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a b s t r a c t

The extended finite element method (XFEM) is applied for the simulation of near-interfa-
cial crack propagation in a metal–ceramic layered structure. An experimental evidence
indicates that, in a ceramic–metal–ceramic sandwich structure, a near-interfacial crack
in the ceramic layer can be drawn to or deflect away from the metal layer depending on
the difference in elastic properties across the interface. To model near-interfacial fracture,
only the Heaviside functions are used for the XFEM, and the vector level set method is
employed for efficient evaluation of the enrichment functions. The crack propagation paths
predicted by the XFEM simulation are found to be consistent with the experimental
observation.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Design of composite structures in many important industrial applications requires good understanding of the fracture
behavior near the bi-material interfaces. For example, it has become a widespread practice to strengthen reinforced or pre-
stressed concrete structures with externally bonded fiber-reinforced plastic (FRP) plates. Such a practice has been spurred by
FRP’s high stiffness-to-weight ratio, strength-to-weight ratio and durability as compared with other conventional materials
(Triantafillou and Antonopoulos, 2000). However, the failure mechanism of the strengthened system has not been under-
stood very well, and has been the subject of extensive experimental and analytical studies in the recent past (Büyüköztürk
et al., 2004; Camata et al., 2007; Chen and Teng, 2003; Leung, 2006). Among other failure mechanisms, a greater attention is
being paid to debonding failure, that is, debonding of the FRP plate from the concrete substrate. A prevalent failure mode in
FRP-strengthened systems, debonding failure tends to be highly brittle and thus must be prevented by adequate design
(Büyüköztürk et al., 2004). Debonding is a fracture phenomenon that occurs near or on the interface between two distinct
materials. As such, relative elastic properties of the constituent materials inevitably affect the fracture process, which makes
it harder to predict the crack propagation path.

Numerical methods for simulating crack propagation can be categorized into the discrete inter-element crack approach
(Ngo and Scordelis, 1967), embedded discontinuity approach (Simo et al., 1993; Jirásek, 2000), and the extended finite ele-
ment method (XFEM) (Moës et al., 1999). In the discrete inter-element crack approach a crack is modeled by introducing a
separation between element edges when a crack initiation criterion is met. The discrete crack approach is most appropriate
when the crack path is known in advance, such as in pure mode I fracture. In general, however, the crack path must be deter-
mined by the simulation, and to track an arbitrary crack path the discrete approach requires remeshing and a continuous
change in nodal connectivity, which can be quite cumbersome to implement.
. All rights reserved.
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In both the embedded discontinuity approach and the XFEM, a crack can reside in the interior of a finite element and grow
arbitrarily without regard to the mesh topology. The embedded discontinuity approach employs the displacement field con-
sisting of the regular continuous component and the enhanced component containing a discontinuity across the crack. The
enriched degrees of freedom associated with discontinuities are eliminated by condensation. In the XFEM, on the other hand,
special functions are added to the finite element approximation under the framework of partition of unity (Melenk and Ba-
bus�ka, 1996). To model cracks, the Heaviside function and linear elastic asymptotic crack-tip displacement fields are used
(Moës et al., 1999) although only the Heaviside function is used in other implementations (Zi and Belytschko, 2003). A com-
parative study of the two methods (Jirásek and Belytschko, 2002) shows that the XFEM has advantages over the embedded
discontinuity approach in representing kinematic properties and possesses better numerical robustness.

In this study, the XFEM combined with the level set method (LSM) (Osher and Sethian, 1988) is used to simulate the near-
interfacial fracture behavior of layered composite structures. The XFEM is capable of modeling crack growth without reme-
shing and possesses advantages over conventional methods as discussed above. The LSM, on the other hand, is capable of
handling the motion of an interface, such as a propagating crack. The combined use of the LSM and XFEM can thus greatly
simplify the algorithm to model the crack geometry in three dimensions. The LSM is implemented in the current study which
is restricted to plane problems so that methodologies can be readily extended in the future to a three-dimensional setting.
We use the vector LSM (Ventura et al., 2003), a version of the LSM specifically tailored toward modeling evolving crack
geometries, to evaluate XFEM enrichment functions efficiently.

