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Abstract

Expert knowledge consists of statements Sj (facts and rules). The facts and rules are often only true with some probability. For
example, if we are interested in oil, we should look at seismic data. If in 90% of the cases, the seismic data were indeed helpful in
locating oil, then we can say that if we are interested in oil, then with probability 90% it is helpful to look at the seismic data. In
more formal terms, we can say that the implication “if oil then seismic” holds with probability 90%. Another example: a bank A
trusts a client B, so if we trust the bank A, we should trust B too; if statistically this trust was justified in 99% of the cases, we can
conclude that the corresponding implication holds with probability 99%.

If a query Q is deducible from facts and rules, what is the resulting probability p(Q) in Q? We can describe the truth of Q as a
propositional formula F in terms of Sj , i.e., as a combination of statements Sj linked by operators like &, ∨, and ¬; computing
p(Q) exactly is NP-hard, so heuristics are needed.

Traditionally, expert systems use technique similar to straightforward interval computations: we parse F and replace each com-
putation step with corresponding probability operation. Problem: at each step, we ignore the dependence between the intermediate
results Fj ; hence intervals are too wide. Example: the estimate for P(A∨¬A) is not 1. Solution: similar to affine arithmetic, besides
P(Fj ), we also compute P(Fj &Fi) (or P(Fj1 & · · ·&Fjd

)), and on each step, use all combinations of l such probabilities to get
new estimates. Results: e.g., P(A ∨ ¬A) is estimated as 1.
© 2005 Elsevier B.V. All rights reserved.
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1. Formulation of the problem

Expert knowledge usually consists of statements Sj : facts and rules. The main objective is, given a query Q, to check
whether Q follows from the expert knowledge. In this paper, we will use the standard Prolog-type notations, in which a
statement that a is true is described as a←, and a rule “if a1, a2, . . ., and am are true then b must be true” is described
as b← a1, a2, . . . , am.
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For example, in the knowledge base

S1 : a← b, S2 : b←, S3 : a← c, S4 : c← ,

S1 is a rule “if b then a”, S3 is a rule “if c then a”, S2 is a fact (b is true), and S4 is a fact (c is true). If we ask a query

Q
def= “ a?” , then the answer is “yes”: since we know that b is true, and that b implies a, we can conclude that a is true.

In other words, Q follows from S1 and S2. Prolog-type inference engines are tools that provide such inference; see,
e.g., [10].

The problem with this approach is that the experts’ facts and rules are often only true with some probability. If a
query Q is deducible from facts and rules, what is the resulting probability p(Q) that Q is actually true? For example,
in a geophysical situation, we may have the following two rules: to find oil, we must look for certain subterranean
structures; to find these structures, we must analyze gravity data. If these rules were absolutely true, then we would be
able to conclude that to find oil, we must analyze gravity data. In reality, we know that in search for oil, looking for
specific subterranean structures is only helpful in 80% of the cases, so the first rule is true with probability 0.8. We also
know that the gravity data can detect only 90% of such structures, so the second rule is only true with probability 0.9.
What is the resulting probability that gravity data will help in a specific search for oil?

Let us describe this problem in more precise terms. We can usually describe deducibility of Q as a propositional
formula F in terms of Sj , i.e., as a combination of statements linked by operators like “and” (&), “or” (∨), and “not”
(¬). For example, for the above knowledge base, for Q to be true, either both S1 and S2 must be true or both S3 and S4
must be true. In this case, F = (S1&S2)∨ (S3&S4). The general algorithm for describing such a propositional formula
is given in [7].

As a result, we arrive at the following problem:

• we have a propositional combination F of known statements Sj ;
• we know the probabilities p(Sj ) of different statements;
• we must determine the probability p(F).

Since the events Sj may be statistically dependent, we may get different values for p(F) depending on whether the
values are independent or, say, positively correlated. So, to be more precise:

• we must determine the interval p(F ) of possible values of p(F).

How is this problem solved now?

2. Traditional approach

It is known that, in general, the problem of finding the exact bounds for p(F) is NP-hard; see, e.g., [10]. This problem
is NP-hard even if all the probabilities p(Sj ) are equal to 1, because it is equivalent to the propositional satisfiability
problem, a known NP-hard problem.

