
Journal of Saudi Chemical Society (2015) 19, 12–22

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
King Saud University

Journal of Saudi Chemical Society

www.ksu.edu.sa
www.sciencedirect.com
ORIGINAL ARTICLE
Biochemical studies on antibiotic production from

Streptomyces sp.: Taxonomy, fermentation,

isolation and biological properties
* Present address: Biotechnology Department, Faculty of Science

and Education, Al-Khurmah Branch, Taif University, Saudia Arabia.

E-mail address: houssamatta@yahoo.com.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org10.1016/j.jscs.2011.12.011
1319-6103 ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University. Open access under CC BY-NC-ND license.

Open access under CC BY-NC-N
Houssam M. Atta *
Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
Received 27 November 2011; accepted 9 December 2011
Available online 16 December 2011
KEYWORDS

Antimicrobial antibiotic;

Streptomyces sp.;

16s rDNA;

Biological properties
Abstract Tunicamycin is a nucleotide antibiotic which was isolated from the fermentation broth of

a Streptomyces strain No. T-4. According to the morphological, cultural, physiological and biochem-

ical characteristics, and 16S rDNA sequence analysis, strain T-4 was identified as Streptomyces tor-

ulosus. It is active in vitro against some microbial pathogenic viz: Staphylococcus aureus, NCTC 7447;

Micrococcus lutea, ATCC 9341; Bacillus subtilis, NCTC 10400; B. pumilus, NCTC; Klebsiella pneu-

monia, NCIMB 9111; Escherichia coli, NCTC 10416; Pseudomonas aeruginosa, ATCC 10145; Sac-

charomyces cerevisiae ATCC 9763; Candida albicans, IMRU 3669; Aspergillus flavus, IMI 111023;

Aspergillus niger IMI 31276; Aspergillus fumigatus ATCC 16424; Fusarium oxysporum; Rhizoctonia

solani; Alternaria alternata; Botrytis fabae and Penicillium chrysogenium. The production media were

optimized for maximum yield of secondary metabolites. The metabolites were extracted using n-

butanol (1:1, v/v) at pH 7.0. The chemical structural analysis with UV, IR, and MS spectral analyses

confirmed that the compound produced by Streptomyces torulosus, T-4 is tunicamycin antibiotic.
ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University.
D license.
1. Introduction

Actinomycetes have provided important bioactive
compounds of high commercial value and continue to be rou-

tinely screened for new bioactive substances (Olano et al.,
2009). Streptomyces is the largest genus of Actinobacteria
and the type genus of the family Streptomycetaceae

(Kampfer, 2006). Over 500 species of Streptomyces have been
described by Euzeby (2008). As with the other Actinobacteria,
Streptomycetes are Gram-positive and have genomes with

high GC-content (Madigan and Martinko, 2005). Streptomy-
ces sp. are widely recognized as industrially important organ-
isms for their ability to elaborate different kinds of novel
secondary metabolites (Bibb, 2005). Tunicamycins are nucle-

otide antibiotics produced by several Streptomyces species.
They are potent inhibitors of the UDP-GlcNAc:polyprenol
phosphate GlcNAc-1-P translocase family and are often used

to block protein N-glycosylation. The structures are highly
unusual but well characterized (Tamura, 1982; Tkacz, 1983;
Eckardt, 1983) and are composed of uracil, N-acetylglucosa-

mine (GlcNAc), a unique 11-carbon 2-aminodialdose sugar
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called tunicamine, and an amide-linked fatty acid. The ab-
1,10-glycosidic linkage between tunicamine and the GlcNAc
substituent is also unique to the tunicamycin family of com-
pounds. Tunicamycin structural variants occur that differ
only in the nature of the N-linked acyl chain. We have re-

cently introduced a structure-based naming system that iden-
tifies each tunicamycin by its signature fatty acid, i.e. Tun
13:1–Tun 18:1 (Tsvetanova and Price, 2001). Although a

great deal is known about tunicamycin structure and func-
tion, no previous analysis of tunicamycin biosynthesis has
been reported. The key to understanding the biosynthesis of

tunicamycin is the origin of the 11-carbon tunicamine dial-
dose sugar and the kinetics for the formation of the, b-10 0,
110-glycosidic bond. A large number of natural products of

