly inaccessible cardinals. Theorem2 still appears to be new—one can view it as ‘‘what Shelah’s argument really shows’’.
To see the power of the preceding result, we include the following theorem. This result is essentially a special case of our

main theorem. It arises from combining the preceding theorem with one of the main results from [10], and its proof serves
as a prototype for the argument that we employ in Section 10.

Theorem 3. If µ is a singular cardinal and µ+ → [µ+]2
µ+
holds, then there is a regular θ < µ for which Refl(< cf(µ), Sµ

+

≥θ ) is
true.

Proof. Corollary 5.2 of [10] (which itself relies on results in [8]) tells us that under our assumption, there is an ideal I onµ+
such that

• I is cf(µ)-complete,
• I is τ -indecomposable for all regular τ with cf(µ) < τ < µ, and
• I is weakly θ-saturated for some θ satisfying cf(µ) < θ < µ.

Let θ be the least cardinal such that cf(µ) < θ < µ and I is weakly θ-saturated. Since µ+ is certainly not a Mahlo cardinal,
it follows from the above that S∗(I) is equal to Sµ

+

≥θ modulo the non-stationary ideal, and therefore the conclusion follows
from Theorem 2. �

We remark that in the case where cf(µ) is uncountable, we can use results from [8] to get the same conclusion from the
failure of Pr1(µ+, µ+, µ+, cf(µ)); we will have more to say about this later.
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4. Off-center club-guessing

Our focus now shifts away from the general theory of ideals to questions involving club-guessing. The proof of Theorem 3
turned on properties of an ideal I whose existence will seem somewhat mysterious to those not familiar with [8,10]. The
ideal referenced in the proof of Theorem 3 is related to club-guessing, and this explains why we turn our attention to this
matter.
In general, a prototypical club-guessing theorem provides one with a stationary subset S of some cardinal κ , and a

sequence 〈Cδ : δ ∈ S〉 (called an S-club sequence) such that

• Cδ is closed and unbounded in δ for each δ ∈ S, and
• for every closed unbounded E ⊆ κ , there are ‘‘many’’ δ ∈ S for which E ∩ Cδ is ‘‘large’’.

One can require various conditions on the sets Cδ , as well as varying the specific meaning of ‘‘many’’ and ‘‘large’’.
The most well-known club-guessing theorems give us (in certain circumstances) an S-club sequence 〈Cδ : δ ∈ S〉 for

which otp(Cδ) = cf(δ), and such that for each closed unbounded E ⊆ κ , there are stationarily many δ ∈ S for which Cδ ⊆ E.
It should be clear that such theorems fit our prototype.
The techniques of [27,9,8,10], however, require a special sort of club-guessing that is, in a sense, bothweaker and stronger

than the standard results. We will give a rough explanation of this, but we need to enlarge our vocabulary a little bit first:

Definition 4.1. Suppose C is a closed unbounded subset of an ordinal δ. We define

• acc(C) = {α < δ : α = sup(α ∩ C)} ⊆ C , and
• nacc(C) = C \ acc(C).

Here ‘‘acc’’ stands for ‘‘accumulation points’’ and ‘‘nacc’’ for non-accumulation points. Finally,

• if α ∈ nacc(C), then we define Gap(α, C), the gap in C determined by α, by

Gap(α, C) = (sup(C ∩ α), α). (4.1)

Returning now to our discussion, the earlier papers needed results stating that if µ is singular and S ⊆ Sµ
+

cf(µ), then there
is an S-club sequence 〈Cδ : δ ∈ S〉 such that for every closed unbounded E ⊆ µ+, there are stationarily many δ ∈ S such
that

(∀τ < µ) [{α ∈ nacc(Cδ) ∩ E : cf(α) > τ } is unbounded in δ] .

This type of guessing is weaker than the standard sort in that we aren’t requiring Cδ to be a subset E, but it is also stronger
in that we do demand that Cδ ∩ E contains lots of ordinals of large cofinality. Without going into specifics, if the cofinality
of µ is uncountable, then we can prove the existence of extremely nice club-guessing sequences with the properties that
we want (these are the S-good pairs of [8]) — sequences so nice that they can be used to generate colorings of [µ+]2. The
club-guessing result that we used in that paper (due originally to Shelah, but a proof can be found in [10]) does not seem
to generalize to the case where µ has countable cofinality. The paper [10] obtains a weaker result for that case, and the
conclusions drawn there are correspondingly weaker — this is why Theorem 3 refers to square-brackets relations instead of
the stronger Pr1(µ+, µ+, µ+, cf(µ)), and it also explains the existence of the current work.
One of the main goals of this paper is to remedy the situation by moving the club-guessing ‘‘off-center’’ — instead of

focusing on subsets of Sµ
+

cf(µ), we look at stationary subsets consisting of ordinals of larger cofinality. This is done at a price,
for the sets Cδ that we construct are necessarily much more complex. Despite this added complexity, we are able to keep
enough control over their structure to allow us to connect these club-guessing sequences with the existence of complicated
colorings.
This section presents the club-guessing result alluded to in the preceding paragraph. The theorem is established by

modifying some club-guessing arguments from [10] to this new context. The main difficulty in this generalization has to
do with the proliferation of parameters, so we start with a list of our main assumptions and notation:

• λ = µ+ for µ a singular cardinal,
• κ = cf(µ),
• κ < σ = cf(σ ) < µ,
• S is a stationary subset of Sλσ ,
• 〈µi : i < κ〉 is a continuous increasing sequence of cardinals cofinal in µ,
• 〈cδ : δ ∈ S〉 is a family of functions such that
– cδ is an increasing and continuous function from σ onto a cofinal subset of δ, and
– for every closed unbounded E ⊆ λ, there are stationarily many δ ∈ S for which ran(cδ) ⊆ E,

• for α < σ , Iδα denotes the half-open interval (cδ(α), cδ(α + 1)].



T. Eisworth / Annals of Pure and Applied Logic 161 (2010) 1216–1243 1227

Note that if we were to define Cδ to be ran(cδ) for δ ∈ S, then we would end up with a standard sort of club-guessing
sequence — for every closed unbounded E ⊆ λ, there would be stationarily many δ ∈ S for which Cδ ⊆ E.
The next definition captures some standard ideas fromproofs of club-guessing; in some caseswehave chosen to usemore

descriptive names (mostly due to Kojman [19]) for these operations as compared with the terminology prevalent in [27].

Definition 4.2. Suppose C and E are sets of ordinals with E ∩ sup(C) closed in sup(C). We define

Drop(C, E) = {sup(α ∩ E) : α ∈ C \min(E)+ 1}. (4.2)

Furthermore, if C and E are both subsets of some cardinal λ and 〈eα : α < λ〉 is a C-sequence, then for each α ∈
nacc(C) ∩ acc(E), we define

Fill(α, C, E) = Drop(eα, E) ∩ Gap(α, C). (4.3)

The names help one to visualize what the operations do — Drop(C, E) is the result of ‘‘dropping’’ C into the set E, while
‘‘Fill’’ gives us a reasonably canonical way of turning non-accumulation points into accumulation points. The exact choice
of eα is irrelevant, and in general we do not refer to it explicitly when working with Fill. Given these two operations, we are
now in a position to prove the following club-guessing theorem:

Theorem 4. There is an S-club system C̄ = 〈Cδ : δ ∈ S〉 such that
(1) ran(cδ) ⊆ Cδ ,
(2) for each ε < σ and i < κ , Cδ ∩ Iδκ·ε+i has cardinality≤ µ

+

i ,
(3) if α ∈ nacc(Cδ) ∩ Iδκ·ε+i, then cf(α) > µ+i ,
(4) for every club E ⊆ λ, for stationarily many δ ∈ S, for every ε < σ and i < κ , E ∩ nacc(Cδ) ∩ Iδκ·ε+i is non-empty.

Proof. Westart by simplifying our goal somewhat, by noting that it suffices to produce C̄ satisfying (1), (2), and the following
modified version of (4):

(4)′ for every club E ⊆ λ, for stationarily many δ ∈ S, for every ε < σ and i < κ , E ∩ nacc(Cδ) ∩ Iδκ·ε+i contains an ordinal
of cofinality> µ+i .

Why does this suffice? Given such an S-club system, we simply throw away those members of nacc(Cδ) whose cofinalities
are too small for obtaining something satisfying (3), and note that the club-guessing properties that we need are not harmed
by this pruning.
Moving on to the proof, let us assume by way of a contradiction that there is no S-club system C̄ satisfying (1), (2), and

(4)′. Our aim is to exploit this assumption in order to construct a certain sequence 〈C̄ζ : ζ < σ+〉 of S-club systems which
will then be used to produce a countable decreasing sequence of ordinals.
Let us agree to say that an S-club system satisfies the structural requirements of Theorem 4 if conditions (1) and (2) of the

conclusion of the theorem hold. We will define objects Eζ and C̄ζ = 〈C
ζ
δ : δ ∈ S〉 by induction on ζ < σ+. Each Eζ will be

closed and unbounded in λ, while each C̄ζ will be an S-club system satisfying the structural requirements of Theorem 4. Our
convention is that ‘‘stage ζ ’’ in our construction refers to the process of building Eζ+1 and C̄ζ+1 from Eζ and C̄ζ . Our initial
set-up is to take E0 = λ and C0δ = ran(cδ) for each δ ∈ S.

