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Abstract

We present a six-dimensional Higgsless Standard Modll avrealistic gauge sector. The model uses only the Standard
Model gauge grouUJ(2);, x U(1)y with the gauge bosons propagating in flat extra dimensions compactified on a rectangle.
The electroweak symmetry is tken by boundary conditions, andetftorrect splittig between the¥ and Z gauge boson
masses can be arranged by suitable choice of the compactification scales. The higher Kaluza—Klein excitations of the gauge
bosons decouple from the effective low-energy theory due to dominant brane kinetic terms. The model has the following two key
features compared to five-dimensional models. The dimensional couplings in the bulk Lagrangian, responsible for electroweak
symmetry breaking using mixed boundary citioahs, are of order the electroweak seaMloreover, with respect to “oblique”
corrections, the agreement with the precision electroweakrpaeas is improved compared to five-dimensional warped or flat
space models. We also argue that the calculability of Higgsless models can be ameliorated in more than five dimensions.

0 2004 Published by Elsevier B.@pen access under CC BY license.

1. Introduction

The Standard Model (SM) of electroweak interactififjsbased on the gauge symmetry gr&@iff2); x U(1)y,
provides a highly successful description of electroweak precision tests (EJRB]J.)One fundamental ingredient
of the SM is the Higgs mechanigj#], which accomplishes electroweak symmetry breaking (EWSB) and at high
energies unitarizes massiVé*™ andZ scattering through the presence of the scalar Higgs do[&jldtowever,
no fundamental scalar particle has been observed yet in Nature, and as long as there is no direct evidence for the
existence of the Higgs boson, the actual mechanism of EWSB remains a mystery. In case the Higgs boson will
also not be found at the Tevatron or the LHC, it will thenef be necessary to consider alternative ways to achieve
EWSB without a Higgs.
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Itis well known, that in extra dimesions gauge symmetries can alsdbeken by boundary conditions (BCs) on
a compact spadé]. Here, a geometric “Higgs” mechanism ensures tree-level unitarity of longitudinal gauge boson
scattering through a tower of Kaluza—Klein (KKj] excitations[8]. The SM in(TeV)~1-sized extra dimensions
with gauge symmetry breaking by BCs, in connection with the problem of breaking supersymmetry in string theory,
was first considered in Ref9]. In theories using only usual orbifold BG40] for gauge symmetry breaking,
however, it is generally difficult to reduce the rank of a gauge group, as it would be required for realistic EWSB.
Rank reduction, on the other hand, is easily achieved in the recently proposed new type of Higgsless models for
EWSB [11-15] which employ mixed (neither Dirichlet nor Neumann) BEShe mixed BCs, when consistent
with the variation of a gauge invariant action, correspond to a soft breaking of the gauge symmetry, since they can
be ultraviolet completed by a boundary Higgs field.

The original model for Higgsless EWSR1] is anSU(2);, x U(2)r x U(1)p_1 gauge theory compactified
on an interval0, 7 R] in five-dimensional (5D) flat space. At one end of the inter8al(2) » x U (1) . is broken
to U(1)y. At the other endSU(2); x SU(2)g is broken to the diagonal subgro®J(2) p, thereby leaving only
U (1) ¢ of electromagnetism unbroken in the effective four-dimensional (4D) theory. Although this model exhibited
some similarities with the SM, the parameter deviated from unity by 10% and the lowest KK excitations of
the W* and Z were too light ¢ 240 GeV) to be in agreement with experiment. These problems have later been
resolved by considering the setup in the truncatdda@m Sitter (AdS) space of the Randall-Sundrum m¢tié].