Traditionally, expert systems use technique similar to straightforward interval computations [6]. Namely, for simple
formulas we know the corresponding probability bounds [11,12]: if we know the bounds [a, a] for p(A) and [b, b] for
p(B), then:

• p(¬A) is in the interval [1− a, 1− a];
• p(A&B) is in the interval [max(a + b − 1, 0), min(a, b)];
• p(A ∨ B) is in the interval [max(a, b), min(a + b, 1)].

In the general case, we parse F and replace each computation step with the corresponding probability operation.
For example, let F = (A&B)∨ (A&¬B) and p(A)=p(B)=0.6. The compiler would start with F1=A and F2=B,

then it would compute F3 = ¬B, F4 = F1&F2, F5 = F1&F3, and finally F = F4 ∨ F5. Thus, according to the above
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procedure, we first find the bounds for p(F3)=p(¬B), then for p(F4)=p(A&B) and p(F5)=p(A&¬B), and finally,
the bounds for p(F). As a result, we get p(¬B)= 1− 0.6= 0.4,

p(A&B)= [max(0.6+ 0.6− 1, 0), min(0.6, 0.6)] = [0.2, 0.6],
p(A&¬B)= [max(0.6+ 0.4− 1, 0), min(0.6, 0.4)] = [0, 0.4],
p(F )= [max(0, 0.2), min(0.4+ 0.6, 1)] = [0.2, 1.0].

What is the actual range of p(F)? In this problem, F is equivalent to A, so p(F) = 0.6. Thus, similarly to interval
computations, we can see that the resulting interval contains excess width.

The second example is to estimate p(A ∨ ¬A) for p(A) = 0.6. The desired answer is, of course, p(A ∨ ¬A) = 1.
However, when parsing A ∨ ¬A, we get F1 = A, F2 = ¬A, and F = F1 ∨ F2. So, in the traditional approach, we
estimate p(F1)= 0.6, p(F2)= 1− p(F1)= 1− 0.6= 0.4, and

p(F1 ∨ F2)= [max(0.4, 0.6), min(0.4+ 0.6, 1)] = [0.6, 1],
excess width again.

3. How we can improve the interval estimates: idea

We have just seen, on two examples, that the traditional approach leads to excess width. In order to see how we
can improve this approach, let us trace where the excess width appears in the estimation of p(A ∨ ¬A). We know
p(A)= 0.6; so, since F1 = A, we know the exact value of p(F1): p(F1)= [0.6, 0.6].

Next, in the traditional approach, we use the known interval p(F1) to estimate the interval p(F2) for F2=¬F1. Here,
p(F2)= 1− [0.6, 0.6] = [0.4, 0.4]. This is also the exact value of the corresponding probability.

Finally, in the traditional approach, we use the known bounds p(F1)= [0.6, 0.6] and p(F2)= [0.4, 0.4] to estimate
the bound for F = F1 ∨ F2. At this stage, we do get excess width. The reason for this excess width is that we use a
general formula for p(A∨B), the formula that only takes into account the intervals p(F1) and p(F2) and that does not
take into account that in this particular case, there is a special relation between the events F1 and F2—these events are
incompatible.

In order to take this missing information into account, it is desirable, once we come to a new intermediate result Fj ,
to not only estimate the interval p(Fj ), but to also estimate intervals p(Fj &Fk), p(Fj ∨ Fk) of possible values of the
probabilities of different propositional combinations of Fj and the previous intermediate results Fk .

Next, when we turn to computing similar probabilities involving the next intermediate result Fj , we take into
account not only the known bounds p(Fk) for k < j , but also the known bounds on the probabilities of propositional
combinations p(Fk&Fl), p(Fk ∨ Fl), etc., for different pairs k, l < j .