Stage ζ : Defining Eζ+1 and C̄ζ+1

We assume that our construction furnishes us with an S-club system C̄ζ satisfying the structural requirements of
Theorem 4. Our assumption is that the theorem fails, and so there are closed unbounded subsets E0ζ and E

1
ζ of λ such that

for each δ ∈ E0ζ , we can find ε < σ and i < κ such that

α ∈ E1ζ ∩ nacc(C
ζ
δ ) ∩ I

δ
κ·ε+i H⇒ cf(α) ≤ µ

+

i .

We define

Eζ+1 := acc(Eζ ∩ E0ζ ∩ E
1
ζ ).

The definition of C̄ζ+1 will take a bit more effort. Let us agree to call an ordinal δ ∈ S active at stage ζ if C0δ ⊆ acc(Eζ+1).
Our choice of 〈cδ : δ ∈ S〉 ensures that at any stage, the set of active δ is a stationary subset of S. If δ ∈ S is inactive at stage
ζ , then we simply define Cζ+1δ to be Cζδ and do nothing.
On the other hand, if δ is active at stage ζ , then δ must be in E0ζ and therefore we can find a least a(δ, ζ ) < σ such that,

letting

I(δ, ζ ) := Iδa(δ,ζ ),

we have

α ∈ E1ζ ∩ nacc(C
ζ
δ ) ∩ I(δ, ζ ) H⇒ cf(α) ≤ µ

+

i(δ,ζ ). (4.4)

Our construction of Cζ+1δ will modify Cζδ only on the interval I(δ, ζ ) — everything else will be left untouched.



1228 T. Eisworth / Annals of Pure and Applied Logic 161 (2010) 1216–1243

The ordinal a(δ, ζ ) can be written in the form

a(δ, ζ ) = ε(δ, ζ ) · κ + i(δ, ζ ) (4.5)

for some unique ε(δ, ζ ) < σ and i(δ, ζ ) < κ . These two ordinals will also play a role in our construction.
Our next move is to define

Dζδ := Drop(C
ζ
δ ∩ I(δ, ζ ), Eζ+1 ∩ I(δ, ζ )).

We note the following facts about Dζδ :

• cδ(a(δ, ζ )+ 1) – the top of the interval I(δ, ζ ) – is an element of D
ζ
δ because C

0
δ ⊆ acc(Eζ+1),

• Dζδ is a closed subset of Eζ+1 ∩ I(δ, ζ ),
• |Dζδ | ≤ |C

ζ
δ ∩ I(δ, ζ )| ≤ µ

+

i(δ,ζ ) (as C̄
ζ satisfies the structural requirements of Theorem 4), and

• if Cζδ ∩ I(δ, ζ ) is unbounded in cδ(a(δ, ζ )+ 1), then so is D
ζ
δ .

One should picture Dζδ as arising after ‘‘shifting’’ C
ζ
δ ∩ I(δ, ζ ) so that it lies inside of Eζ+1. Our construction will ensure that

Dζδ ⊆ C
ζ+1
δ , but we need to do more work first.

Let us say that an element α of Dζδ needs attention if

α ∈ acc(Eζ+1) ∩ nacc(D
ζ
δ ), (4.6)

and

cf(α) ≤ µ+i(δ,ζ ). (4.7)

If α needs attention, then Fill(α, Cζδ ∩ I(δ, ζ ), Eζ+1 ∩ I(δ, ζ )) provides us with a closed unbounded subset of α lying in the
interval Gap(α,Dζα). Notice as well that this closed unbounded subset of α is of cardinality cf(α) ≤ µ

+

i(δ,ζ ), and so the set

Aζδ := D
ζ
δ ∪ {Fill(α, C

ζ
δ ∩ I(δ, ζ ), Eζ+1 ∩ I(δ, ζ )) : α needs attention}

satisfies

|Aζδ | ≤ |D
ζ
δ | · µ

+

i(δ,ζ ) ≤ |C
ζ
δ ∩ I(δ, ζ )| · µ

+

i(δ,ζ ) = µ
+

i(δ,ζ ). (4.8)

Since the instances of ‘‘Fill’’ needed are always closed sets lying in a ‘‘gap’’ of Dζδ , the set A
ζ
δ is also closed in cδ(a(δ, ζ )+ 1).

Moreover, Aζδ is also unbounded in cδ(a(δ, ζ )+1), for either D
ζ
δ is already unbounded, or it is the case that cδ(a(δ, ζ )+1)

itself needs attention.
We now define Cζ+1δ in piecewise fashion:

Cζ+1δ \ I(δ, ζ ) = Cζδ \ I(δ, ζ ),

and

Cζ+1δ ∩ I(δ, ζ ) = Aζδ .

The S-club system C̄ζ+1δ satisfies the structural requirements of our theorem, and so the construction can continue.
We still need to describe how to obtain C̄ζ and Eζ when ζ is a limit. Our construction defines

Eζ =
⋂
ξ<ζ

Cξ ,

and for each δ ∈ S, we define Cζδ to be the closure in δ of

{α < δ : α ∈ Cξδ for all sufficiently large ξ < ζ }.

Note that Cζδ is closed in δ, and it is unbounded in δ as it contains C
0
δ . Elementary cardinal arithmetic implies that C̄ζ satisfies

the structural requirements of Theorem 4, and so our construction can continue.
To this point in the proof, we have used the failure of Theorem 4 to produce a sequence 〈C̄ζ : ζ < σ+〉 of S-club systems;

our task is to show that this leads to a contradiction.
Let us define

E∗ :=
⋂
ζ<σ+

Eζ .

Since E∗ is club in λ, we can find a δ ∈ S for which

C0δ ⊆ {α < λ : µ divides otp(E∗ ∩ α)}, (4.9)
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and this guarantees that

α ∈ nacc(C0δ ) H⇒
∣∣E∗ ∩ Gap(α, C0δ )∣∣ = µ. (4.10)

We know that this δ is active at each stage ζ < σ+ because of (4.9), and therefore we can find ε∗ < σ and i∗ < κ such
that ε(δ, ζ ) = ε∗ and i(δ, ζ ) = i∗ for unboundedly many ζ < σ+. Letting

I∗ := (cδ(ε∗ · κ + i∗), cδ(ε∗ · κ + i∗ + 1)],

this means I(δ, ζ ) = I∗ for unboundedly many ordinals ζ < σ+. Let 〈ζn : n < ω〉 be the increasing enumeration of the first
ω such ordinals, and let ζ ∗ = sup{ζn : n ∈ ω}.
Our construction ensures |I∗ ∩ Cζδ | ≤ µ

+

i∗ for all ζ < σ+, so an appeal to (4.10) allows us to choose

β∗ ∈ E∗ ∩ I∗ \
⋃
ζ<σ+

Cζδ . (4.11)

Finally, define

βn := min(C
ζn
δ \ β

∗).

Note that our choice of β∗ ensures that β∗ < βn for all n.

Claim 2. For each n, we have βn+1 < βn.

Proof. Given n, we note that

βn+1 = min(C
ζn+1
δ \ β∗)

(notice the shift in the position of ‘‘+1’’ here), as the definition of ζn+1 implies C
ξ
δ ∩ I

∗
= Cζn+1δ ∩ I∗ whenever ζn+ 1 ≤ ξ ≤

ζn+1. We now split the proof into two cases:

Case 1: βn /∈ acc(Eζn+1).
Since β∗ ∈ E∗ ⊆ Eζn+1, it follows that

β∗ ≤ sup(βn ∩ Eζn+1) < βn.

Now β∗ is not in Cζn+1δ while

sup(βn ∩ Eζn+1) ∈ D
ζn
δ ⊆ C

ζn+1
δ

so β∗ < βn+1 < βn as claimed.

Case 2: βn ∈ acc(Eζn+1).
Both δ and βn are in Eζn+1, so in particular we know that δ ∈ E

0
ζn
and βn ∈ E1ζn . In addition, βn must lie in nacc(C

ζn
δ )

because β∗ < βn. By (4.4), we conclude that cf(βn) ≤ µ+i(δ,ζn).

We have assumed in our case hypothesis that βn = sup(Eζn+1 ∩ βn) and this guarantees that βn is an element of D
ζn
δ .

Since βn is also in nacc(C
ζn
δ ), the set D

ζn
δ cannot pick up any new elements between β

∗ and βn and hence

βn = min(D
ζn
δ \ β

∗) > β∗. (4.12)

Thus, βn is in nacc(D
ζn
δ ) and we see that βn needs attention during the construction of C

ζn+1
δ .