Among the many XFEM formulations available in the literature, the approach proposed by Zi and Belytschko (2003) does
not rely on the use of special crack-tip enrichment functions, so that the partition of unity holds in the entire enriched do-
main. Chessa et al. (2003) report that the accuracy can be impaired when partially enriched elements are created around the
crack-tip by using the crack-tip enrichment functions. The XFEM has been applied to a number of problems in fracture
mechanics including channel cracking (Huang et al., 2003) and bi-material interface cracks (Sukumar et al., 2004), but
few studies have been reported on near-interfacial cracking. The present study is concerned with the application of the XFEM
based on the formulation of Zi and Belytschko (2003) to the simulation of crack growth in layered composite structures, with
particular emphasis on the XFEM’s capability in predicting the crack path in near-interfacial fracture.

In what follows, we first briefly describe the numerical technique, the XFEM combined with the vector LSM. A pilot prob-
lem on the computation of stress intensity factors (SIF) for cracks in a plate under uniaxial loading is then considered to ver-
ify the implementation. Numerical simulation of near-interfacial crack propagation in a metal–ceramic layered structure
follows and the computed crack paths are compared with experimental results. The paper is concluded by a summary of
the results and recommendations for future research.

2. Numerical techniques

2.1. Extended finite element method

The extended finite element method (XFEM) is a numerical technique for modeling discontinuities by local enrichment
functions in the area of interest. For the sake of subsequent discussion, let us consider a solid body occupying the domain X
and containing a crack Cc (Fig. 1). In the XFEM formulation by Moës et al. (1999), two types of enrichment, that is, the Heav-
iside and crack-tip enrichment are included to represent the displacement jump across the crack and the singular near-tip
displacement field around the crack-tip. In the present study, we follow Chen (2003) and Zi and Belytschko (2003), who em-
ployed the Heaviside enrichment only. Dropping crack-tip enrichment functions eliminates the partially enriched elements
on which the partition of unity does not hold, thus avoiding the degradation of accuracy in those elements (Chessa et al.,
2003).

The enriched interpolation function for the displacement is written as
uðxÞ ¼
X
I2Nt

NIðxÞuI þ
X
I2Nh

NIðxÞðHðxÞ � HðxIÞÞaI; ð1Þ
where NIðxÞ is the standard interpolation function used in conventional finite elements and HðxÞ the Heaviside function. uI

and aI are, respectively, the standard displacement degree of freedom and the enriched degree of freedom associated with
Fig. 1. Domain X of a solid body containing a crack Cc.
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the Heaviside enrichment. Nt is the set of total nodes whereas the set Nh contains the nodes of the elements cut by the crack
Cc. HðxÞ is defined as
Fig. 3.
quadra
HðxÞ ¼
1 if ðx� x�Þ � n P 0
�1 otherwise

�
; ð2Þ
where x� is the closest point to x on the crack and n is the unit outward normal to the crack at x� (Fig. 1).
The discontinuity due to the Heaviside enrichment functions is illustrated in Fig. 2 for the one-dimensional case, where

the whole domain X is divided into X� and Xþ by the discontinuity at point D. Since only the element connected to nodes 2
and 3 contains the discontinuity, only those nodes are the members of Nh and need to be enriched. The resulting enrichment
functions along with the standard shape functions are shown in Fig. 2. A simple calculation reveals that the discontinuity in
the displacement is 2N2ðxDÞa2 þ 2N3ðxDÞa3. It is clearly seen that the enrichment is local and restricted to the element con-
taining the discontinuity only.

Three-node triangular elements are used exclusively in our implementation for two-dimensional situations, for which
more elaborate considerations are necessary since an element can be cut by a crack either completely or partially. For an
element that is completely cut by a crack, all the nodes of the element are enriched. An element that is partially cut by a
crack contains the crack-tip in its interior. For such an element, the nodes on the edge toward which the crack is heading
are not enriched and only the remaining node is enriched. Fig. 3 shows enriched nodes for a two-dimensional structured
mesh. See Zi and Belytschko (2003) for a detailed description of the enrichment algorithm.