Streptomyces origin are synthesized from 2-carbon units via
a polyketide-type reaction sequence (Khosla, 2000). However,
other long chain sugars such as sialic acids, ketodeoxyoctulo-
sonate (KDO) and ketodeoxyheptulosonate are synthesized

from aldol condensation of lower sugars with phosphoenol-
pyruvate (PEP) (Subramaniam et al., 1998). In addition, the
biosynthesis of similar nucleoside antibiotics, polyoxins and

nikkomycins, occurs by ligation of PEP and uridine-5-alde-
hyde, generating 8-carbon octofuranuloseuronic acid nucleo-
side as an intermediate (Isono and Suhadolnik, 1976; Isono

et al., 1978; Schuz et al., 1992). Here, metabolic radiolabeling
experiments and stable isotope incorporations have been ap-
plied to unravel the metabolic origin of the 11-carbon dial-
dose sugar, tunicamine. The [2-14C] uridine and [1-14C]

glucosamine are efficiently incorporated into tunicamycin by
resting cells of Streptomyces chartreusis and that the [1-14C]
glucosamine feeds into both the 11-carbon tunicamine and

the attached a-10 0-GlcNAc residue. Stable isotope incorpora-
tions using 2H- or 13C-labeled glucose and competitive meta-
bolic experiments were monitored by LC-ESI-CID-MS and

NMR (H-1, C-13, and HSQC) spectroscopy. The isotopic
labeling patterns were consistent with carbon–carbon bond
formation between a 5-carbon precursor derived from uridine

and a 6-carbon hexose intermediate, the latter most probably
derived from UDP-GlcNAc. Heteronuclear C-13/H-1 NMR
correlations showed an equal incorporation of 13C label from
[1-13C] glucose into both the b-110 and a-100 anomeric car-

bons, indicating that both arise from a common precursor
pool. Hence, both the pseudo-aminogalactopyranosyl
(pseudoGalN) rings of tunicamine and the a-100-linked Glc-

NAc residue are initially derived from the sugar nucleotide
UDP-GlcNAc. Based on the results of these experiments a
biosynthetic pathway is proposed for tunicamycin for the first

time (Schuz et al., 1992).
In the present work we describe the isolation of an actino-

mycete strain from Taif City, KSA soil, with high potential

of antimicrobial activity. The identification of this strain, based
on the cultural, morphology, physiology and biochemical char-
ateristics, as well as 16s rDNA analysis, is also reported. The
primary bioactive substance was isolated, purified and its bio-

logical activities were determined.

2. Materials and methods

2.1. Actinomycete strain

Strain T-4 was isolated from a suspension of a soil sample
(Williams and Davies, 1965) collected from Taif City,
Kingdom of Saudi Arabia, and inoculated onto a starch–

nitrate agar. Plates were incubated at 35 �C for seven days.
The isolates were individually maintained on starch–nitrate
agar at 4 �C and stored as a mixture of hyphae and spores in
20% glycerol at 80 �C the selected isolate was allowed to grow

in a starch nitrate broth in a purpose to get a clear supernatant
for antimicrobial activity.

2.2. Test organisms

2.2.1. Bacteria

i. Gram-positive bacteria: Staphylococcus aureus, NCTC
7447; Bacillus subtilis, NCTC 1040; B. pumilus, NCTC

8214 and Micrococcus luteus, ATCC 9341.
ii. Gram-negative bacteria: Escherichia coli, NCTC 10416;

Klebsiella pneumonia, NCIMB 9111 and Pseudomonas

aeruginosa, ATCC 10145.
2.2.2. Fungi

i. Unicellular fungi: Candida albicans, IMRU 3669 and

Saccharomyces cervisiae, ATCC 9763.
ii. Filamentous fungi:Aspergillus niger, IMI 31276;A. flavus,
IMI111023; A. fumigatous, ATCC 16424; Fusarium oxyspo-

rum; Rhizoctonia solani; Alternaria alternate; Botrytis fabae
and Penicillium chrysogenium.
2.3. Screening for antimicrobial activity

The antimicrobial activity was determined by cup method as-
say according to Kavanagh (1972).

2.4. Taxonomic studies of actinomycete isolate

Morphological characteristics of the most potent produce
strain T-4 grown on starch nitrate agar medium at 35 �C for
5 days was examined under scanning electron microscopy
(JEOL Technics Ltd.).

2.5. Physiological and biochemical characteristics

The ability of the strain to produce different enzymes was exam-
ined by using standard methods. Lecithinase was conducted on
egg-yolk medium according to the method of Nitsh and

Kutzner (1969); lipase (Elwan et al., 1977); protease (Chapman,
1952); pectinase according to the method of Hankin et al.
(1971); a-amylase according to the method of Cowan (1974)
and catalase test according to the method of Jones (1949).