In this case, our construction makes sure that Cζn+1δ contains a closed unbounded subset of βn. In particular, C
ζn+1
δ ∩

(β∗, βn) 6= ∅, and therefore

β∗ < βn+1 = min(C
ζn+1
δ \ β∗) = min(Cζn+1δ \ β∗) < βn,

as required. �

In summary, if the conclusion of our theorem fails, then our construction generates an infinite decreasing sequence of
ordinals. This is absurd, and so the theorem is established. �

5. Organizational interlude

Our goal in this section is to lay a good foundation before proceeding to the proofs of our main theorems. A good deal
of the difficulty in these proofs lies in the fact that we require so many different objects to push the argument through;
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wemake an attempt at organizing notation and providing a clear picture of our assumptions before proceeding. In addition,
we focus only on the case where cf(µ) = ℵ0, as uncountable cofinalities can be handled by earlier work. We first fix our
names for the various cardinals that are important for our theorems:

• λ = µ+ for µ singular of cofinality ℵ0,
• ℵ0 < σ = cf(σ ) < µ,
• S is a stationary subset of {δ < λ : cf(δ) = σ },
• 〈µi : i < ω〉 is a strictly increasing sequence of regular cardinals such that
– 〈µi : i < ω〉 is cofinal in µ, and
– σ < µ0.

Now the club-guessing result of the previous section gives us objects 〈c0δ : δ ∈ S〉, 〈Cδ : δ ∈ S〉, and {I(δ, ε,m) : δ ∈
S, ε < σ,m < ω} satisfying the following:

• c0δ is the increasing enumeration of a closed unbounded subset of δ of order-type σ ,
• if E is a closed unbounded subset of λ, then the set of δ ∈ S for which ran(c0δ ) ⊆ E is stationary,
• Cδ is a closed unbounded subset of δ with ran(c0δ ) ⊆ Cδ ,
• I(δ, ε,m) denotes the half-open interval (c0δ (ω · ε +m), c

0
δ (ω · ε +m+ 1)],

• |Cδ ∩ I(δ, ε,m)| ≤ µ+m ,
• α ∈ nacc(Cδ) ∩ I(δ, ε,m) H⇒ cf(α) > µ+m , and
• if E is a closed unbounded subset of λ, then for stationarily many δ ∈ S it is the case that for each ε < σ andm < ω, the
set E ∩ nacc(Cδ) ∩ I(δ, ε,m) is non-empty.

If δ ∈ S is fixed and clear from context (as is usually the case), then we will write I(ε,m) instead of I(δ, ε,m).
It is crucial for the reader to have a good picture of the structure of the objects described above. Our notation is intended

to describe something fairly simple: given δ ∈ S, we use c0δ (or rather, the range of c
0
δ ) essentially to divide the ordinals less

than δ into σ blocks, each of which is further divided into ω pieces. We say ‘‘essentially’’, because there are a few ordinals
left out for technical reasons, but the reader will be well-served by thinking of the interval I(δ, ε,m) as ‘‘the mth piece in
block ε built using c0δ ’’. The following observation tells the complete story.

Proposition 5.1. Given δ ∈ S, each ordinal α < δ satisfies exactly one of the following conditions:

(1) α ≤ c0δ (0),
(2) α ∈ acc(ran(c0δ )), or
(3) α ∈ I(ε,m) for some unique ε < σ and m < ω.

In particular, any element of nacc(Cδ) \ {min(Cδ)} lies in I(ε,m) for some unique ε < σ and m < ω.

Our next task is to connect our club-guessing sequence to some ideals introduced by Shelah in [27]. We have already
discussed club-guessing in general terms at the start of the previous section; what follows is a deeper discussion of the
particular case of interest to us.

Definition 5.2. Given δ ∈ S, let Iδ be the ideal on Cδ generated by the sets of the form

{γ ∈ Cδ : γ ∈ acc(Cδ) or cf(γ ) < α or γ < β} (5.1)

for α < µ and β < δ.

Shelah uses the notation Jb[µ]Cδ
for the ideal described above; we have gone with something a little simpler. These ideals Iδ

are natural in our given context — for example, the following two propositions show us that the ideals are compatible with
the interval structure that we have imposed on the objects Cδ .

Proposition 5.3. Suppose δ ∈ S. If ε∗ < σ andm∗ < ω are fixed; then Iδ-almost all members of Cδ are in nacc(Cδ)∩
⋃
{I(ε,m) :

ε∗ ≤ ε < σ,m∗ ≤ m < ω}.

Proof. This is clear from the definition of Iδ . �

Proposition 5.4. If E is a closed unbounded subset of λ, then there are stationarily many δ for which E ∩ Cδ /∈ Iδ .

Proof. Our assumptions give us a stationary set of δ such that E ∩ nacc(Cδ) ∩ I(ε,m) is non-empty for each ε < σ and
m < ω, so we are done if we verify that E ∩ Cδ /∈ Iδ for each such δ. This is easily done — given α < µ and β < δ, we need
to show that E ∩ Cδ contains a member of nacc(Cδ) larger than α and whose cofinality is greater than β . Choose ε < σ so
large that β < c0δ (ω · ε) and choosem so large that α < µm. We know E ∩ nacc(Cδ)∩ I(ε,m) is non-empty, and any ordinal
in this intersection is necessarily a member of E ∩ nacc(Cδ) larger than β and of cofinality greater than α. �

Given the preceding proposition, we can now bring in a certain club-guessing ideal which will be woven into all of our
most important results. The following definition makes sense in a more general context than that which we are considering
(Chapter III of [27], for example), but we will deal only with the particular case of interest to us.
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Definition 5.5. Let Ī = 〈Iδ : δ ∈ S〉 be as in Definition 5.2. The ideal idp(C̄, Ī) is defined by putting A ∈ idp(C̄, Ī) if there is a
closed unbounded E ⊆ λ such that

A ∩ E ∩ Cδ ∈ Iδ for all δ ∈ S ∩ E.

The preceding definition is robust under slight modifications. For example, we get the same ideal by requiring A∩ E ∩ Cδ
to be in Iδ for all but non-stationarily many δ ∈ S ∩ E. Note as well that the restriction to δ ∈ S ∩ E is not important — if
δ ∈ S \ E, then E ∩ Cδ must be bounded and therefore E ∩ Cδ ∈ Iδ . Roughly speaking, a set A ⊆ λ is in idp(C̄, Ī) if C̄ fails to
‘‘guess’’ E ∩ A in the sense of Proposition 5.4. Note that in light of Proposition 5.4, the ideal idp(C̄, Ī) is a proper ideal on λ
extending the non-stationary ideal.
The following fact is a specific instance of Observation 3.2 in Chapter III of Shelah — it is an elementary result establishing

indecomposability properties for the club-guessing ideal under consideration. We include the proof because the result is a
crucial piece of our main theorem.

Proposition 5.6. Under our assumptions, the ideal idp(C̄, Ī) is τ -indecomposable whenever τ < µ is an uncountable regular
cardinal distinct from σ .

Proof. Let τ 6= σ be an uncountable regular cardinal less thanµ. Given δ ∈ S, we first establish that Iδ is τ -indecomposable,
so let 〈Ai : i < τ 〉 be an increasing sequence of subsets of Cδ , each of which is in Iδ . The collection of sets of the form (5.1) is
closed under finite unions, and since these sets generate Iδ , it follows that each set in the ideal is covered by a single set of
that form. Thus, we may define αi to be the least α < µ for which there is a β < δ such that

Ai ⊆ {γ ∈ Cδ : γ ∈ acc(Cδ) or cf(γ ) < α or γ < β}.

Since the sequence 〈Ai : i < τ 〉 is increasing, it is clear that 〈αi : i < τ 〉 is a non-decreasing sequence of ordinals less thanµ.
Since cf(µ) = ℵ0 and τ is an uncountable regular cardinal, it follows that this sequence is bounded by some ordinal α∗ < µ.
Next, we let βi be the least ordinal β < δ for which

Ai ⊆ {γ ∈ Cδ : γ ∈ acc(Cδ) or cf(γ ) < α∗ or γ < β}.

Such a β always exists because of our choice of α∗, and since 〈Ai : i < τ 〉 is increasing, the sequence 〈βi : i < τ 〉 is
non-decreasing. Since τ 6= σ = cf(δ), there is an ordinal β∗ < δ greater than all βi.
Thus, we conclude that⋃

i<τ

Ai ⊆ {γ ∈ Cδ : γ ∈ acc(Cδ) or cf(γ ) < α∗ or γ < β∗}, (5.2)

and hence this union is in Iδ .
The rest of the argument consists in noting that idp(C̄, Ī) inherits the indecomposability properties of the ideals Iδ . To see

this, let 〈Ai : i < τ 〉 be an increasing family of subsets of λ, each of which is in idp(C̄, Ī). Set A equal to the union of these
sets, and suppose by way of a contradiction that A /∈ idp(C̄, Ī).
Since Ai ∈ idp(C̄, Ī), there is a closed unbounded Ei ⊆ λ for which

Ai ∩ Ei ∩ Cδ ∈ Iδ for all δ ∈ S ∩ Ei. (5.3)

If we let E be the intersection of all the sets Ei, then it is clear that E is closed and unbounded in λ. We have assumed that
A /∈ idp(C̄, Ī), and thus we can fix an ordinal δ ∈ S ∩ E such that

A ∩ E ∩ Cδ /∈ Iδ. (5.4)

Define

Bi := Ai ∩ E ∩ Cδ.

It should be clear that the sequence 〈Bi : i < τ 〉 is a⊆-increasing sequence of subsets of Cδ , and since E ⊆ Ei, we know that
Bi ∈ Iδ by (5.3). Now Iδ is τ -indecomposable, and so

B :=
⋃
i<τ

Bi ∈ Iδ.