4. Our inspiration: affine and Taylor arithmetic techniques

In interval computations, one way to decrease the excess width is to use affine or Taylor arithmetic; see, e.g., [3,4,8].
The main reason for excess width is that when we apply operations from interval arithmetic step by step, we only
take into account the intervals of possible values of the previous result, and we ignore the possible relation between
these results. For example, when we use straightforward interval computations to estimate the range of the function
y = x1 · (1 − x1) on the interval [0, 1], then we parse the function into r1 := x1, r2 := 1 − r1, y := r1 · r2, and
replace each operation with real numbers by the corresponding operation from interval arithmetic. As a result, we get
r1 := [0, 1]; r2 := 1 − [0, 1] = [0, 1], and y := [0, 1] · [0, 1] = [0, 1]—while the exact range is [0, 0.25]. The main
reason for the excess width is that when we estimated the range of y = r1 · r2, we took into account the ranges for r1
and r2, but not the fact that these variables are actually strongly related: in this particular case, r2 = 1− r1.

To take this relation into account, in affine arithmetic, for each intermediate result yj , we not only keep the interval

yj of its possible values, we also keep the relation between this value yj and the values �xi
def= xi − x̃i (where x̃i is a

midpoint of the input interval xi)—in the form of a linear dependence yj = a0j + a1j · �x1 + · · · + anj · �xn + �j ,
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where aij are exactly known coefficients and for the remainder term �j , we know the interval bounds [−�j , �j ]. We
start with the original inputs xi presented in this form, i.e., as

xi = x̃i + 0 · �x1 + · · · + 0 · �xi−1 + (−1) · �xi + 0 · �xi+1 + · · · .
Then, on each intermediate step, when we use an arithmetic operations � to compute the next intermediate result yj

as yk�yl , where k, l < j , we use known linear representations for yk and yl to find a similar representation for yk . For
example, if we know that

yk = a0k + a1k · �x1 + · · · + ank · �xn + �k

and

yl = a0l + a1l · �x1 + · · · + anl · �xn + �l ,

with �k ∈ [−�k, �k] and �l ∈ [−�l , �l], then for �=+, we get

yj = a0j + a1j · �x1 + · · · + anj · �xn + �j ,

with �j ∈ [−�j , �j ], where aij = aik + ail and �j = �k + �l . For multiplication �= ·, the corresponding formula
is more complex because the new bound �j must also include the bound for the new quadratic terms.

The coefficients aij describe the relation between the intermediate result yj and the input values x1, . . . , xn—and
thus, also between different intermediate results.

Our main idea is similar to affine arithmetic: for each intermediate result Fj , in addition to an interval of possible
values for p(Fj ), we also compute intervals of possible values for pairs: p(Fj &Fi), p(Fj ∨ Fi) for all previous
expressions Fi and for all possible propositional functions of two variables. These intervals describe the relation
between the intermediate results.

Affine arithmetic only takes linear dependencies into account; to account for more complex dependencies, we can
use, e.g., quadratic Taylor models, in which we also keep track of the quadratic terms in the dependence of yj on the
inputs x1, . . . , xn, i.e., of terms of the type ajkl · xk · xl . It is also possible to use cubic terms, etc.

Similarly, in our case, in addition to keeping track of the probabilities of propositional combinations of pairs Fj

and Fk , we can pick an order d �2, and also, on each step, estimate intervals for propositional combinations of k
intermediate results, such as p(Fj1 & · · ·&Fjd

). Similar to Taylor techniques, the higher the order d, the more we take
dependencies into account (so, in general, the more accurate the results), but the longer the computations (since we
must compute more terms).

5. How we can implement this idea

In order to implement the above idea, we must be able to use the previously known bounds to compute the new ones.
This can be done by using linear programming; see, e.g., [12]. Indeed, we can describe both known and estimated
probabilities as sums of probabilities of atomic statements F

�1
i1

& · · ·&F
�m
im

, where � ∈ {−,+}, F+ means F, and F−
means ¬F . Then, we use linear programming (LP) to get desired bounds on the unknown probability. There exist
efficient polynomial-time algorithms for solving LP problems, so these bounds can be computed efficiently.