Melanin pigment according to the method of Pridham et al.
(1957). Degradation of esculin and xanthine according to the
method of Gordon et al. (1974). Nitrate reduction according

to the method of Gordon (1966). Hydrogen sulfide production
and oxidase test according to the method ofCowan (1974). The
utilization of different carbon and nitrogen sources was

according to the methods of Pridham and Gottlieb (1948). Cell
wall was performed by the method of Becker et al. (1964) and
Lechevalier and Lechevalier (1970). Cultural characteristics

such as color of aerial mycelium, color of substrate mycelium
and pigmentation of the selected actinomycete were recorded
on ISP agar medium (Shirling and Gottlieb, 1966). Colors
characteristics were assessed on the scale developed by Kenneth
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and Deane (1955). In addition, the sensitivity of the strains to

different antibiotics was determined by paper disk method
(Cappuccino and Sherman, 2004).

2.6. DNA isolation and manipulation

The locally isolated actinomycete strain was grown for 5 days
on a starch agar slant at 35 �C. Two milliliters of a spore sus-

pension were inoculated into the starch–nitrate broth and incu-
bated for 3 days on a shaker incubator at 200 rpm and 30 �C to
form a pellet of vegetative cells (pre-sporulation). The prepara-

tion of total genomic DNA was conducted in accordance with
the methods described by Sambrook et al. (1989).

2.7. Amplification and sequencing of the 16S rDNA gene

PCR amplification of the 16S rDNA gene of the local actino-
mycete strain was conducted using two primers, StrepF;

50-ACGTGTGCAGCCCAAGACA-30 and Strep R; 50-ACAA
GCCCTGGAAACGGGGT-30, in accordance with the me
thod described by Edwards et al. (1989). The PCR mixture

consisted of 30 pmol of each primer, 100 ng of chromosomal
DNA, 200 lM dNTPs, and 2.5 units of Taq polymerase, in
50 ll of polymerase buffer. Amplification was conducted for

30 cycles of 1 min at 94 �C, 1 min of annealing at 53 �C, and
2 min of extension at 72 �C. The PCR reaction mixture was
then analyzed via agarose gel electro-phoresis, and the remain-
ing mixture was purified using QIA quick PCR purification

reagents (Qiagen, USA). The 16S rDNA gene was sequenced
on both strands via the dideoxy chain termination method,
as described by Sanger et al. (1977). The 16S rDNA gene

(1.5 kb) sequence of the PCR product was acquired using a
Terminator Cycle Sequencing kit (ABI Prism 310 Genetic
Analyzer, Applied Biosystems, USA).

2.8. Sequence similarities and phylogenetic analysis

The BLAST program (www.ncbi.nlm.nih.gov/blst) was
employed in order to assess the degree of DNA similarity.
Multiple sequence alignment and molecular phylogeny were
evaluated using BioEdit software (Hall, 1999). The

phylogenetic tree was displayed using the TREE VIEW
program.

2.9. Factors effecting on the biosynthesis of the antimicrobial
agent

These included inoculum size, incubation period, pH values,
incubation temperatures; different carbon and nitrogen sources
have been determined by the standard methods.

2.9.1. Fermentation

The Streptomyces torulosus, T-4 inoculumwas introduced asep-

tically into each sterile flask containing the following
ingredients (g/l): glucose, 20; KNO3, 2.0; K2HPO4, 0.8;
MgSO4Æ7H2O, 0.7 and KCl, 0.5. The pH was adjusted at 7.0 be-

fore sterilization. After 5 days of incubation at 35 �C. Filtration
was carried out through cotton wool and followed by centrifu-
gation at 5000 rpm for 15 min.
2.9.2. Extraction

The culture filtrates were extracted twice with n-Butanol and
the pooled solvent extracts were evaporated to dryness under

vacuum to yield a crude residue.

2.9.3. Precipitation

The precipitation process of the crude compound was carried
out using petroleum ether (b.p. 60–80 �C) followed by centrifu-
gation at 5000 rpm for 15 min.

2.9.4. Purification by TLC

Separation of the antimicrobial compound into its individual
components was conducted by thin-layer chromatography
using chloroform and methanol (24:1, v/v) as a solvent system.

2.10. Purification by column chromatography

The purification of the antimicrobial compound was carried

out using silica gel column (2.5 · 50) chromatography, chloro-
form and methanol 10:2 (v/v) was used as an eluting solvent.
The column was left overnight until the silica gel (Prolabo)

was completely settled. One milliliter of crude extract to be
fractionated was added on the silica gel column surface and
the extract was adsorbed on top of silica gel. Fifty fractions

were collected (each of 5 ml) and tested for their antimicrobial
activities.

2.11. Physico-chemical properties

2.11.1. Elemental analysis
The elemental analysis of C, H, O, N, and S was carried out at
the microanalytical center, Cairo University, Egypt.

2.11.2. Spectroscopic analysis
The IR, UV and mass spectra were determined at the micro-
analytical center of Cairo University, Egypt.

2.11.3. Biological activity
The minimum inhibitory concentration (MIC) has been deter-

mined by the cup method assay (Kavanagh, 1972).