Here, the generators broken on the Planck bramebe associated via the AdS/CFT correspondg&jen the 4D
dual[19] theory with a global custodig®U(2) symmetry[20], while the electroweak symmetry has been broken
by the presence of the TeV brane aldi@]. As a consequence, in the strongly coupled 4D theory, violation
of custodial isospin remains (even after umibn of radiative corrections) only of order 1%, while the higher

KK resonances of the gauge bosons would decouple beldwleV [12,13] In this framework, it is possible to
generate realistic quark and lepton masses with viable couplingstand Z, when the fermions propagate in the
bulk [13,14] Based on the same gauge group, similar effects can be realized in 5D flafEplagéren 4D brane
kinetic termg21-23]dominate the contribution from the bulk. In fact, brane kinetic terms seem also to be required
in Higgsless warped space modgld], to evade disagreement with EWPT due to tree-level “oblique” corrections
[25-27]

In 5D Higgsless models, a parameter close to unity is achieved at the expense of enlarging the SM gauge
group by an additional gauge gro&p (2) g, which introduces a gauged custodial symmetry in the bulk. Inspired
by dimensional deconstructi§®8,29], one can consider tH&J(2);, x SU(2) g subgroup of the model as belonging
to a chain of 5D gauge theories with product group strucBr€)1 x SU(2)2 x - - - x UR)y D VU (2)L x U ()R,
which is broken down t&U(2) p by BCs (for a discussion of Higgsless EWSB in deconstruction see[84jj.

From the deconstruction point of view, such a productugr may be reduced to a single six-dimensional (6D)
parent gauge groufU(2),, while keeping essential features of the corresponding 5D theory. Hence, it should
be possible to obtain consistent 6D Higgsless models of EWSB, which are based only on the SM gauge group
V(@2), x UQ)y and allow thep parameter to be set equal to unityhélre is yet another advantage of going
beyond five dimensions. In more than five dimensions, the physical space can be reduced (e.g., by orbifold BCs)
to a domain smaller than the periodicity of the wavefunctions. As a resuls, tieandU parameter§25] would

become suppressed by higher powers of the loop expansion parameter of the theory, thereby potentially improving
the calculability of Higgsless models.

In this Letter, we consider a Higgsless model for EWSB in six dimensions, which is based only on the SM
gauge grouBJ(2). x U(1)y, where the gauge bosons propagate in the bulk. The model is formulated in flat
space with the two extra dimensions compactified on a rectangle and EWSB is achieved by imposing consistent
BCs. The higher KK resonances Bf* and Z decouple below- 1 TeV through the presence of a dominant 4D
brane induced gauge kinetic term. Thearameter is arbitrary and can be set exactly to one by an appropriate

1 For GUT breaking with mixed BCs see REE6].
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choice of the bulk gauge couplings and compactification scales. Unlike in the 5D theory, the mass scale of the
lightest gauge boson@ and Z is solely set by the dimensionful bulk couplings, which (upon compactification
via mixed BCs) are responsible for EWSB. We calculate the tree-level oblique corrections$p Theand U
parameters and find that they are in better agreement with data than in proposed 5D warped and flat Higgsless
models. Non-oblique corrections, however, can generally lead to a tension between the bottom quark mass and the
Z — bb coupling, which could be modified at the level of current experimental uncertainties. By considering the
scattering of a scalar propagatingsh/Z, and S1/(Z x 7)) extra dimensions, we estimate the raising of the
strong coupling scale, which could improve the calculability of Higgsless models formulated on these manifolds.
The Letter is organized as follows. In Sectdrwe introduce the 6D model on a rectangle and discuss the sym-
metry breaking by BCs. In Sectid@) we determine the wavefunctions in the presence of the brane terms, vacuum
polarizations and KK spectra of the gauge bosons. We compare the oblique corrections to EWPT in4Section
Non-oblique corrections of the SM couplings due to the generation of heavy fermion masses are then discussed
in Section5. Next, in Sectior, we estimate the strong coupling scale on different orbifold extra dimensions and
outline potential implications for an improved calculability of Higgsless models. Finally, in Settwe present
our summary and conclusions.