For elements cut by a crack, the standard Gauss quadrature is not adequate due to discontinuities that exist inside the
elements (Sukumar and Prévost, 2003). To accurately evaluate the integrals resulting from the virtual work statement, we
divide the element domain into subdomains of triangular shape and then apply a quadrature formula to each subdomain.
Depicted also in Fig. 3 is how elements completely cut by a crack and a crack-tip element are partitioned into triangles
(shown as dotted lines). In the crack-tip element, a partition touches the crack-tip thus accurately representing the crack-
tip position.
Fig. 2. Representation of a discontinuity by Heaviside enrichment functions: one-dimensional case.

cracktip element

Enriched nodes (circled) for a two-dimensional structured mesh with three-node triangular elements: partition of elements (dotted lines) for Gauss
ture is also shown.
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2.2. Vector level set method

The Heaviside function HðxÞ plays a key role in the enriched XFEM displacement field of Eq. 2. Plus, since it needs to be
evaluated around the evolving crack-tip, a reliable and efficient procedure to keep track of the crack geometry and to eval-
uate HðxÞ is highly desirable.

The level set method (LSM) is a computational technique for modeling a propagating interface. Such an interface is de-
scribed as the zero level set of a function the dimension of which is higher by one than that of the domain where the interface
resides (Osher and Sethian, 1988). Stolarska et al. (2001) first discussed the coupling of the LSM and XFEM and reported that
the combination of the two methods is natural and efficient.

Incorporated into our XFEM formulation is an improvement to the original LSM, termed the vector level set method (Ven-
tura et al., 2003), in which the nature of crack propagation problems is fully exploited for enhanced efficiency. The key idea is
to restrict the update of the level set function to a small region around the crack-tip, instead of the whole crack, thus elim-
inating the need to solve partial differential equations to determine the evolution of the entire crack. The level set function at
a point x is described by the sign of the level set function and the components of the closest point projection on the crack,
x� � x, which are stored only at those nodes that surround the crack. Refer to Ventura et al. (2003) for additional details.

3. Benchmark problem: crack in a plate under uniaxial loading

We use the benchmark problem considered by Huang et al. (2003) to verify the XFEM implementation. In the problem
depicted in Fig. 4, a rectangular plate of height 2h ¼ 3 and width 2b ¼ 2 is subjected to a uniaxial tensile stress r. The plate
contains, at its center, a crack of length 2a ¼ 0:2, which is inclined at angle a with respect to the horizontal axis. When a ¼ 0�,
the state of the crack is very close to the mode I as the size of the crack is small compared with the dimensions of the plate.
The mode I stress intensity factor K I at the crack-tip is
K I ¼ F
a
b

� �
r
ffiffiffiffiffiffi
pa
p

; ð3Þ
where FðabÞ is a dimensionless correction factor depending on the ratio a
b. For the case of a

b ¼ 0:1, FðabÞ ¼ 1:006 (Huang et al.,
2003).

Both a structured and an unstructured mesh are used in the XFEM numerical simulation. The structured mesh consists of
200� 100 triangular elements arranged as in Fig. 3, whereas the unstructured mesh consists of 6032 triangular elements
with higher mesh density in the vicinity of the crack. In both cases the mesh density is approximately the same around
the crack-tip.

Mode I and mode II stress intensity factors are computed using domain forms of the interaction integrals (Moës et al.,
1999). For the area integral to be evaluated, a domain, conveniently assumed to be a circle with radius rd, needs to be se-
lected with rd being an arbitrary parameter. The computed SIF values normalized by the theoretical counterparts are listed
in Table 1 for a range of rd used in the domain integral evaluation. It is seen that the SIFs are fairly insensitive to the domain
radius, especially when the radius is relatively large, and both the structured and unstructured mesh produce results that are
in excellent agreement with theoretical solutions.
Fig. 4. Plate with an inclined crack under uniaxial tension.