2.11.4. Characterization of the antimicrobial agent
The antibiotic produced by Streptomyces torulosus, T-4 was
identified according to the recommended international refer-
ences of (Umezawa, 1977; Berdy, 1974, 1980a,b,c).
3. Results

3.1. Screening for the antimicrobial activities

Ninety-seven actinomycete strains were isolated from fifty soil
samples collected from the Taif City, Kingdom of Saudi
Arabia. Only one actinomycete culture T-4 was found exhib-

ited to produce wide spectrum of antimicrobial activities
(Gram-positive and Gram-negative bacteria and unicellular
and filamentous fungi) (Table 1).

http://www.ncbi.nlm.nih.gov/blst


Plate 1 Scanning electron micrograph of the actinomycete

isolate T-4 growing on starch–nitrate agar medium showing spore

chain spiral shape and spore surfaces warty (25,000·).
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3.2. Identification of the actinomycete isolate: morphological
characteristics

The vegetative mycelia grew abundantly on both synthetic
and complex media. The aerial mycelia grew abundantly
on starch–nitrate agar medium and oatmeal agar medium
(ISP-3). The spore chains were spiral, and had a warty sur-

face (Plate 1). Neither both sclerotic granules and sporangia
nor flagellated spores were observed.
3.3. Cell wall hydrolysate

The cell wall hydrolysate contains LL-diaminopimelic acid

(LL-DAP) and sugar pattern not detected.

3.4. Physiological and biochemical characteristics

The actinomycete isolate T-4 could hydrolyze starch, pro-
tein, and cellulose, whereas lipid, pectin, lecithin and cata-
lase are negative. Melanin pigment is positive, degradation

of xanthine, esculine, production of H2S, nitrate reduction,
decomposition of urea and utilization of citrate and KCN
are positive. The isolate under study utilizes D-xylose, D-

mannose, D-glucose, D-fructose, D-galactose, mannitol,
meso-inositol, sucrose, rhamnose, L-arabinose, raffinose,
starch and trehalose, but do not utilize lactose, maltose,

and ribose. Good growth on L-glycine, L-asparagines, L-leu-
cine L-histidine, L-phenyl alanine and L-lysine. No growth on
L-valine, and L-methionine. On the other hand, the isolate T-

4 decreased at high NaCl concentration above (5% w/v).
The growth is not inhibited in the presence of phenol and
45 �C. The actinomycete isolate T-4 is not sensitive to Ampi-
cillin (25 lg/ml), Nalidixic acid (30 lg/ml), Cefoperazone

(75 lg/ml), and Fusidic acid (10 lg/ml), Gentamicin (10 lg/
ml) and Kanamycin (30 lg/ml) (Table 2).



Table 2 The morphological, physiological and biochemical characteristics of the actinomycete isolate T-4.

Characteristic Result Characteristic Result

Morphological characteristics Mannitol ++

Spore chains Spiral L-Arabinose +

Spore mass Gray meso-Insitol ++

Spore surface Warty Lactose �
Color of substrate mycelium Light brown–deep brown Maltose �
Diffusible pigment Yellowish brown Trehalose ++

Motility Non-motile D-Ribose �
Cell wall hydrolysate D-Fructose ++

Diaminopimelic acid (DAP) LL-DAP Utilization of amino acids

Sugar pattern Not detected L-Glycine +

Physiological and biochemical properties L-Leucine +

Hydrolysis of L-Histidine +

Starch + L-Phenylalanine +

Protein + L-Asparagine +

Lipid � L-Methionine �
Pectin and lecithin � L-Lysine +

Cellulose + L-Valine �
Catalase test � Growth with (% w/v)

Production of melanin pigment on Sodium azide (0.01) �
Peptone yeast- extract iron agar + Phenol (0.1) +

Tyrosine agar medium + Thallous acetate (0.001) �
Tryptone – yeast extract broth � Growth at different temperatures (�C)
Degradation of 10 �
Xanthin + 30–45 ++

Esculin + 50 ±

H2S Production + 55 �
Nitrate reduction + Growth at different pH values

Citrate utilization + 6–8 +

Urea test + 9 �
KCN test + Growth at different concentration of NaCl (%)

Utilization of carbon sources 1–5 +

D-Xylose + 7 �
D-Mannose + Resistance to

D-Glucose +++ Ampicillin (25 lg/ml) and +

D-Galactose + Nalidixic acid (30 lg/ml) +

Sucrose ++ Cefoperazone (75 lg/ml) +

L-Rhamnose ++ Gentamicin (10 lg/ml) +

Raffinose ++ Kanamycin (30 lg/ml) +

Starch +++ Fusidic acid (10 lg/ml) +

+ = positive , �= negative , ± = doubtful results, , ++ =moderate growth and +++ = good growth.
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3.5. Color and culture characteristics