Let us first illustrate the use of LP on the example when we already know the analytical solution: we know p(A)=
a= 0.6 and p(B)= b= 0.6 and we want to estimate p(A∨B). Here, we have two basic statement A and B, so both the
known probabilities p(A), p(B), and the desired probability p(A ∨ B) can be described in terms of the probabilities

of four possible atomic statements: p++
def= p(A&B), p+−

def= p(A&¬B), p−+
def= p(¬A&B), p−−

def= p(¬A&¬B).
These probabilities must be non-negative, and they must add up to 1.

Specifically, p(A)=p(A&B)+p(A&¬B), p(B)=p(A&¬B)+p(¬A&B), and p(A∨B)=p(A&B)+p(A&¬B)+
p(¬A&B). So, the known information about the four probabilities p++, . . . , can be described in terms of the following
constraints:

p++ + p+− = a; p++ + p−+ = b; p++ + p+− + p−+ + p−− = 1;

p++�0; p+−�0; p−+�0; p−−�0.
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To find the largest possible value p(A ∨ B) of the probability p(A ∨ B), we must thus maximize the expression
p++ + p+− + p−+ under the above constraints. Similarly, to find the smallest possible value p(A∨B) of p(A∨B),
we must thus minimize the expression p++ + p+− + p−+ under the above constraints.

In both cases, we must optimize an objective function which is a linear combination of the four unknowns p++, . . .,
under constraints, each of which is either a linear equality or linear inequality. So, both problems are LP problems.

It is known that, in general, the solution of an LP problem is attained at one of the vertices of the corresponding
set, i.e., when the largest possible number of inequalities becomes equalities. In this particular case, we have four
inequalities p.. �0 which can become equalities. One can easily check that p(A∨B) is the smallest when p−+=0, and
p(A∨B) is the largest when p−−=0. In both cases, we get the desired bounds max(a, b)=0.6 and min(a+b, 1)=1.

6. Examples

Let us show that by estimating the bounds for probabilities of pairs, we indeed get narrower intervals.
Let us first show this on the example of F =A∨¬A for p(A)=0.6, in which the parsing leads to F1=A, F2=¬A,

and F =F1 ∨F2. In the traditional approach, we estimated p(F1), p(F2), and then used these two intervals to estimate
the bounds for p(F1 ∨ F2).

In the new approach, we similarly start with p(F1)=[0.6, 0.6]. In the first step, we handle the intermediate statement
F2. In the traditional approach, we use the logical relation F2 = ¬F1 between the new intermediate result F2 and the
previous result F1 to estimate the range of possible values for p(F2). In the new approach, we use this logical relation
not only to estimate the bound for p(F2), but also to estimate the bounds for p(F1�F2) for different propositional
combinations F1�F2 of F1 and F2 (such as F1&F2, F1 ∨ F2, etc.). Because of this relation between Fi , we have
p(F1&F2) = 0, p(F1&¬F2) = 0.6, p(¬F1&F2) = 0.4, p(F1 ∨ F2) = 1, p(F1 ∨ ¬F2) = 0.6, p(¬F1 ∨ F2) = 0.4,

and p(¬F1 ∨ ¬F2)= 1.
According to the new approach, in the next step, when we estimate p(F) for F=F1∨F2, we take into account not only

the previously computed bounds on p(F1) and p(F2), but also the previously computed bounds on the propositional
combinations of F1 and F2. Since we already know, from the previous step, that p(F1 ∨ F2) = 1, we thus conclude
that p(F)= 1. As a result, we get the exact desired probability, with no excess width.

Comment. A general argument against expert systems and fuzzy logic (see, e.g., [9]) is that, e.g., p(A ∨ ¬A) is
estimated based only on the probabilities p(A) and p(¬A)—e.g., as max(p(A), p(¬A)), while the correct value of
p(A ∨ ¬A) is 1. Our solution: in addition to probabilities of individual intermediate statements, keep probabilities of
pairs, triples, etc.