2. The mode

Let us consider a 608U(2); x U(1)y gauge theory in a flat space—time background, where the two extra
spatial dimensions are compactified on a rectaAdlee coordinates in the 6D space are written as= (X, Ym),
where the 6D Lorentz indices are denoted by capital Roman léifets), 1, 2, 3, 5, 6, while the usual 4D Lorentz
indices are symbolized by Greek letters= 0, 1, 2, 3, and the coordinates, (m = 1, 2) describe the fifth and
sixth dimensior? The physical space is thus defined by 61 < 7 Ry and 0< y» < 7 Rp, whereR; and R; are
the compactification radii of a toru&?, which is obtained by identifying the points of the two-dimensional plane
R? under the action®s : (y1, y2) — (y1+ 27 R1, y2) andTs : (y1, y2) = (y1, y2 + 21 R2). We denote th&U (2) ;.
andU (1)y gauge bosons in the bulk, respectively, A, (zy) (a = 1, 2, 3 is the gauge index) anBly; (zy). The
action of the gauge fields in our model is given by

TRy 7 R>

S:/d“x / dy1 / dy2 (Le+ 8(y1)8(y2)Lo), 1)
0 0

whereLg is a 6D bulk gauge kinetic term antp is a 4D brane gauge kinetic term localized at, y2) = (0, 0),
which read, respectively,
2 2
EGZ_%F/L\J/INFMNG —%BMNBMN, EOZ_T;FSVFMW_ ?J-,ZBMVBIW’ (2)

with field strengthsFé, , = dn AS, — an A%, + feb¢ AL A, (£ is the structure constant) amly = du By —
dn By . In EQ.(2), the quantitiesV/; and My have mass dimensiofl, while g andg’ are dimensionless. Since
the boundaries of the manifold break translational invariance and are “singled out” with respect to the points in
the interior of the rectangle, brane terms like can be produced by quantum loop effef@$,22] or arise from
classical singularities in the limit of vanishing brane thickn@s3.

Unlike in five dimensions (for a discussion of the- oo limit in generalized 5DR: gauges see, e.g., R§32]
and also Ref[11]), we cannot go to a unitary gauge where all fiekls; (@ = 1,2, 3) and Bs ¢ are identically

2 Chiral compactification on a square has recently been considered i{BREf.
3 For the metric we choose a signature, —, —, —, —, —).
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set to zero. Instead, there will remain after dimensional reduction one combination of physical scalar fields in the
spectrunf To make these scalars sufficiently heavier than the Lee—Quigg—Thacker boang@ eV, we can
assume, e.g., a seventh dimension compactifie@%g1, with compactification radiu®s < R, R». By setting
Age7=Bs67=0 (A9 and By are the seventh components of the gauge fields) on all boundaries of this manifold,

the associated scalars can acgudr compactification scaleR; 1 R 1~ 1-2 TeV, masses well above 2 TeV.
Therefore, at low energie§ 2—3 TeV, we have a model without alight scalars and will, in what follows, neglect
the heavy scalar degrees of freedom.

Since the Lagrangian in E(R) does not contain any explicit gauge symmetry breaking, we can obtain consistent
new BCs on the boundaries by requiring the variation of the action to be zero. Variation of the action2) Eq.
yields after partial integration

TRy TRy
85:/d4x / dy1 / dyz [ME (0y FOMH — foPeFPMIAS VS A% + MGy BM1 6B, |
y1=0  y>=0
7Ry
4 2 2 TR
+fd x f dy2[ M Fg, 8 A" + My Bs, 8B" ]| —,
y2=0
7TR1
4 2 2 TR
+fd x f dy1[ M7 F§,8A™" + My B, SB" ]| %,
y1=0
1 1
+ f d4x|:—2(8MFa’” — fUPCFPIVAS)SAS + ?aﬂswwu} =0, €)
8 8 (y1,y2)=(0,0)

where we have (as usual) assumed that the gauge fields and their derivatives go to zgre>fov. The bulk
terms in the first line in Eq(3), lead to the familiar bulk equations of motion. Moreover, since the minimization of
the action requires the boundary terms to vanish as well, we obtain from the second and third lin€SjraEset
of consistent BCs for the bulk fields.