The isolate T-4 shows that the aerial mycelium is light gray; sub-

strate mycelium is light brown, and the diffusible pigment is
moderate yellowish brown or not produced diffusible (Table 3).
3.6. Taxonomy of actinomycete isolate, T-4

This was performed basically according to the recommended
International Key’s viz. Buchanan and Gibbons (1974) and

Hensyl (1994) and numerical taxonomy of Streptomyces spe-
cies program. On the basis of the previously collected data
and in view of the comparative study of the recorded proper-

ties of T-4 in relation to the most closest reference strain,
viz. Streptomyces torulosus, it could be stated that actinomy-
cetes isolate, T-4 is suggestive of being likely belonging to

Streptomyces torulosus, T-4 (Table 4).
3.6.1. Amplification of the 16S rDNA gene
The 16S rDNA gene was amplified by polymerase chain reac-
tion (PCR) using the universal primers. The primers that was

used to 16S rDNA sequencing were 16F357 of the sequence
strepF; 50-ACGTGTGCAGCCCAAGACA-30 and strpR; 50-
ACAAGCCCTGGAAACGGGGT-30, the product of the

PCR was analyzed on 1.5% ethidium bromide gel.

3.6.2. Molecular phylogeny of the selected isolate
The 16S rDNA sequence of the local isolatewas compared to the
sequences of Streptomyces spp. In order to determine the relat-
edness of the local isolate to theseStreptomyces strains. The phy-

logenetic tree (as displayed by the Tree View program) revealed
that the locally isolated strain is closely related to Streptomyces
sp., rather related toStreptomyces sp., rather than toStreptomy-
ces torulosus (Fig. 1). Multiple sequence alignment was con-

ducted by the sequences of the 16S rDNA gene of
Streptomyces torulosus. Computer assisted DNA searches



Table 3 Culture characteristics of the actinomycete isolate T-4.

Medium Growth Aerial mycelium Substrate

mycelium

Diffusible pigments

1. Starch–nitrate agar medium Good L.gray264 – light

gray

57-l.br – light

brown

77-m.ybr – moderate

yellowish brown

2. Tryptone yeast extract broth

(ISP-1)

No

growth

– – –

3. Yeast extract malt extract agar

medium (ISP-2)

No

growth

– – –

4. Oatmeal agar medium (ISP-3) Good L.gray264 – light

gray

57-l.br – light

brown

–

5. Glycero asparagine agar

medium (ISP-4)

Poor L.gray264 – light

gray

57-l.br – light

brown

–

6. Inorganic salts starch agar

medium (ISP-5)

Moderate L.gray264 – light

gray

86-l. yellow – light yellow

–

7. Peptone yeast extract–iron

agar medium (ISP-6)

Moderate L.gray264 – light

gray

57-l.br – light brown

59-d.br – deep brown

8. Tyrosine agar medium (ISP-7) Moderate L.gray264 – light

gray

57-l.br – light brown

59-d.br – deep brown

The color of the organism under investigation was consulted with the ISCC-NBS color – name charts illustrated with centroid color.

Table 4 A comparative study of the characteristic properties

of T-4 in relation to reference strain, Streptomyces torulosus

(Williams et al., 1989, p. 2448 and Table 29-12).

Characteristics T-4 Streptomyces

torulosus

Morphological characteristics

Spore mass Gray Gray

Reverse color Light yellow/light brown Light yellow

Spore chain Spiral Spiral

Spore surface Warty Warty and

spiny

Motility Non-motile Non-motile

Cell wall hydrolysate

Diaminopimelic acid (DAP) LL-DAP LL-DAP

Sugar pattern Not detected Not detected

Melanin pigment + +

Utilization of carbon sources

L-Arabinose + +

D-Fructose + +

D-Galactose + +

D-Glucose + +

Meso-Inositol + +

D-Mannitol + +

Raffinose + +

Sucrose + ND

D-Xylose + +

ND= no data.
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against bacterial database similarly revealed that the 16S rDNA
sequence was 98% identical Streptomyces torulosus (Fig. 1).