For (A&B) ∨ (A&¬B), we have six intermediate statements Fj , so it is difficult to describe all corresponding
propositional combinations of pairs without making the paper too long. Let us show, however, that the resulting bound
is indeed narrower than the interval [0.2, 1]. Indeed, since F4 = F1&F2, on the corresponding step, we conclude that
p(¬F1&F4)= 0; this conclusion can be confirmed if we explicitly describe the corresponding LP problem. Similarly,
sinceF5 is defined asF1&F3, we conclude thatp(¬F1&F5)=0. So, when we estimate the probabilityp(F)=p(F4∨F5),
we can take into consideration not only bounds for p(F4) and p(F5) (as in the traditional approach), but also the values
p(F1)= 0.6, p(¬F1&F4)= 0, and p(¬F1&F5)= 0.

For the three variables F1, F4, and F5, we can form eight atomic probabilities p+++ = p(F1&F4&F5), p++− =
p(F1&F4&¬F5), etc. It is easy to see that, due to conditions p(¬F1&F4) = p−++ + p−+− = 0 (hence p−++ =
p−+− = 0) and p(¬F1&F5)=p−++ +p−+− = 0 (hence p−+− = 0), all the terms in the remaining the expression for
p(F4∨F5)=p++++p++−+p+−+ are also included in the expression for p(F1)=p++++p++−+p+−++p+−−=0.6,
hence p(F4 ∨ F5)�0.6.

This estimate is better than the traditional estimate in which we were only able to conclude that p(F4 ∨ F5)�1.
A detailed analysis shows (see, e.g., [1]) that if we only use probabilities for pairs of statements, we still get excess

width. However, for triples, we can already get the exact probability: indeed, each intermediate statement Fj is obtained
by applying a propositional operation (we will denote it by �) to two previous statements Fk and Fl (k, l < j ). In
this case, we get the constraint p(Fj &¬(Fk�Fl)) = 0 and p(¬Fj &(Fk�Fl)) = 0; these constraints are, in effect,
equivalent to stating that Fj is equivalent to Fk�Fl . Thus, LP under these constraints is equivalent to computing the
exact bounds on the desired probability p(Q).
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Similarly, for (A&B)∨ (A&C), the traditional method leads to excess width in comparison with A∨ (B&C); if we
keep probabilities of triples of statements, we get the exact interval for p((A&B)∨ (A&C))—i.e., we get distributivity.

7. Computational complexity of the new method and how to make it feasible

If we use pairs, then, on the jth stage of the new procedure, we know the bounds on the probabilities of the previous
intermediate statements F1, . . . , Fj−1, and on the probabilities of the propositional combinations Fk�Fl for all pairs
(k, l) for which k, l < j .

According to the above approach, to find such bounds, we must consider 2j−1 atomic statements F
�1
1 & · · ·&F

�j−1
j−1 .

At the last stage, we need to consider an LP problem with exponentially many (2n) variables; solving this problem
requires exponential time.

To reduce the computation time to a feasible amount, i.e., to the time which is polynomial in the length n of the
input formula F, we propose to do the following. In addition to the parameter d which describes whether we consider
only bounds on probabilities p(Fi) (when d = 1), or also bounds on pairs p(Fj�Fk) (when d = 2), or probabilities
on triples (when d = 3), we introduce another parameter l with the following meaning.

At the jth step, when we look for the bounds for p(Fj ), we have O(jd) constraints corresponding to propositional
combinations of groups of d previous statements Fk . Instead of considering all these constraints, we pick l of them, and
solve the problem of minimizing and maximizing the desired probabilities p(Fj ), p(Fj�Fk), etc., under the selected
l constraints. As a result, we get an interval that is guaranteed to contain the range for the desired probability.

We repeat this procedure for each subset of l constraints, and take the intersection of the resulting estimates. Let
us show that for every l, we get a polynomial-time algorithm. Indeed, in each estimation, we have a formula whose
probability we are estimating, and l formulas coming from l known constraints (i.e., l formulas for which we have
already computed the probability bounds on the previous stages). Each of the l+1 propositional combinations involves
�d statements Fk , so overall, they involve m�(l+1) ·d expressions Fk1 , . . . , Fkm . So, the corresponding LP problem
contains 2m variables—probabilities of atomic statements F