We break the electroweak symme8yY(2), x U(1)y — U(1)o by imposing on two of the boundaries follow-
ing BCs:

atyy=mR1: AL=0, A2=0, (4a)
aty,=mRp: dy,(MZAS +M}B,)=0, A3 —B,=0. (4b)

The Dirichlet BCs in Eq(4a) breakSU(2);, — U (1), whereU (1), is theU (1) subgroup associated with the
third component of weak isospifs. The BCs in Eq(4b) breakU (1);; x U(1)y — U(1) g, leaving onlyU (1)
unbroken on the entire rectangle ($8g. 1). Note, in Eq(4b), that the first BC involving the derivative with respect
to y2 actually follows from the second B&Ai = § B, by minimization of the action. The gauge groupsl)
andU (1), x U(1)y remain unbroken at the boundarjas= 0 andy, = 0, respectively. Locally, at the fixed point
(y1, y2) = (0,0), U(2). x U(1)y is unbroken. We can restrict ourselves, for simplicity, to the solutions which are
relevant to EWSB, by imposing on the other two boundaries the following Dirichlet BCs:

aty1=0: AL%(zm) =A% (xy), (52)
atyy = 0: Ai(ZM) = Ai(xu)v BM(ZM) = B/L(XIL)’ (5b)

4 We thank H. Murayama and M. Serone for pointing out this fact.
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(0, 7R>) Ul), x U(L)y = U(1)g (rRy,mR2)
L =3
&
1 A (ya) =
B &~
" p(yQ) 1
=
A () =
—————— -
L, s
(0= 0) n (ﬂRh 0)

Fig. 1. Symmetry breaking o8U(2),, x U(1)y on the rectangle. At one boundayy = 7 R1, SU(2),, is broken toU (1), while on the
boundaryy; = 7 R the subgroug/ (1), x U(1)y is broken toU (1) o, which leaves onlyJ(1) o unbroken on the entire rectangle. Locally,
at the fixed point0, 0), SU(2);, x U(1)y remains unbroken. The dashed arrows indicatetbpagation of the lowest resonances of the gauge
bosons.

where the bar indicates a boundary field. The Dirichlet BCs in Esp), (5b) requireAllf to be independent

of y2, while A3 and B, become independent of, such that we can generally write-? = A%%(x,,, y1), A3 =
Ai(x/u y2), andB,, = B, (x,, y2). For the transverS8eomponents of the gauge fields the bulk equations of motion
then take the forms

(PP +02) A2 y) =0, (p?+05,)A3(xu. y2) =0, (p®+02)Bu(xu. y2) =0, (6)

where p? = p, p* and p, =i, is the momentum in the uncompactified 4D space. Since we assume all the
gauge couplings to be small, we will, in what follows, tregf approximately as a “free” field (i.e., without self
interaction) and drop all cubic and quartic termsif.

We assume that the fermions, in the first approximation, are localized on the braneyad = (0, 0), away
from the walls of electroweak symmetry breaking. This choice will avoid any unwanted non-oblique corrections to
the electroweak precision parameters.

3. Effectivetheory

The total effective 4D Lagrangh in the compactified theotota can be written a&iota = Lo + Letr, Where
Leff = fé’Rl dy1 ngz dy2 L denotes the contribution from the bulk, which follows from integrating out the extra
dimensions. After partial integration along thegandy, directions, we obtain fofef the non-vanishing boundary
term

@)

where we have applied the bulk equations of motion and eliminated the terms from the boundariesat; and

y2 = 7 Ry by virtue of the BCs in Eqg4). Notice, that in arriving at Eq7) we have redefined the bulk gauge fields
asA, — A;l = AM/«/E to canonically normalize the kinetic energy terms of the KK modes. In order to determine
Liotal €Xplicitly, we first solve the equations of motion in E&) and insert the solutions into the expression for

Left = =M Ro[ A}y, A + AL3y, AP] o — m Ri[MEAS 9y, A% + M B3y, BY],

® Note thatdy F*MH = p? P, (p) A% + (82 + 02,) AG = 0, whereP,,,(p) = guv — pyupv/p? is the operator projecting onto transverse
states.
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Leff iNn EQ. (7). The most general solutions for E@6) can be written as

A}L’Z(x/u yi) = Aflz(xu) cospy1) + bflz(xu) sin(py1), (8a)
A3 (xy. y2) = A (x) COSpy2) + b (x,,) SiN(py2). (8b)
B, (xpu, y2) = Bu (xu) cog py2) + bl): (xp) sin(py2), (8c)

wherep = /p, p"* and we have already applied the BCs in E(§. The coefficientsy (x,.) andbﬁ(xﬂ) are
then determined from the BCs in Edd). For b1-2(x,,), e.g., we find from the BCs in E¢4a)thatb}?(x,) =
—A}f(xu) cot(prr R1) and hence one obtains