This is a contradiction, though, because we also know that

B =
⋃
i<τ

(Ai ∩ E ∩ Cδ) =

(⋃
i<τ

Ai

)
∩ E ∩ Cδ = A ∩ E ∩ Cδ,

which is not in Iδ by (5.4). We conclude that Amust be in idp(C̄, Ī), as required. �
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Now that we have established some basic results for our club-guessing sequence, our concern shifts to seeing how
well some of the techniques used in [10] can be adapted to this context. We begin with an observation that the interval
structure that we have placed on our sets Cδ gives us a natural way of writing each Cδ as a countable increasing union of
approximations:

Definition 5.7. Given δ ∈ S andm < ω, we define

Cδ[m] = ran(c0δ ) ∪
⋃
{Cδ ∩ I(ε, i) : ε < σ and i ≤ m}.

In more descriptive language, Cδ[m] consists of ran(c0δ ) together with the parts of Cδ lying in the firstm+1 pieces of each
of the σ blocks built using c0δ . We note the following easy facts for these objects:

Proposition 5.8. Suppose δ ∈ S. Then

(1) Cδ[m] is closed and unbounded in δ,
(2) |Cδ[m]| ≤ σ · µ+m = µ

+
m ,

(3) Cδ[m] ⊆ Cδ[m+ 1], and
(4) Cδ =

⋃
m<ω Cδ[m].

Our next move is to implement ‘‘Shelah’s ladder-swallowing trick’’ (a crucial ingredient of the proofs in [8] and [10]) in
this new context. We take the following definition from [10].

Definition 5.9. A generalized C-sequence on λ is a family

〈emα : α < λ,m < ω〉

such that for each α < λ andm < ω,

• emα is closed unbounded in α, and
• emα ⊆ e

m+1
α .

We now use our collection of objects Cδ[m] in order to construct a very special generalized C-sequence.

Lemma 5.10. There is a generalized C-sequence 〈emα : α < λ,m < ω〉 such that

(1) |emα | ≤ cf(α)+ µ
+
m , and

(2) δ ∈ S ∩ emα H⇒ Cδ[m] ⊆ e
m
α .

Proof. Let eα be closed unbounded in α of order-type cf(α). We define

e0α[0] = eα

e0α[k+ 1] = closure in α of e0α[k] ∪
⋃
{Cδ[0] : δ ∈ S ∩ e0α[k]}

e0α = closure in α of ∪ {e0α[k] : k < ω}

em+1α [0] = emα
em+1α [k+ 1] = closure in α of e

m+1
α [k] ∪

⋃
{Cδ[m+ 1] : δ ∈ S ∩ em+1α [k]}

em+1α = closure in α of ∪ {emα [k] : k < ω}.

The estimate for |emα | holds because of the corresponding bounds on the size of each Cδ[m]. As for the other requirement,
note that since σ is an uncountable regular cardinal, if δ ∈ S ∩ emα then there is a k < ω such that δ ∈ S ∩ emα [k]. �

Both conditions (1) and (2) in the preceding lemma are crucial ingredients in the proof of our main result. The name
‘‘ladder-swallowing trick’’ comes from condition (2), which tells us that the generalized C-sequence that we have built
‘‘swallows’’ the objectsCδ[n] in a naturalway. These sorts of requirements probably seemquite unmotivated at this point, but
we note that it is precisely this ‘‘swallowing’’ behavior that allows us to lift some of Todorčević’s minimal walks machinery
to successors of singular cardinals without the need for strong assumptions like � (a technique first pioneered by Shelah in
Chapter III of [27], as well as [9]).

6. Minimal walks and a preliminary result

We leave club-guessing behind for a bit, and turn now to Todorčević’s technique of minimal walks as it relates to our
specific generalized C-sequence. The following definition presents the notation that we use to keep track of everything.
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Definition 6.1. Given ordinals α < β < λ andm < ω, we define

βm0 (α, β) = β,

while

βmi+1(α, β) =

{
min

(
em
βmi (α,β)

\ α
)
if βmi (α, β) > α, and

α otherwise.

Next, we define

ρm2 (α, β) = least i for which β
m
i (α, β) = α.

For eachm < ω and α < β < λ, the sequence 〈βmi : i < ρm2 (α, β)〉 is the minimal walk from β to α using the C-system
ēm in the sense of [30]. We will abbreviate this somewhat, and call this the m-walk from β to α. The use of ρ2 to stand for
the length of such a walk is due to Todorčević. Minimal walks in the context of generalized C-sequences were introduced
in [10]; our notation is a variant of the notation in that paper.
Now that we have the definition of an m-walk at our disposal, the statement of the following theorem makes sense.

This theorem illustrates how the structure of our generalized C-system lets us establish a connection between the m-
walks defined above, and the club-guessing ideal idp(C̄, Ī) discussed in the preceding section. This theorem will quickly
be superseded by results in the next section, but it represents an important step on the way to our main theorem.

Theorem 5. Let 〈tα : α < λ〉 be a pairwise disjoint family of finite subsets of λ. For idp(C̄, Ī)-almost all β∗ < λ, there are
α < β < λ and m < ω such that for every ζ ∈ tα and ξ ∈ tβ , the m-walk from ξ to ζ passes through β∗.

The proof of Theorem 5 will fill the rest of this section. We begin with the following lemma and corollary, which are
translations into the context of generalized C-sequences of some standard facts about minimal walks. Here we see our
assumption that elements of S have uncountable cofinality starts to become relevant.

Lemma 6.2. Suppose δ < β < λ and cf(δ) > ℵ0. There is an ordinal γ ∗(δ, β) < δ such that

(γ ∗(δ, β), δ) ∩ em
βmi (δ,β)

= ∅ (6.1)

for all m < ω and i < ρm2 (δ, β)− 1.

Proof. Ifm < ω and i < ρm2 (δ, β)− 1, then δ /∈ e
m
βmi (δ,β)

. Since this latter set is closed, it follows that

sup(δ ∩ em
βmi (δ,β)

) < δ,

and if we define

γ ∗(δ, β) := sup{sup(δ ∩ em
βmi (δ,β)

) : m < ω, i < ρm2 (δ, β)− 1},

then γ ∗(δ, β) < δ as δ is of uncountable cofinality. �

The following corollary isolates the importance of γ ∗(δ, β) — if α is any ordinal between γ ∗(δ, β) and δ, then for anym
them-walk from β to α agrees with them-walk from β to δ up to the penultimate step of the latter walk. This is a familiar
pattern of argument invented by Todorčević.

Corollary 6.3. If δ < β < λ and cf(δ) > ℵ0, then for any m < ω and i < ρm2 (δ, β) we have

γ ∗(δ, β) < α < δ H⇒ βmi (α, β) = β
m
i (δ, β).

Proof. The proof is a straightforward induction on i < ρm2 (δ, β)− 1 using the definition β
m
i (α, β). �

The next lemma takes advantage of the fact that for each α, 〈emα : m < ω〉 forms an increasing family of sets.

Lemma 6.4. If α < β < λ, then there is an m(α, β) < ω such that

ρm2 (α, β) = ρ
m(α,β)
2 (α, β)

for all m ≥ m(α, β). Moreover,

βmi (α, β) = β
m(α,β)
i (α, β)

for all i ≤ ρm(α,β)2 (α, β).

Proof. This follows easily by induction once we note that for any ordinals α < β , the sequence 〈min(emβ \ α) : m < ω〉 is
non-increasing and hence eventually constant. �
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Armed with the last lemma, we are in a position to define another parameter needed for our construction.

Definition 6.5. Given α < β < λ, define

γ (α, β) := β
m(α,β)

ρ
m(α,β)
2 (α,β)−1

. (6.2)

In plain language, we know that the various m-walks from β down to α are in agreement for all m ≥ m(α, β), and
so γ (α, β) is simply the last ordinal visited by all of these walks before they arrive at their destination α. The last two
parameters that we need for the proof of Theorem 5 are given in the following definition; note that we restrict the definition
to the case where δ ∈ S.

Definition 6.6. Suppose δ ∈ S and δ < β < λ. We define

ε∗(δ, β) := least ε < σ for which γ ∗(δ, β) ≤ c0δ (ω · ε) (6.3)

and

m∗(δ, β) := leastm ≥ m(δ, β) such that cf(γ (δ, β)) < µm, (6.4)

where c0δ and 〈µm : m < ω〉 are as in our list of assumptions.

The following proposition captures a few facts about how the various objects that we have been considering interact;
part (3) of the proposition has particular importance for us.

Proposition 6.7. Suppose δ ∈ S and δ < β < λ.
(1) Cδ[m] ⊆ emγ (δ,β) for all m ≥ m

∗(δ, β).
(2) Assume ε∗(δ, β) ≤ ε < σ and m∗(δ, β) ≤ m < ω. If β∗ ∈ nacc(Cδ) ∩ I(ε,m), then

β∗ ∈ nacc(emγ (δ,β)),

and

γ ∗(δ, β) ≤ sup(emγ (δ,β) ∩ β
∗).

(3) Furthermore, in the situation of (2), if sup(β∗ ∩ emγ (δ,β)) < α < β∗, then

βmk (α, β) = β
m
k (β

∗, β) = βmk (δ, β) for all k < ρm2 (δ, β), (6.5)

and
βm
ρm2 (δ,β)

(α, β) = β∗. (6.6)

In particular, the m-walk from β to β∗ (including the final step!) is an initial segment of the m-walk from β to α.