�1
i1

& · · ·&F
�m
im

.
What is the running time of this algorithm? A propositional function f (x1, . . . , xd) of d propositional variables can

be described as a function from the set {0, 1}d of 2d possible combinations xi to the set {0, 1} of possible truth values.
Thus, there are exactly 22d

such functions. For fixed d and l, this means that we have O(1) such functions.
In the jth step, we have j intermediate results F1, . . . , Fj . We have O(jd) possible combinations of �d such values,

so we have O(jd) probability bounds. To compute each of O(jd) new bounds, we consider all possible subsets of l
probabilities. There are O((jd)l)=O(jd·l ) such subsets. For each subset, for fixed d and l, the value m is bounded by a
constant: m=O(1). There are 2m=O(1) possible combinations, so each LP requires O(1) time. So, overall, on step j, we
need O(jd)·O(jd·l )�M ·jd·(l+1) steps for some constant M. Overall, we need �M(1d·(l+1)+· · ·+nd·(l+1)) steps, where
the number n of parsing steps is bounded by the length of the formula F. It is known that 1a+2a+· · ·+na=O(na+1),
so overall, this algorithm requires O(nd·(l+1)+1) steps. In other words, the running time grows polynomially with the
length of the formula F—so this algorithm is feasible.

It is worth mentioning that when d → ∞ and l → ∞, we get exact results; however, computation time grows
exponentially with d and l, so we cannot realistically use too large values d and l.

8. Case study: computer security

Up to now, we considered a general problem of handling interval-valued probabilistic uncertainty in expert systems.
In general, as we have mentioned, the problem of computing the exact interval of possible values of probability is
NP-hard, so we proposed heuristic algorithms which provide reasonable enclosures for this interval.

NP-hardness means that (unless P=NP), there is no hope of finding an efficient algorithm which would solve all
the problems from this class. However, for many practically useful subclasses, it is often possible to design efficient
algorithms. In this section, we describe a class of problems for which there is an efficient algorithm for handling
interval-valued uncertainty. This class of problems is related to computer security and trust in general.

In the traditional approach to trust, we either trust an agent or not. If we trust an agent, we allow this agent full
access to a particular task. For example, I trust my bank to handle my account; the bank (my agent) outsources money
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operations to another company (sub-agent), etc. The problem with this approach is that I may have only 99.9% trust
in bank, bank in its contractor, etc. As a result, for long chains, the probability of a security leak may increase beyond
any given threshold. To resolve this problem, we must keep track of trust probabilities.

Let us describe this idea in precise terms. We have a finite set A; its elements are called agents. For some pairs (a, b)

of agents, we know that an agent a has some degree of direct trust in an agent b. We will denote the set of all such pairs
by E. For each pair (a, b) ∈ E, we know the probability p0(a, b) with which a directly trusts b. We can estimate this
probability, e.g., as a frequency in which a similar trust was justified.

Our objective is to describe, for given two agents f and s, the resulting probability pt (f, s) with which the agent f
should trust the agent s.

Let us show how this problem can be described in precise terms. The pair (A, E), where E ⊆ A×A, forms a graph
in which agents are nodes and possible trust pairs are edges. To each edge (a, b), we associate a value p0(a, b) ∈ [0, 1].

Some of the trusts may be misplaced: an agent a may trust an agent b with a certain probability, but b may be misusing
a’s trust. Let E′ ⊆ E denote the (unknown) set of pairs in which the trust is justified; we will call this set the actual
trust set.

We do not know for sure who is trustworthy and who is not, so at best, we can find some information about the
probabilities p(E′) of different trust sets E′. First, these probabilities must add up to 1:

∑
E′p(E′) = 1. Second, for

every pair (a, b) ∈ E, the probability that a directly trusts b, i.e., the probability that the edge (a, b) belongs to the
actual trust set E′, should be equal to p0(a, b):

∑
E′:(a,b)∈E′p(E′)= p0(a, b).