3.7. Factors effecting on the biosynthesis of the antimicrobial

agent

The maximum inhibition zones of produced antibiotic
against tested microorganisms reached up to 30.0, 28.0,
27.0, 25.0 and 23.0 in case of A. niger, IMI 31276; Staph-
ylococcus aureus, NCTC 7447, Bacillus subtilis, NCTC
1040, C. albicans, IMRU 3669 and Klepseilla pneumonia,
NCIMB, 9111, respectively, at an inoculum size of four

(disks per 100 ml media). The level of antibiotic yield in-
creased gradually with increasing the incubation period up
to the end of 5 days, after these maximum values 30.0,

28.0, 27.0, 25.0 and 23.0 in case of A. niger, IMI 31276;
Staphylococcus aureus, NCTC 7447; B. subtilis, NCTC
1040, C. albicans IMRU 3669 and K. pneumonia, NCIMB

9111, respectively. The optimum temperature capable of pro-
moting antimicrobial agents biosynthesis was at 35oC,
whereas, the diameter of inhibition zone resulted from anti-
microbial agent productivity reached up to 31.0, 29.0, 28.0,

25.5 and 24.0 in case of A. niger, IMI 31276; Staphylococ-
cus aureus, NCTC 7447; B. subtilis, NCTC 1040; C. albicans,
IMRU 3669 and K. pneumonia, NCIMB 9111, respectively.

The optimum initial pH value capable of promoting antimi-
crobial agent was found to be at the value of 7.0 since the
diameter of inhibition zone resulted from antimicrobial

agents productivity reached up to 31.0, 29.0, 28.0, 25.5
and 24.0 in case of A. niger, IMI 31276; Staphylococcus
aureus, NCTC 7447; B. subtilis, NCTC 1040; C. albicans,

IMRU 3669 and K. pneumonia, NCIMB 9111, respectively.
The effect of the used carbon sources in the production of
antimicrobial agent could be arranged in the following
descending manner; for Streptomyces torulosus, KH-4, glu-

cose > starch > mannitol > sucrose >
fructose > Arabinose > D-mannose > D-galactose > xylose
> raffinose > Rhamnose.

3.8. Fermentation, extraction and purification

The fermentation process was carried out for five days at
35 �C. After incubation period, the filtration was conducted
followed by centrifugation at 4000 rpm for 15 min. The entire



Figure 1 The phylogenetic position of the local Streptomyces sp.

strain among neighboring species. The phylogenetic tree was based

on the pairwise comparisons of 16S rDNA sequences.

Figure 3 Ultraviolet absorbance of antimicrobial agent pro-

duced by Streptomyces torulosus, T-4.
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culture broth (20 l) was centrifuged (4000 rpm, 15 min) to sep-
arate the mycelium and the supernatant. The supernatant was

extracted with n-butanol (1:1, v/v) and the organic layer was
evaporated to give an oily material. The oily material was then
dissolved in 15% aqueous methanol and defatted by partition-
ing with petroleum ether (b.p. 60–80 �C) to give a solid extract.

Its color is yellowish. Separation of antimicrobial agent into
individual components was carried out by thin-layer chroma-
tography using a solvent system composed of chloroform

and methanol (24:1, v/v). Only one band at Rf = 0.55 showed
antimicrobial activity. The purification process through col-
umn chromatography packed with silica gel revealed that the
Figure 2 I.R. spectrum of antimicrobial agen
most active fractions against the tested organisms ranged be-
tween 14 and 23.

3.9. Physico-chemical characteristics

The purified antimicrobial agent produced by Streptomyces

torulosus, T-4 produces characteristic odor, their melting
points are 235 �C. The compound is freely soluble in chloro-
form, ethyl acetate, n-butanol, acetone, ethyl alcohol, metha-
nol and 10% isopropyl alcohol, but insoluble in petroleum

ether, hexan and benzene.

3.10. Elemental analysis

The elemental analytical data of the antimicrobial agent pro-
duced by Streptomyces torulosus, T-4 showed the following:
t produced by Streptomyces torulosus, T-4.



Figure 4 Mass spectrum of antimicrobial agent produced by Streptomyces torulosus, T-4.

Table 5 A comparative study of the characteristic properties

of the antimicrobial agent produced by Streptomyces torulosus,

T-4 in relation to reference antibiotic (tunicamycin).

Character purified

antimicrobial

agent

Tunicamycin

1. Melting point 235 �C 234–235 �C
2. Molecular

weight

865 865.4

Chemical analysis

C 53.30 53.31

H 6.87 6.86

N 6.61 6.61

O 29.51 29.51

S 0.0 0.0

3. Ultraviolet 260 205 and 260

4. Formula C38H62N4O16 C38H62N4O16

5. Active against Active against

Gram-positive

and Gram-

negative

bacteria and

unicellular and

filamentous

fungi

Active against

Gram-positive

and Gram-

negative

bacteria and

unicellular and

filamentous

fungi
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C= 53.30; H = 6.87; N = 6.61; O = 29.51 and S = 0.0. This
analysis indicates a suggested empirical formula of
C38H62N4O16.