Table 1
Normalized SIFs for the center crack (a ¼ 0�)

Structured mesh Unstructured mesh

rd
a

KI
r
ffiffiffiffi
pa
p rd

a
K I

r
ffiffiffiffi
pa
p

0.245 1.013 0.113 1.013
0.490 0.983 0.226 0.984
0.735 0.990 0.339 0.983
0.980 0.990 0.452 0.980
1.225 0.990 0.565 0.980
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When the angle a is greater than 0�, the problem becomes one with a mixed-mode crack and so the mode II (K II) as well as
mode I (K I) SIFs can be assessed. The theoretical solutions for an infinite domain (Anderson, 2005) are
Table 2
SIFs for

a

15�
30�
45�
60�
75�
K I ¼ r
ffiffiffiffiffiffi
pa
p

cos2 a; K II ¼ r
ffiffiffiffiffiffi
pa
p

sin a cos a: ð4Þ
Listed in Table 2 are the ratios of the calculated to theoretical SIFs for a range of values for a. Very good agreements are ob-
tained again. Accurate assessment of SIFs for a mixed-mode crack is particularly relevant for the present study as such infor-
mation is crucial in determining the crack growth direction as shown in the next example.

4. Near-interfacial fracture in layered structure

4.1. Experimental evidence in literature

To investigate the capability of the XFEM considered in the present study in the simulation of near-interfacial crack prop-
agation in a layered composite structure, we consider fracture in three-layer ceramic–metal–ceramic structures tested by
McNaney et al. (1994). A typical specimen subjected to four-point bending is shown in Fig. 5, where a thin metal layer of
thickness h is sandwiched between ceramic materials. The resulting specimen of length L and height W is subjected to a pair
of concentrated loads of magnitude P that are distance d apart. A crack of length a, initially parallel to a metal–ceramic inter-
face, exists in the ceramic and propagates upward upon the application of the load.

Experimental as well as theoretical analysis by McNaney et al. (1994) reports that when the crack is situated close to the
interface, the crack propagation trajectory is strongly affected by the relative compliance of the two constituent materials for
the composite specimen. The crack-tip field of an interfacial crack is affected by Dundurs’ parameters a and b (Dundurs,
1969), which describe the effect of the difference in elastic properties of the two constituent materials:
the inclined crack

K I K II

XFEM Theory Ratio XFEM Theory Ratio

0.527 0.523 1.008 0.142 0.140 1.014
0.421 0.420 1.002 0.242 0.243 0.995
0.278 0.280 0.991 0.277 0.280 0.987
0.136 0.140 0.972 0.238 0.243 0.982
0.039 0.038 1.033 0.140 0.140 1.001

Y

Ceramic

Metal

P P

h
Ceramic

L

d

W
a

Fig. 5. Four-point bending specimen.



Table 3
Materia

Materia

Alumin
Glass/c
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a ¼ E01 � E02
E01 þ E02

; ð5Þ

b ¼ l1ðj2 � 1Þ � l2ðj1 � 1Þ
l1ðj2 þ 1Þ þ l2ðj1 þ 1Þ ; ð6Þ
where, for the plane strain loading condition, E0i ¼ Ei=ð1� m2
i Þ and ji ¼ 3� 4mi; i ¼ 1;2, and E1, m1 and l1 (E2, m2 and l2) are the

Young’s modulus, Poisson’s ratio and shear modulus of the ceramic (metal), respectively. The study by McNaney et al. (1994)
reveals that, for the crack path satisfying the criterion K II ¼ 0, the near-interfacial crack is drawn to the interface when b > 0
while the crack is repelled from the interface when b < 0.

4.2. Numerical model

XFEM simulations are carried out to numerically replicate the tests that verified such predictions. Two groups of ceramic–
metal pairs are considered such that b > 0 for the alumina/aluminum pair and b < 0 for the glass/copper pair. Elastic prop-
erties and the corresponding Dundurs’ parameters for the two groups of material pairs are listed in Table 3. The dimensions
of the four-point bending specimen are L = 25 mm and W = 3 mm for the alumina/aluminum specimen and L = 30 mm and
W = 7.5 mm for the glass/copper specimen. The thickness h of the metal layer is: 50 � 100 lm and 450 lm for aluminum and
125 lm for copper. In all cases, the dimension of the specimen in the out-of-plane direction is 3 mm, and so the plane strain
loading condition is assumed.