Once the probability distribution p(E′) is fixed, we can determine the probability pt (f, s) with which f should trust
s as the probability that in the actual trust set E′, there is a path leading from f to s. If we denote the existence of such

a path by f
E′→ s, then the desired probability pt (f, s) can be described as

∑
E′:f E′→ s

p(E′).
We may have different probability distributions p(E′) which are consistent with the data p0(a, b); for different

distributions, we may have different values of the trust pt (f, s). In security situations, it is desirable to find the
guaranteed level of trust, i.e., the smallest possible value of pt (f, s) over all possible probability distributions which
are consistent with the data p0(a, b). We will denote this smallest possible value by p

t
(f, s); in these terms, our

objective is to compute p
t
(f, s).

This problem can be viewed as a particular case of the general problem of dealing with probabilities in expert systems.
Indeed, here, for every agent a, we have a statement “a” meaning that f trusts a. We have a fact f → meaning that f
trusts himself. For each edge (a, b) ∈ E (meaning that a trusts b), we have a rule b← a (meaning that if f trusts a, he
should also trust b), which holds with probability p0(a, b). The query is “s?”—i.e., with what probability should we
trust s.

Let us show that in this particular problem, we can efficiently compute the desired probability. Namely, let us define

the length (“distrust”) of an edge as d0(a, b)
def= 1 − p0(a, b). We can naturally extend this definition to paths, i.e.,

sequences (a0, . . . , an) in which (ai, ai+1) ∈ E for all i. Namely, the length �(�) of a path �= (a0, . . . , an) is defined

as usual: �(�)
def=∑n−1

i=0 d0(ai, ai+1). The length of the shortest path from f to s is defined as follows:

dt (f, s)
def= min{�(�) | � is a path from f to s}.

Proposition. p
t
(f, s)=max(1− dt (f, s), 0).

So, we can use Dijkstra’s algorithm (see, e.g., [2]) to find the shortest path in a graph, and then compute p
t
(f, s).

Proof. Let us first prove that if the probability distribution p(E′) is consistent with the given information, then

dt (f, s)�dt (f, s), where dt (f, s)
def= 1− pt (f, s).

Indeed, let �0 = (a0, a1, . . . , an) be the shortest path from a0 = f to an = s; then, dt (f, s) = d0(a0, a1) + · · · +
d0(an−1, an).

If in the actual trust set E′, there is a path from each node ai to the next one ai+1, then, combining these nodes, we
will have a path from a0 = f to an = s.

Thus, if there is no path from f to s, this means that at least one of the connections (ai, ai+1) is not present in E′. Let
us denote, by Nt(f, s), the condition that there is no path in E′ from f to s, and by N0(ai, ai+1), the condition that in the
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actual trust set E′, there is no direct connection between ai and ai+1. In terms of these notations, the above statement
takes the following form:

Nt(f, s) ⊃ (N0(a0, a1) ∨ · · · ∨N0(an−1, an)).

Hence, dt (f, s) = p(Nt(f, s)�p(N0(a0, a1) ∨ · · · ∨ N0(an−1, an)). It is known that p(A ∨ B)�p(A) + p(B), and
that p(N0(ai, ai+1))= d0(ai, ai+1). So, dt (f, s)�d0(a0, a1)+ · · · + d0(an−1, an). Due to our choice of ai , we know
that the right-hand side of this inequality is equal to dt (f, s). Thus, indeed dt (f, s)�dt (f, s).

To complete the proof, we produce a distribution p(E′) for which pt (f, s)� max(1− dt (f, s), 0). To describe this
distribution, we start with a random variable � which is uniformly distributed on the interval [0, 1]. For each value

� ∈ [0, 1], we define the set E′(�) ⊆ E as follows. Let �(x)
def= x − 
x�. We then define E′(�) as the set of all edges

(a, b) ∈ E for which � /∈ �(I (a, b)), where I (a, b)
def=[dt (f, a), dt (f, a) + d0(a, b)]. As a result of this definition,

we get different sets E′ ⊆ E with different probabilities p(E′). Since �(I (a, b)) has width p0(a, b), the distribution
p(E′) is consistent with p0(a, b).

Induction proves (see [5] for details) that for every path starting at a0 = f , if all its edges (ai, ai+1) are in E(�),
then ��dt (a0, an). Hence,

pt (f, s)� max(1− dt (f, s), 0).

The statement is proven, so the above algorithm has been justified. �
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