3.11. Spectroscopic characteristics

The spectroscopic analysis of the purified of antimicrobial

compound produced by Streptomyces torulosus, T-4, the infra-
red (IR) spectrum showed characteristic band corresponding
to 26 peaks 551.9, 669.2, 770.1, 847.1, 910.8, 956.3, 980.2,

1039.2, 1091.4, 1110.9, 1204.8, 1254.1, 1264.1, 1380.2, 1461.7,
1547.7, 1666.2, 1708.4, 2333.8, 2306.0, 2872.5, 2954.2, 3280.8,
3341.8, 3668.9 and 3731.5 (Fig. 2). The ultraviolet (UV)
absorption spectrum is recorded a maximum absorption peak

at 260 nm (Fig. 3). The Mass spectrum revealed that the
molecular weight is 865 (Fig. 4).

3.12. Biological activities of the antimicrobial agent

Data of the antimicrobial agent spectrum indicated that the

agent is active against Gram-positive and Gram-negative bac-
terial and unicellular and filamentous fungi (Table 5).

3.13. Identification of the antimicrobial agent

On the basis of the recommended keys for the identification of
antibiotics and in view of the comparative study of the re-

corded properties of the antimicrobial agent, it could be stated
that the antimicrobial compound is suggestive of being belong-
ing to tunicamycin antibiotic (Umezawa, 1977; Berdy, 1974,

1980a,b,c; Tsvetanova et al., 2002) (Table 6).

4. Discussion

The increase in the frequency of multi-resistant pathogenic
bacteria has created an urgent demand in the pharmaceutical

industry for more rational approaches and strategies to the
screening of new antibiotics with a broad spectrum of activity,
which resist the inactivation processes exploited by the micro-
bial enzymes (Motta et al., 2004). Ninety-seven actinomycete

strains were isolated from fifty soil samples collected from
the Taif City, Kingdom of Saudi Arabia. Only one actinomy-
cete culture T-4 was found exhibited to produce wide spectrum

antimicrobial activities. Identification process has been carried
out according to (Hensyl, 1994; Numerical Taxonomy Pro-
gram, 1989). For the purpose of identification of actinomycete

isolate, the morphological characteristics and microscopic
examination emphasized that the spore chain is spiral. Spore
mass is light gray; while spore surface is warty, substrate myce-

lium is light yellowish brown and no diffusible pigment was
produced on ISP-media. The results of physiological, biochem-
ical characteristics and cell wall hydrolysate of actinomycetes
isolate, exhibited that the cell wall containing LL-diaminopim-



Table 6 Antimicrobial spectrum of the antimicrobial agent(s)

by adding paper disk diffusion method (Kavanagh, 1972).

Test organisms MIC (lg/ml)

concentration of

antimicrobial

agent produced

by Streptomyces

torulosus, T-4

A. Bacteria

a. Gram-positive cocci

Staphylococcus aureus,

NCTC 7447

52.7

Micrococcus luteus,

ATCC 9341

52.7

b. Gram-positive bacilli

Bacillus subtilis,

NCTC 10400

73.78

Bacillus pumilus,

NCTC 8214

73.78

c. Gram-negative bacteria

Escherichia coli,

NCTC 10416

73.78

Klebsiella pneumonia,

NCIMB 9111

100 <

Pseudomonas

aeruginosa, ATCC 10145

100 <

B. Fungi

a. Unicellular fungi

Candida albicans,

IMRU 3669

73.78

Saccharomyces

cervisiae ATCC 9763

46.9

b. Filamentous fungi

Aspergillus niger, IMI

31276

15.73

Aspergillus fumigatus,

ATCC 16424

31.25

Aspergillus flavus, IMI

111023

22.32

Fusarium oxyspoum 46.9

Rhizoctonia solani 52.7

Alternaria alternata 46.9

Botrytis fabae 46.9

Penicillium

chrysogenium

52.7
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elic acid (DAP) and sugar pattern of cell wall hydrolysate
could not be detected. These results emphasized that the acti-
nomycetes isolate is related to a group of Streptomyces. In
view of all the previously recorded data, the identification of

actinomycete isolate T-4 was suggestive of being belonging
to Streptomyces torulosus, T-4. The resulted sequence was
aligned with available almost complete sequence of type of

strains of family streptomycetaeae. The phylogenetic tree (dia-
gram) revealed that the local isolate is closely related to Strep-
tomyces sp rather than to Streptomyces torulosus by a

similarity matrix is 98%.
Maximum antimicrobial activity biosynthesis could be re-

corded that a different inoculum sizes for four disks;
incubation period for five days (Adinarayana et al., 2002);

pH 7.0 (Atta, 2010); temperature 35 �C (Kunnari et al., 1997;
Atta, 1999); glucose best carbon source (Hoshino et al.,
2004); KNO3 best nitrogen source (Hosokawa et al., 1996;