A typical mesh generated by Triangle (Shewchuk, 2002), a two-dimensional mesh generator and Delaunay triangulator, is
depicted in Fig. 6, where a fully developed crack is also shown. A finer mesh density is used in the zone containing the crack
l properties and Dundurs’ parameters for two cases of material pairs: alumina/aluminum (b > 0) and glass/copper (b < 0)

l pair 1/2 E1 (GPa) m1 E2 (GPa) m2 a b

a/aluminum 370 0.27 71 0.345 0.666 0.144
opper 74 0.17 130 0.343 �0.324 �0.183

Fig. 6. Mesh for near-interfacial fracture simulation: alumina/aluminum specimen.
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as well as the metal layer. The mesh has a symmetric density distribution in the sense that a refinement is provided to both
regions that are to the left and right of the metal layer although the region to the right only contains the crack. To improve
computational efficiency, meshes with a refined region to the right of the metal layer only have also been used, without any
noticeable change in the simulated crack trajectories.

The crack growth direction is determined by the maximum hoop stress criterion (Erdogan and Sih, 1963), which gives the
angle of the crack growth
hc ¼ 2 arctan
1
4

K I

K II
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K I

K II

� �2

þ 8

s0
@

1
A; ð7Þ
with respect to the local coordinate system for which hc ¼ 0 corresponds to the direction of the existing crack. The maximum
hoop stress criterion is known to lead to the crack trajectory such that K II ¼ 0 (Sukumar and Prévost, 2003).

4.3. Results and discussion

Comparisons of the crack path trajectories simulated by the XFEM with the experimental results obtained by McNaney
et al. (1994) are shown in Figs. 7 and 8 (alumina/aluminum; h = 50–100 and 450 lm, respectively) and Fig. 9 (glass/copper;
h = 125 lm). In Fig. 7 two groups of XFEM results, one for h = 50 lm and the other for h = 100 lm, are plotted since the exper-
imental results are from specimens for which h was varied from 50 to 100 lm and the actual h for each curve could not be
discerned from McNaney et al. (1994). A range of values for the initial distance of the crack from the interface, namely, Y=h at
a=W ¼ 0 (to be referred to as Y0=h), are considered to study its influence on the resulting crack trajectory.

In all cases, XFEM simulations correctly capture the important feature of near-interfacial fracture: the crack is drawn to
the interface for b > 0 (Figs. 7 and 8) whereas the crack is deflected away from the interface for b < 0 (Fig. 9). It is also accu-
rately simulated that the effect of the sign of b on crack trajectories becomes less obvious as Y0=h increases: Fig. 8 shows that
for Y0=h 6 1 the crack is drawn to and ultimately reaches the interface whereas the crack path is less affected by the pres-
ence of the metal layer as Y0=h increases, staying in the ceramic layer until the specimen breaks into two (a=W ¼ 1).
a/W

Y
/h

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8 Experiment
XFEM (h = 50 μm)
XFEM (h = 100 μm)

Fig. 7. Comparison of crack trajectories: alumina/aluminum (b > 0), h = 50—100 lm.

a/W

Y
/h
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Experiment
XFEM

Fig. 8. Comparison of crack trajectories: alumina/aluminum (b > 0), h = 450 lm.
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Fig. 9. Comparison of crack trajectories: glass/copper (b < 0), h = 125 lm.
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Although qualitative features of the experiment are captured very well by the XFEM, some discrepancies exist as far as
exact crack trajectories are concerned. For the purpose of such comparisons, it is first noted that one-to-one comparison
of the XFEM and experimental results, as alluded to in Figs. 7–9, may not be justifiable in some cases. This is so because
Y0=h for those cases cannot be clearly identified from the drawings provided in McNaney et al. (1994). Nevertheless, care
was exercised in the XFEM simulation to ensure that Y0=h would be comparable for simulations and experiments.