Proof. For (1), we know that δ ∈ emγ (δ,β) by our definition of γ (δ, β) and m
∗(δ, β), and a glance back at Lemma 5.10 gives

us what we need.
Condition (2) gives us some more information — it claims that some of the structure of Cδ survives in emγ (δ,β), and it is at

this point that we cash in some of our assumptions for the first time (in particular, it will become clear why we work with
the somewhat awkwardly defined m∗(δ, β) instead of m(δ, β)). Given β∗ in nacc(Cδ) ∩ I(ε,m), we know that β∗ ∈ emγ (δ,β)
by (1). Condition (1) of Lemma 5.10 taken with the definition ofm∗(δ, β) tells us that∣∣emγ (δ,β)∣∣ ≤ cf(γ (δ, β))+ µ+m ≤ µ+m.
However, the fact that β∗ ∈ I(ε,m) tells us that

cf(β∗) > µ+m,

and therefore β∗ cannot be an accumulation point of emγ (δ,β). This, together with the definition of ε
∗(δ, β), implies

γ ∗(β, δ) ≤ sup(β∗ ∩ emγ (δ,β)) < β∗.

In particular, there are many α satisfying the hypothesis of (3).
Given such an α, the fact that γ ∗(δ, β) < α < β∗ implies

βmi (α, β) = β
m
i (β

∗, β) = βmi (δ, β)

for all i < ρm2 (δ, β), and therefore

βm
ρm2 (δ,β)−1

(α, β) = βm
ρm2 (δ,β)−1

(δ, β) = γ (δ, β).

Given (2) and our assumptions about α, it follows that

βm
ρm2 (δ,β)

(α, β) = min(emγ (δ,β) \ α) = β
∗,

and so (3) is established. �



T. Eisworth / Annals of Pure and Applied Logic 161 (2010) 1216–1243 1235

The following corollary follows immediately, and provides a useful upgrade of the preceding proposition.

Corollary 6.8. Suppose δ ∈ S and t is a finite subset of (δ, λ), and define

ε∗ := max{ε(δ, ξ) : ξ ∈ t},

and

m∗ := max{m∗(δ, ξ) : ξ ∈ t}.

Given m ≥ m∗ and β∗ ∈ nacc(Cδ) ∩ I(ε,m), the ordinal

γ ∗ := max{sup(emγ (δ,ξ) ∩ β
∗) : ξ ∈ t} < β∗

has the property that whenever γ ∗ < α < β∗, we have

βmk (α, ξ) = β
m
k (β

∗, ξ) = βmk (δ, ξ) for all ξ ∈ t and k < ρm2 (δ, ξ), (6.7)

and

βm
ρm2 (δ,ξ)

(α, β) = β∗ for all ξ ∈ t. (6.8)

In particular, for any ξ ∈ t the m-walk from ξ to β∗ is an initial segment of the m-walk from ξ to α.

Proof. This is an immediate consequence of Proposition 6.7. �

Let us turn now to the proof of Theorem 5, and assume that 〈tα : α < λ〉 is a pairwise disjoint family of finite subsets
of λ. Define

E := {δ < λ : α < δ H⇒ tα ⊆ δ}.

Since E is closed and unbounded in λ, we can apply Proposition 5.4 to conclude that

T := {δ ∈ S : E ∩ Cδ /∈ Iδ} (6.9)

is stationary.
Fix δ ∈ T , and choose β > δ so that δ < min(tβ). Just as in Corollary 6.8, we define

ε∗ := max{ε(δ, ξ) : ξ ∈ tβ}

and

m∗ := max{m∗(δ, ξ) : ξ ∈ tβ}.

The following claim is where the closed unbounded set E starts to become relevant.

Claim 3. Given ε∗ ≤ ε < σ , m∗ ≤ m < ω, and β∗ ∈ E ∩ nacc(Cδ) ∩ I(ε,m), there is an α such that

βm
ρm2 (δ,ξ)

(ζ , ξ) = β∗ (6.10)

for all ζ ∈ tα and ξ ∈ tβ .

Proof. Given such β∗, we work as in Corollary 6.8 and define

γ ∗ := max{sup(emγ (δ,ξ) ∩ β
∗) : ξ ∈ tβ}.

Since β∗ is in E, we can choose an α < λ so that tα is contained in the interval (γ ∗, β∗). From part (3) of Proposition 6.7,
we conclude that

βm
ρm2 (δ,ξ)

(ζ , ξ) = β∗

for all ζ ∈ tα and ξ ∈ tβ , as required. �

The proof of Theorem 5 is almost complete. Given δ ∈ T , our work provides us with ε∗ < σ and m∗ < ω as in Claim 3.
Let us define

Bδ := nacc(Cδ) ∩
⋃
{I(ε,m) : ε∗ ≤ ε < σ,m∗ ≤ m < ω}.

Proposition 5.3 tells us that almost all (in the sense of Iδ) members of Cδ are in Bδ , while Claim 3 establishes that for any
β∗ ∈ E ∩ Bδ , there are α < β < λ andm < ω such that them-walk from ξ to ζ passes through β∗ for all ζ ∈ tα and ξ ∈ tβ .
Thus, if we define

A := λ \
⋃
{E ∩ Bδ : δ ∈ T },

the proof Theorem 5 will be finished if we can show

A ∈ idp(C̄, Ī).
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To establish this, we show

A ∩ E ∩ Cδ ∈ Iδ for all δ ∈ S. (6.11)

Clearly we need only worry about those δ for which E ∩ Cδ /∈ Iδ . Given such a δ, we have

A ∩ E ∩ Bδ = ∅ (6.12)

by the definition of A. If A ∩ E ∩ Cδ were Iδ-positive, then this set would have non-empty intersection with Bδ , as the
complement of Bδ is in Iδ . This cannot be the case, as we would contradict (6.12). Thus, A ∈ idp(C̄, Ī) and the proof of
Theorem 5 is complete.

7. Scales and elementary submodels

One of our assumptions in the last two sections is that we have at our disposal a fixed increasing sequence of regular
cardinals 〈µn : n < ω〉 that is cofinal in µ. This parameter was utilized in the definition of m∗, but otherwise it has been
in the background. In the upcoming work, we are going to need to assume that this sequence of regular cardinals carries a
scale, and since we are going to need to use quite a bit of scale combinatorics, it seems reasonable to devote some time to
fixing notation and reviewing what we need.

Definition 7.1. Let µ be a singular cardinal. A scale for µ is a pair (Eµ, Ef ) satisfying:

(1) Eµ = 〈µi : i < cf(µ)〉 is an increasing sequence of regular cardinals such that supi<cf(µ) µi = µ and cf(µ) < µ0.
(2) Ef = 〈fα : α < µ+〉 is a sequence of functions such that
(a) fα ∈

∏
i<cf(µ) µi.

(b) If γ < δ < µ+ then fγ <∗ fδ , where the notation f <∗ g means that {i < cf(µ) : g(i) ≤ f (i)} is bounded in cf(µ).
(c) If f ∈

∏
i<cf(µ) µi then there is an α < µ+ such that f <∗ fα .

Given an increasing sequence Eµ as above, if there is an Ef such that (Eµ, Ef ) is a scale, then we say that Eµ carries a scale.

Since we have been working in the situation where the singular cardinal µ has countable cofinality, we will deal only
with that special case in this section; we refer the reader to [8] or [7] for more information on these matters. Thus, from
now on we assume

• 〈µn : n < ω〉 is an increasing sequence of regular cardinals such that
– 〈µn : n < ω〉 is cofinal in µ,
– σ < µ0, and
– 〈µn : n < ω〉 carries a scale 〈fα : α < λ〉.

That such sequences exist is a very non-trivial result of Shelah (Chapter II of [27]). Interested readers can also consult [7]
or [4] for expository treatments of this subject.
The function Γ defined below is a standard combinatorial tool associated with scales; again, we tailor the definition to

the context at hand.

Definition 7.2. For α < β < λ, we define Γ (α, β) by

Γ (α, β) = max{n < ω : fβ(n) ≤ fα(n)}. (7.1)

For convenience, we say that Γ (α, α) = ∞.

The function Γ has many nice properties — it witnesses Pr1(µ+, µ+, cf(µ), cf(µ)) (Conclusion 1 on page 67 of [27]), for
example. We shall not make use of this fact directly, but it is certainly in the background throughout our arguments.
The next lemma is a special case of Lemma 7 in [8]. We remind the reader that notation of the form ‘‘(∃∗β < λ)ψ(β)’’

means that {β < λ : ψ(β) holds} is unbounded below λ, while ‘‘(∀∗β < λ)ψ(β)’’ means that {β < λ : ψ(β) fails} is
bounded below λ.

Lemma 7.3. There is a closed unbounded C ⊆ λ such that the following holds for every β ∈ C:

(∀∗n < ω)(∀η < µn)(∀ν < µn+1)(∃
∗α < β) [fα(n) > η ∧ fα(n+ 1) > ν] . (7.2)

Our conventions regarding elementary submodels are standard. We assume that χ is a sufficiently large regular cardinal
and letA denote the structure 〈H(χ),∈, <χ 〉where H(χ) is the collection of sets hereditarily of cardinality less than χ , and
<χ is somewell-ordering of H(χ). The use of<χ means that our structureA has definable Skolem functions, and we obtain
the set of Skolem terms for A by closing the collection of Skolem functions under composition.