Khalifa, 2008; Atta et al., 2011).
The active metabolites were extracted by n-Butanol at pH

7.0 (Atta, 2010; Atta et al. 2011). The organic phase was col-
lected and evaporated under reduced pressure using a rotary

evaporator. The extract was concentrated and treated with
petroleum ether (b.p. 40–60 �C) for precipitation process
where only one fraction was obtained in the form of yellowish

ppt. and then tested for their antimicrobial activity. Separation
of antibiotic into individual components has been tried by
thin-layer chromatography using a solvent system composed

of chloroform and methanol (24:1, v/v) as developing solvent
(Zhang et al., 2007; Atta et al., 2009). The band with an Rf va-
lue at 0.55 which indicated the presence of one compound

(Atta, 2010). For the purpose of purification process, the anti-
biotics were allowed to pass through a column chromatogra-
phy packed with silica gel and eluting solvent was composed
of chloroform and methanol (10:2 v/v), fifty fractions were col-

lected and tested for their activities. The most active fractions
against the tested organisms ranged between 14 and 23. Simi-
larly, many workers used a column chromatography packed

with silica gel and an eluting solvent composed of various ra-
tios of chloroform and methanol (Criswell et al., 2006; Sekig-
uchi et al., 2007).

The physico-chemical characteristics of the purified antibi-
otic revealed that, melting point at 235 �C. The compound is
freely soluble in chloroform, ethyl acetate, n-butanol, acetone,
ethyl alcohol, methanol and 10% isopropyl alcohol, but insol-

uble in petroleum ether, hexan and benzene; similar results
were recorded by Mellouli et al. (2003), El-Tayeb et al.
(2004) and Atta (2010).

A study of the elemental analysis of the antibiotic showed
the following C = 53.30; H = 6.87; N = 6.61; O = 29.51
and S = 0.0 lead to an empirical formula of C38H62N4O16.

The spectroscopic characteristics of antibiotic revealed the
presence of the maximum absorption peak in UV at 260 nm,
infrared absorption spectrum showed characteristic band cor-

responding to 26 peaks 551.9, 669.2, 770.1, 847.1, 910.8, 956.3,
980.2, 1039.2, 1091.4, 1110.9, 1204.8, 1254.1, 1264.1, 1380.2,
1461.7, 1547.7, 1666.2, 1708.4, 2333.8, 2306.0, 2872.5, 2954.2,
3280.8, 3341.8, 3668.9 and 3731.5. Mass spectrum showed that

the molecular weight is 865 (Tsvetanova et al., 2002). The MIC
of antibiotic under study exhibited fairly active against both
Gram-positive and Gram-negative bacteria and unicellular

and filamentous fungi. The MIC of antibiotic was determined
and the results showed that the minimum inhibitory concentra-
tion (MIC) of the antibiotic produced by Streptomyces torulo-

sus, T-4 against Staphylococcus aureus, NCTC 7447 was
52.7 lg/ml, Micrococcus lutea, ATCC 9341 was 52.7 lg/ml,
and B. subtilis, NCTC 10400 was 73.78 lg/ml, B. pumilus,

NCTC 8214 was 73.78 lg/ml, K. pneumonia, NCIMB 9111,
was >100 lg/ml, E. coli, NCTC 10416 was 73.78 lg/ml, and
Pseudomonas aeruginosa, ATCC 10145 was >100 lg/ml, for
A. flavus, IMI 111023 was 31.25 lg/ml and Saccharomyces

cerevisiae, ATCC 9763 was 46.9 lg/ml, C. albicans, IMRU
3669 was 73.78 lg/ml, A. niger, IMI 31276 was 15.73 lg/ml,
A. fumigatus, ATCC 16424 was 31.25 lg/ml, A. flavus, IMI

111023 was 22.32 lg/ml, F. oxysporum was 46.9 lg/ml, R.
solani was 52.7 lg/ml, A. alternata was 46.9 lg/ml, B. fabae
was 46.9 lg/ml, Penicillium chrysogenium was 52.7 lg/ml. Sim-

ilar investigations and results were attained by Imnagaki et al.
(1998), Sekiguchi et al. (2007) and Atta et al. (2009). Identifi-



Biochemical studies on antibiotic production from Streptomyces 21
cation of antibiotic according to recommended international

keys indicated that the antibiotic is suggestive of being belong-
ing to tunicamycin antibiotic (Umezawa, 1977; Berdy, 1974,
1980a,b,c; Tsvetanova et al., 2002).
5. Conclusion

The present study shows the present data focusing on obtain-

ing microbial local isolates which have the ability to produce
antimicrobial agent against pathogenic microorganisms
(Gram-positive and Gram-negative bacteria and unicellular

and filamentous fungi).
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