For the alumina/aluminum specimen with h = 450 lm (Fig. 8), the simulated crack trajectories are in excellent agreement
with the test results for a wide range of Y0=h. On the other hand, the degree of agreement for h = 50–100 lm depends on Y0=h
(Fig. 7). For each value of Y0=h the two trajectories obtained by the XFEM, one for h = 50 lm and the other for 100 lm, provide
an envelope, within which a trajectory corresponding to the experimental one exists. It is noted that, in the case of Y0=h 	 2
and 3, the simulated trajectories for h = 50 lm are relatively close to the experimental ones while the crack path for
h = 100 lm more closely follows the experimental result in the case of Y0=h 	 6. The envelope for Y0=h 	 4, however, does
not embrace the test result with comparable accuracy. It is also observed that the experimental curves for Y0=h 	 3 and 4
intersect with each other, which may be a clear sign that different h’s were used for those cases. Intersecting crack trajec-
tories can also be simulated by the XFEM as illustrated in Fig. 10, albeit with a different combination of Y0=h and h.

In the case of the glass/copper specimen (Fig. 9), the simulated trajectories are quite close to the experimental ones espe-
cially when the crack is still in its early stage of growth. Discrepancies become larger as the crack is fully developed with an
increased rate of departure from the interface. In contrast, the simulated paths are seen to be deflected away from the inter-
face with approximately a constant slope. However, test results involve intersecting curves, which suggests that the accel-
erated departure of the cracks in some cases may be misrepresenting the true behavior.

The influence of the mesh density on crack trajectories is also investigated by considering three increasingly refined
meshes for the zone where the crack resides. The area of the elements for the coarsest mesh is 200 lm2, and the area is re-
duced by a factor of four from one level of refinement to the next. In the case of the alumina/aluminum specimen with
h = 100 lm, the results shown in Fig. 11 indicate that the mesh density has relatively insignificant influences. For some val-
ues of Y0=h, the cracks due to a finer mesh are drawn to the interface slightly faster, being closer to the experimental results.

The foregoing discussion indicates that overall comparisons of computational and experimental results are deemed very
good. Nevertheless, it is expected that improvements can be attained by introducing additional ingredients into the numer-
a/W

Y
/h

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4 XFEM (h = 50 μm)
XFEM (h = 200 μm)

Fig. 10. Intersection of simulated crack trajectories: alumina/aluminum (b > 0), h = 50 and 200 lm.
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Fig. 11. Influence of the mesh density on crack trajectories: alumina/aluminum (b > 0), h = 100 lm. The area of elements in the zone where the crack
resides is 200, 50 and 12.5 lm2 for mesh 1, 2 and 3, respectively.
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ical model. First, the simulation entails complete breakage of specimens (a=W ¼ 1), for which consideration of large defor-
mation may be necessary. By the same token, plasticity of the metal may have affected the displacement field around the
crack. While pure brittle cracking was assumed in the present study for a crack initiation criterion, use of a proper cohesive
crack model is expected to more closely capture the fracture behavior of alumina as evidenced by experiments (Llorca and
Steinbrech, 1991). Use of higher-order elements that allows for a better kinematic representation of the crack geometry as
well as the finite-element displacement field may enhance the comparison further.

5. Concluding remarks

An XFEM relying on Heaviside enrichment only has been applied to the analysis of near-interfacial fracture in ceramic-
metal–ceramic layered structures. The method accurately captures the important aspect of the fracture behavior that the
crack growth trajectory is either drawn to or repelled from the ceramic–metal interface depending on the relative elastic
properties of the constituent materials. The crack path observed in experiments are also closely reproduced by XFEM sim-
ulations. It is expected that some observed discrepancies in crack paths may be reduced by considering inelastic behavior of
the structure as well as higher-order kinematic descriptions in the XFEM formulations. Incorporation of such additional
modeling capabilities are the subject of future studies. The modeling capability demonstrated in this study indicates that
the XFEM may adequately tackle more involved problems in near-interfacial fracture.
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