Definition 7.4. Let B ⊆ H(χ). Then SkA(B) denotes the Skolem hull of B in the structure A. More precisely,

SkA(B) = {t(b0, . . . , bn) : t a Skolem term for A and b0, . . . , bn ∈ B}.
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The set SkA(B) is an elementary substructure of A, and it is the smallest such structure containing every element of B.
The following technical lemma is due originally to Baumgartner [1]; it is a fact that is quite useful in proving things about
the function Γ associated with a given scale. Again, we refer the reader to [8] or [7] for a proof.

Lemma 7.5. Assume that M ≺ A and let σ ∈ M be a cardinal. If we define N = SkA(M ∪σ) then for all regular cardinals τ ∈ M
greater than σ , we have

sup(M ∩ τ) = sup(N ∩ τ).

As a corollary to the above, we can deduce an important fact about characteristic functions of models. Once again, the
following definition is but a special case of a more general definition.

Definition 7.6. IfM is an elementary submodel of A such that

• |M| < µ, and
• 〈µn : n < ω〉 ∈ M

then the characteristic function of M (denoted as ChM ) is the function with domain ω defined by

ChM(n) :=
{
sup(M ∩ µn) if sup(M ∩ µn) < µn,
0 otherwise.

In the situation of Definition 7.6, it is clear that ChM is an element of the product
∏
n<ω µn, and furthermore, ChM(n) =

sup(M ∩ µn) for all sufficiently large n < ω. We can now see that the following corollary follows immediately from
Lemma 7.5.

Corollary 7.7. Let M be as in Definition 7.6. If n∗ < ω and we define N to be SkA(M ∪ µn∗), then

ChM � [n∗ + 1, ω) = ChN � [n∗ + 1, ω). (7.3)

We end this section with one more handy bit of terminology due to Shelah [25].

Definition 7.8. A λ-approximating sequence is a continuous ∈-chainM = 〈Mi : i < λ〉 of elementary submodels of A such
that

(1) λ ∈ M0,
(2) |Mi| < λ,
(3) 〈Mj : j ≤ i〉 ∈ Mi+1, and
(4) Mi ∩ λ is a proper initial segment of λ.

If x ∈ H(χ), then we say thatM is a λ-approximating sequence over x if x ∈ M0.

Note that ifM is a λ-approximating sequence and λ = µ+, then µ+ 1 ⊆ M0 because of condition (4) and the fact that
µ is an element of eachMi.

8. Defining the coloring

In this section, we will mix ideas from [9,8] together with the proof of Theorem 5 in order to prove a coloring theorem
in ZFC. Our assumptions and notation are as in the previous two sections, and our goal is to obtain the following theorem.

Theorem 6. There is a function c : [λ]2 → λ such that for any pairwise disjoint collection 〈tα : α < λ〉 of finite subsets of λ, it
is the case that for idp(C̄, Ī)-almost all β∗ < λ, we can find α < β such that

c(ζ , ξ) = β∗ for all ζ ∈ tα and ξ ∈ tβ . (8.1)

The proof of Theorem 6makes use of the functionΓ defined from the scale 〈fα : α < λ〉. We begin by defining a sequence
〈cm : m < ω〉 of functions coloring the pairs from λ.

Definition 8.1. Given α < β < λ andm < ω, we define

cm(α, β) = βmkm(α,β)(α, β),

where km(α, β) is the least k ≤ ρm2 (α, β) for which

Γ
(
α, βmk (α, β)

)
6= Γ (α, β).

In words, the value of cm(α, β) is the first place on the m-walk from β down to α where ‘‘Γ changes’’. Except for the
parameterm, this is the same coloring as we used in [8].
The following lemma contains the heart of the proof of Theorem 6; it shows that the sequence of colorings 〈cm : m < ω〉

has many of the properties that we need.
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Lemma 8.2. If 〈tα : α < λ〉 is a pairwise disjoint collection of finite subsets of λ, then for idp(C̄, Ī)-almost all β∗ < λ, there are
an m < ω and β > β∗ such that

(∀∗i < ω)(∃∗α < β∗)(∀ζ ∈ tα)(∀ξ ∈ tβ)
[
Γ (ζ , ξ) = i ∧ cm(ζ , ξ) = β∗

]
. (8.2)

Proof. Let 〈tα : α < λ〉 be given. Clearlywemay assumeα ≤ min(tα) for allα, aswe can pass to a subsequence of cardinality
λ with no loss of generality. Define A to be the set of β∗ < λ for which it is impossible to find an m < ω and β > β∗ with
the required properties. Assume by way of a contradiction that

A /∈ idp(C̄, Ī). (8.3)

Let x = {C̄, ē, S, µ, λ, 〈µi : i < ω〉, 〈fα : α < λ〉, 〈tα : α < λ〉} – all the parameters needed to define the sequence
〈cm : m < ω〉 togetherwith the sequence of finite sets under consideration – and letM = 〈Mi : i < λ〉 be a λ-approximating
sequence over x. The set

E := {δ < λ : Mδ ∩ λ = δ}

is closed and unbounded in λ, so by our assumption (8.3), there is a δ ∈ S for which

A ∩ E ∩ Cδ /∈ Iδ. (8.4)

Choose β < λ so that δ < min(tβ), and just as in Corollary 6.8, let

ε∗ := max{ε(δ, ξ) : ξ ∈ tβ}

and

m∗ := max{m∗(δ, ξ) : ξ ∈ tβ}.

The conclusion of Corollary 6.8 tells us that if β∗ ∈ E ∩ nacc(Cδ) ∩ I(ε,m) for some ε ≥ ε∗ and m ≥ m∗, then there is an
ordinal γ ∗ < β∗ such that whenever tα is contained in the interval (γ ∗, β∗), for every ζ ∈ tα and ξ ∈ tβ we have

βm
ρm2 (δ,ξ)

(ζ , ξ) = β∗ (8.5)

and

βmk (ζ , ξ) = β
m
k (δ, ξ) for all k < ρm2 (δ, ξ). (8.6)

Proposition 5.3 tells us that Iδ-almost all elements of Cδ lie in

Bδ := nacc(Cδ) ∩
⋃
{I(ε,m) : ε∗ ≤ ε < σ,m∗ ≤ m < ω}.

Since A ∩ E ∩ Cδ is Iδ-positive, it follows that

A ∩ Bδ /∈ Iδ.

In particular, we can find β∗ ∈ A ∩ E ∩ Cδ such that β∗ ∈ I(ε,m) for some ε ≥ ε∗ and m ≥ m∗, and hence for which
there is an ordinal γ ∗ < β∗ with the properties promised in the discussion surrounding (8.5) and (8.6). Our goal is to get a
contradiction by establishing thatm and β witness that this β∗ is not an element of A.
We observe that since β∗ = sup(Mβ∗ ∩ λ), β∗ must be a member of every closed unbounded subset of λ that is itself an

element ofMβ∗ . We will shortly make use of this in the context of Lemma 7.3, but for now we observe the following simple
fact:

α < β∗ H⇒ tα ⊆ β∗. (8.7)

For each α < λ, we define a function f minα as follows:

f minα (i) = min{fζ (i) : ζ ∈ tα}.

Since each tα is finite, it follows that

(∀∗i < ω)[f minα (i) = fmin(tα)(i)]

and therefore 〈f minα : α < λ〉 is a scale. Since this new scale is definable from parameters available inM0, it itself must be a
member ofM0 as well.
As observed earlier, β∗ is in every closed unbounded subset of λ that is also an element of Mβ∗ . Thus, an application of

Lemma 7.3 inside of Mβ∗ to the scale 〈f minα : α < λ〉 tells us that (7.2) holds for β∗. In particular, we can fix i0 < ω so that
whenever i0 ≤ i < ω, it is the case that

(∀η < µi)(∀ν < µi+1)(∃
∗α < β∗)[f minα (i) > η ∧ f minα (i+ 1) > ν]. (8.8)

The next part of our argument is going to require some Skolem hull arguments. We start by defining

M := SkA(x ∪ {β∗}).
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Note that x ∪ {β∗} ∈ Mβ∗+1 (as everything except β∗ is already in M0) and therefore M ∈ Mδ as it is definable in Mδ by
taking the Skolem hull of x ∪ {β∗} inside the structureMβ∗+1. SinceM is countable and µ0 is not, it follows that

ChM(i) = sup(M ∩ µi) < µi for all i < ω,

and therefore

f (i) ≤ ChM(i) for all f ∈ M ∩
∏
n<ω

µn and i < ω. (8.9)

Since δ ∈ E, it is immediate that ChM <∗ fδ , and the definition of scale tells us that ChM <∗ fγ whenever δ ≤ γ < λ as
well. Since tβ is finite, there is an i1 < ω such that

ChM � [i1, ω) < fβmk (δ,ξ) � [i1, ω) for all ξ ∈ tβ and k ≤ ρm2 (δ, ξ). (8.10)

Finally, choose i2 < ω such that cf(β∗) < µi2 , and define

i∗ = max{i0, i1, i2}.

We claim that if i∗ ≤ i < ω, then

(∃∗α < β∗)(∀ζ ∈ tα)(∀ξ ∈ tβ)[cm(ζ , ξ) = β∗ ∧ Γ (ζ , ξ) = i]. (8.11)

Given such an i, let N := SkA(M ∪ µi). An application of Corollary 7.7 yields

ChN � [i+ 1, ω) = ChM � [i+ 1, ω),

and since i1 ≤ i, we conclude from (8.9) that for any ζ ∈ N ∩ λ,

fζ � [i+ 1, ω) < fβmk (δ,ξ) � [i+ 1, ω) for all ξ ∈ tβ and k < ρm2 (δ, ξ). (8.12)

Now define

η∗ := max{fβmk (δ,ξ)(i) : ξ ∈ tβ and k < ρm2 (δ, ξ)},

and

ν∗ = fβ∗(i+ 1).

It is clear that η∗ < µi and ν∗ < µi+1. Since both of these ordinals are, along with β∗ and the scale 〈f minα : α < λ〉, elements
of N , we can apply (8.8) inside N and conclude that

N |H (∃∗α < β∗)[f minα (i) > η∗ ∧ f minα (i+ 1) > ν∗]. (8.13)

Our choice of i2 guarantees cf(β∗) ⊆ N , and therefore N ∩ β∗ is unbounded in β∗; when we combine this observation
with (8.13), we conclude that

(∃∗α < β∗)[α ∈ N ∧ f minα (i) > η∗ ∧ f minα (i+ 1) > ν∗]. (8.14)

The next proposition will essentially finish our proof. Recall that ‘‘γ ∗’’ refers to the ordinal below β∗ isolated in the
discussion preceding (8.5) and (8.6).

Proposition 8.3. Suppose α < β∗ satisfies

• α ∈ N,
• tα ⊆ (γ ∗, β∗),
• f minα (i) > η∗ ∧ f minα (i+ 1) > ν∗.

Then for any ζ ∈ tα and ξ ∈ tβ , we have

• Γ (ζ , ξ) = i, and
• cm(ζ , ξ) = β∗.

Proof. Let α be as hypothesized, and choose ζ ∈ tα and ξ ∈ tβ . We first show

Γ (ζ , βmk (ζ , ξ)) = i for all k < ρm2 (δ, ξ). (8.15)

Given k < ρm2 (δ, ξ), we know that

βmk (ζ , ξ) = β
m
k (δ, ξ)

by way of (8.6). Thus,

fβmk (ζ ,ξ)(i) = fβmk (δ,ξ)(i) ≤ η
∗ < f minα (i) ≤ fζ (i). (8.16)
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Since tα ∈ N and tα is finite, it follows that ζ ∈ N as well, and therefore we have

fζ � [i+ 1, ω) ≤ ChM � [i+ 1, ω) < fβmk (δ,ξ) � [i+ 1, ω) = fβmk (ζ ,ξ) � [i+ 1, ω) (8.17)

by way of (8.12). The conjunction of (8.16) and (8.17) tells us that Γ (ζ , βmk (ζ , ξ)) = i, and this establishes (8.15).
Since βm

ρm2 (δ,ξ)
= β∗, we are finished if we can establish

Γ (ζ , β∗) 6= i, (8.18)

but this follows easily because we have arranged that

fβ∗(i+ 1) = ν∗ < f minα (i+ 1) ≤ fζ (i+ 1). �

We can now finish our proof of (8.2). Since α ≤ min(tα), it follows from (8.7) that tα ⊆ (γ ∗, β∗)whenever α ∈ (γ ∗, β∗).
Thus, (8.14) implies that there are unboundedly many α < β∗ satisfying the assumptions of Proposition 8.3. Since iwas an
arbitrary element of (i∗, ω), it follows thatm andβ standwitness thatβ∗ is not an element of A. This contradiction completes
the proof of Lemma 8.2. �

We turn now to the proof of Theorem 6. Our proof requires one more parameter — we need to fix a function p : ω→ ω
with the property that p−1(m) is infinite for allm < ω. Given this function, we define our coloring as follows:

Definition 8.4. Given α < β < λ, we define c : [λ]2 → λ by

c(α, β) = cp(Γ (α,β))(α, β).

Proof of Theorem 6. Suppose β∗ is as in the conclusion of Lemma 8.2, and fix m and β for which (8.2) is true. We can find
an i < ω sufficiently large that

• p(i) = m, and
• (∃∗α < β∗)(∀ζ ∈ tα)(∀ξ ∈ tβ)[Γ (ζ , ξ) = i ∧ cm(ζ , ξ) = β∗].

For such α, we have

c(ζ , ξ) = β∗ for all ζ ∈ tα and ξ ∈ tβ , (8.19)

just as required by Theorem 6. �

We finish this sectionwith a corollary whose proof involves applying a well-known trick to the coloring from Theorem 6.

Corollary 8.5. Let θ ≤ λ be a cardinal. If idp(C̄, Ī) is not weakly θ-saturated, then Pr1(λ, λ, θ,ℵ0) holds.

Proof. Suppose π : λ → θ is a function such that π−1(γ ) is idp(C̄, Ī)-positive for each γ < θ . Define a coloring
c∗ : [λ]2 → θ by

c∗(α, β) = π(c(α, β)).

Suppose now that we are given a pairwise disjoint collection 〈tα : α < λ〉 of finite subsets of λ and an ordinal ς < θ . Since
π−1(ς) is idp(C̄, Ī)-positive, the conclusion of Theorem 6 tells us that we can find β∗ < λ and α < β < λ such that

• π(β∗) = ς , and
• c � tα × tβ is constant with value β∗.

Clearly c∗ � tα × tβ is constant with value ς , and this establishes Pr1(λ, λ, θ,ℵ0). �

In the light of the above corollary, we see that if idp(C̄, Ī) is not weakly µ-saturated, then Pr1(µ+, µ+, µ,ℵ0) holds. A
similar situation occurred in [9,8], and in those two cases we were able to improve things to a coloring with µ+ colors
and obtain Pr1(µ+, µ+, µ+, cf(µ)). In this paper, however, the use ofm-walks brings in an extra parameter that seemingly
prevents the proofs from the earlier papers from being carried out. We are still able to use a ‘‘stepping-up argument’’ to get
an upgrade to λ colors, but we pay a price in that the resulting coloring is defined on triples instead of pairs.

Theorem 7. If idp(C̄, Ī) is not weakly µ-saturated, then there exists a coloring d : [λ]3 → λ such that whenever 〈tα : α < λ〉 is
a pairwise disjoint collection of finite subsets of λ, and ς < λ, we can find α < β < γ such that

(∀ε ∈ tα)(∀ζ ∈ tβ)(∀ξ ∈ tγ )[d(ε, ζ , ξ) = ς ]. (8.20)
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Proof. Our main ingredients in the definition of d are the coloring c from Theorem 6, and the coloring c∗ from Corollary 8.5.
We also fix functions gβ mapping µ onto β whenever µ ≤ β < λ. The function d : [λ]3 → λ is defined by

d(ε, ζ , ξ) =
{
gc(ζ ,ξ) (c∗(ε, ξ)) if µ ≤ c(ζ , ξ), and
0 otherwise. (8.21)

Suppose now that 〈tα : α < λ〉 is a pairwise disjoint family of finite subsets of λ. Without loss of generality, we assume
α ≤ min(tα) and max(tα) < min(tβ) whenever α < β; this can easily be arranged by passing to a subfamily of size λ, and
such a move does not interfere with our conclusion.
Lemma 8.2 and the proof of Theorem 6 tell us that for idp(C̄, Ī)-almost all η < λ, there is value h(η) > η such that

(∃∗β < η)(∀ζ ∈ tβ)(∀ξ ∈ th(η)) [c(ζ , ξ) = η] . (8.22)

Since idp(C̄, Ī) contains all the non-stationary subsets of λ, Fodor’s Lemma implies that there is a single ι < µ such that for
stationarily many η < λ, we have both (8.22) and that gη(ι) is defined and equal to ς .
Let T denote the set of all η < λ satisfying the above. By tossing away a non-stationary subset of T if necessary, we can

assume that T consists of limit ordinals, and that th(η∗) ⊆ η whenever η∗ < η in T . Given this, if we define

sη = {η} ∪ th(η), (8.23)

then the resulting family 〈sη : η ∈ T 〉 is a pairwise disjoint collection of finite subsets of λ.
Since c∗ witnesses Pr1(λ, λ, µ,ℵ0), we can find η∗ < η in T such that c∗ is constant with value ι when restricted to

sη∗ × sη . If we define α = h(η∗) and γ = h(η), then we achieve

(∀ε ∈ tα)(∀ξ ∈ tγ )[c∗(ε, ξ) = ι]. (8.24)

Our assumptions on T imply that η = min(sη) andmax(sη)) < η. Since η satisfies (8.22), we can choose β < η such that

max(tα) < β < η, (8.25)

and

(∀ζ ∈ tβ)(∀ξ ∈ tγ )[c(ζ , ξ) = η]. (8.26)

It is clear that α < β < γ , so we need only verify (8.20). Suppose then that ε ∈ tα , ζ ∈ tβ , and ξ ∈ tγ . Then c∗(ε, ξ) = ι
and c(ζ , ξ) = η by (8.26) and (8.24). The definition of T implies that gη(ι) = ς , and so

d(ε, ζ , ξ) = gc(ζ ,ξ)(c∗(ε, ξ)) = gη(ι) = ς, (8.27)

as required. �

9. Conclusions

In this final section, we give a proof of our main theorem. Our goal is to combine Theorem 2 with the coloring theorems
from the preceding section (in the case where our singular cardinal has countable cofinality) and from [8] (in the case where
the cofinality is uncountable). We will dispense with the assumptions that have been in force for the past few sections, in
order to state things in full generality. We begin with a short summary of the main results of [8].

Theorem 8. Let µ be a singular cardinal of uncountable cofinality, and let S be a stationary subset of Sµ
+

cf(µ). There are an S-club

system 〈Cδ : δ ∈ S〉 and a coloring c : [µ+]2 → µ+ such that, letting idp(C̄, Ī) be defined as in Definition 5.5, the following hold:

(1) The ideal idp(C̄, Ī) is cf(µ)-complete, and θ-indecomposable for every regular cardinal θ in the interval (cf(µ), µ). (Part 1 of
Observation 3.2 on page 139 of [27].)

(2) Whenever 〈tα : α < µ+〉 is a pairwise disjoint collection of members of [µ+]<cf(µ), for idp(C̄, Ī)-almost all β∗ < µ+, there
are α < β such that c � tα × tβ is constant with value β∗ (Theorem 2 of [8]).

(3) If idp(C̄, Ī) is not weakly θ-saturated for θ ≤ µ+, then Pr1(µ+, µ+, θ, cf(µ)) holds (Corollary 19 of [8]).
(4) If Pr1(µ+, µ+, µ+, cf(µ)) fails, then there is an idp(C̄, Ī)-positive set A such that the ideal I obtained by restricting idp(C̄, Ī)
to A is weakly θ-saturated for some θ < µ (Lemma 23 of [8]).

Notice that our Theorem 6 gives us the second conclusion of the above theorem in the case where cf(µ) = ℵ0. The
proof in the case where cf(µ) > ℵ0 is much simpler because we can take advantage of the stronger club-guessing theorems
known for that case. We will return to the contrast between results from this paper and those from [8] after we state and
prove our main theorem.

Theorem 9 (Main Theorem). Assume µ is a singular cardinal.

(1) If Refl(< cf(µ), Sµ
+

≥θ ) fails for some θ < µ, then Pr1(µ+, µ+, θ, cf(µ)) holds.

(2) If Refl(<cf(µ), Sµ
+

≥θ ) fails for arbitrarily large θ < µ, then we obtain both Pr1(µ+, µ+, µ, cf(µ)) and µ+ 9 [µ+]2µ+ .
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(3) If cf(µ) > ℵ0 and Refl(< cf(µ), S
µ+

≥θ ) fails for arbitrarily large θ < µ, then (2) can be improved to Pr1(µ+, µ+, µ+, cf(µ)).

(4) If cf(µ) = ℵ0 and Refl(< cf(µ), S
µ+

≥θ ) fails for arbitrarily large θ < µ, then there is a function d : [µ+]3 → µ+ such that
whenever 〈tα : α < µ+〉 is a pairwise disjoint family of finite subsets of µ+ and ς < µ+, there are α < β < γ such that

(∀ε ∈ tα)(∀ζ ∈ tβ)(∀ξ ∈ tγ )[d(ε, ζ , ξ) = ς ].

Proof. As far as (1) is concerned, we note that the theorem is only of interest in the case where cf(µ) < θ —
Pr1(µ+, µ+, cf(µ), cf(µ)) holds for any singular cardinal by a result of Shelah (Conclusion 4.1 on page 67 of [27]). Thus,
we assume cf(µ) < θ .
Assume Refl(< cf(µ), Sµ

+

≥θ ) fails for some regular θ with cf(µ) < θ < µ. If µ has uncountable cofinality, then the
ideal idp(C̄, Ī) mentioned in Theorem 8 cannot be weakly θ-saturated — if it were, then part (1) of Theorem 8 taken with
Theorem 2 would give us Refl(< cf(µ), Sµ

+

≥θ ). Our result now follows by part (3) of Theorem 8.
What about the case where cf(µ) = ℵ0? In this case, our assumptions give us a finite sequence 〈Si : i < n〉 of stationary

subsets of Sµ
+

≥θ which fail to reflect simultaneously.Without loss of generality, we can assume that Si ⊆ S
µ+

τi
for some regular

cardinal τi. This allows us to choose a regular cardinal σ such that max{τi : i < n} < σ < µ.
Let S = Sµ

+

σ . An application of Theorem 4 gives us an S-club system C̄ for which Theorem 6 holds. The corresponding
ideal idp(C̄, Ī) is τi-indecomposable for i < n by Proposition 5.6, and so Theorem 2 lets us conclude that idp(C̄, Ī) cannot
be weakly θ-saturated — if it were, then our sets Si would be stationary subsets of S∗(idp(C̄, Ī)) and thus they would reflect
simultaneously. We now obtain Pr1(µ+, µ+, θ, cf(µ)) by way of Corollary 8.5.
As far as part (2) of our theorem goes, note that Theorem 3 gives us the square-brackets part of the conclusion already.

Wewill prove the remainder by contrapositive, focusing only on the case whereµ is of countable cofinality because part (3)
will take care of the other case.
Thus, assume cf(µ) = ℵ0 and Pr1(µ+, µ+, µ, cf(µ)) fails. Apply Theorem 4 with S = S

µ+

ℵ1
and obtain an S-club system

C̄ for which Theorem 6 holds. Corollary 8.5 implies that idp(C̄, Ī) must be weakly µ-saturated, and Proposition 5.6 tells us
that the ideal is τ -indecomposable for every regular τ lying between ℵ1 and µ.
An elementary argument by contradiction establishes the existence of a regular θ < µ (without loss of generality greater

thanℵ1) and an idp(C̄, Ī)-positive set A such that the ideal I = {B ⊆ µ+ : A∩B ∈ idp(C̄, Ī)} is weakly θ-saturated. This ideal
I is also τ -indecomposable for any regular τ with ℵ1 < τ < µ— it inherits this property from idp(C̄, Ī). Thus, S∗(I) is equal
to Sµ

+

≥θ modulo the non-stationary ideal, and Refl(< cf(µ), S
µ+

≥θ ) follows by Theorem 2.
To finish, we note that parts (3) and (4) of our main theorem follow by exactly the same argument — for part (3) we take

advantage of conclusion 4 of Theorem 8, and for part (4), we use Theorem 7 in the previous section. �

We conclude our paper with a general discussion of some of the issues raised by the research presented here. First
and foremost, it should be clear that we obtain simultaneous reflection almost by accident — it seems that a much more
important phenomenon is isolated in Theorem6 (and Theorem2 of [8]), wherewe get in ZFC a coloring theorem intertwined
with an easily describable ideal. In the presence of square-brackets partition relations, the ideal in question must possess
some large cardinal-type properties and it is not clear at this point if this is even possible:

Question 2. Supposeµ is a singular cardinal. Is it consistent (relative to large cardinals) that ideals of the form idp(C̄, Ī) can
be weakly θ-saturated for some θ ≤ µ?

If 2µ = µ+, then an old theorem of Erdǒs, Hajnal, and Rado [11] tells us that µ+ 9 [µ+]2
µ+
holds. This motivates the

following question, which we phrase in very specific terms:

Question 3. Suppose µ is singular strong limit cardinal of countable cofinality. Is it consistent (relative to large cardinals)
that 2µ > µ+ and there is a uniform ultrafilter U on µ+ that is θ-indecomposable for all uncountable regular θ < µ?

The preceding questionmay be quite tractable — for example, if we ignore the cardinal arithmetic aspect of the question,
then Ben-David and Magidor [2] have shown that such a filter can exist on ℵω . We are not sure of the extent to which the
need for 2µ to be greater than µ+ complicates things.
Another somewhat bothersome point is the difference between parts (3) and (4) of our main theorem. This discrepancy

may be resolvable by an easy argument, but as of yet we do not see how to do it. The general question is as follows:

Question 4. Suppose µ is a singular cardinal for which Pr1(µ+, µ+, µ, cf(µ)) holds. Does Pr1(µ+, µ+, µ+, cf(µ)) hold?
Finally, having established that square-brackets-type relations at successors of singular cardinals necessarily entail

simultaneous reflection of stationary sets, we would like to have information about the cofinalities of the ordinals where
the reflection takes place:

Question 5. Supposeµ+ → [µ+]2
µ+
forµ singular, and let θ < µ be a regular cardinal for which Refl(< cf(µ), Sµ

+

≥θ ) holds.
Can we say anything interesting about the cofinalities of ordinals where the simultaneous reflection takes place?

The answer to the above depends on getting information about the cofinalities of ordinals in the range of f ∗, where f ∗ is
as in Theorem 2.
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10. Final note

There has been some progress on these questions in themonths since this paper was submitted. In particular, the answer
toQuestion 4 is ‘‘yes’’, and both statements are equivalent to demanding that Pr1(µ+, µ+, θ, cf(µ))holds for arbitrarily large
θ < µ. The proof will appear in [6].
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