A2 (xu. y1) = A2 (x,)[cos py1) — cotpr R1) sin(py1) ] (92)
In a similar way, one arrives after some calculation at the solutions
M2 tan(pm Rp) — M2 cot(pr Ry)
M2 + M?
M3 tan(pm R) + M cot(prr R2)
2 2
M7 + My
MZtan(pm R2) + M7 cot(prr R2)
2 2
M7 + My
M2tan(pr Ry) — M? cot(pm R2)
2 2
My + My
Inserting the wavefunctions in Eq®) into the effective Lagrangian in E(7), we can rewriteles as

A3 (. y2) = A3 (x0) [cos(pm - Sin(pyz)]

+ By (xp) sin(py2), (9b)

Byu(xp0. y2) = A3 (x,0) sin(py2)

+ B (xy) [COS(pyz) + Sin(pyz)] (9¢)

Lefi = A% Saa(p?)A™ + A3 35 (p?) B + B, Zpp(p®) B, (10)
where(aa) = (11), (22), and(33) and the momentum-dependent coefficieBtare given by

F11(p?) = T22(p®) = 7 R2M} p cot(pr Ry),

M?tan(pmr R2) — M2 cot(pr R)
Sa3(p?) = —m RiM{ p—L 5

M? + M3 ’
tan(pm R2) + cot(pm Rp)
2 2142
Y3p(p) = —2n RiM; My p Y ,
L Y
M2 tan(pw Ry) — M2 cot(pr R2)
EBB(pz)z—rrRlM}z,p Y M2+M§ . (12)
L Y

The X’s can be viewed as the electroweak vacuum ppédion amplitudes which summarize in the low energy
theory the effect of the symmetry breéag sector. The presence of these teteagls at tree level to oblique correc-

tions (as opposed to vertex corrections and box diagrams) of the gauge boson propagators and affects electroweal
precision measuremen&s,26] SinceLess in EQ. (7) generates effective mass terms for the gauge bosons in the

4D theory® the KK masses of th&* bosons are found from the zeros of the inverse propagator as given by the
solutions of the equation

p2

6 For an effective field theory approach to oblique corrections see, e.g[2REf.
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4/R ———— 4R
3/R ——— 3/R
2/R L —————— /R
1/R —_————— /R
.................. 0 mrTonnTTan Mw

Fig. 2. Effect of the brane kinetic term&y on the KK spectrum of the gauge bosons (for exampleWef). Solid lines represent massive
excitations, the bottom dotted lines would correspond to the zero snehieh have been removed by the BCs. Without the brane terms (a), the
lowest KK excitations are of order/R ~ 1 TeV. After switching on the dominant branenktic terms (b), the zero modes are approximately
“restored” with a small masay <« 1/R (dashed line), while the higher KK-levels receiveahtorrections to their masses (thin solid lines)
and decouple below 1 TeV.

To determine the KK masses of the gauge bosons, we will from now on assume that the bran& téomsnate
the bulk kinetic terms, i.e., we take/d?, 1/g'% > (M1 ym)?R1R>. As a result, we find for théV*’s the mass
spectrum

2¢°M2R1R
mﬂzi(H%Jp..), n=172 ...

=L+ O(¢*M[ RS) = m, (13)

where we identify the lightest state with masg with the W*. Observe in Egs. (13}hat the inclusion of the
brane kinetic term& for 1/R1,1/R2 2, O( TeV) leads to a decoupling of the higher KK-modes with masgsgs
(n > 0) from the electroweak scale, leaving only the" states with a small massy in the low-energy theory (see
Fig. 2). Note that a similar effect has been found for warped models in[B&}.

The calculation of the mass of tifeboson goes along the same lines asi6F, but requires, due to the mixing
of A3 with B,, in Eq.(10), the diagonalization of the kinetic matrix

2
(0?55 35300
Mian=| | , ) ) (14)
523(p°) 2p(p°) — #
which has the eigenvalues
1 2 P2 1 P2 p2 2
rs(p?) =2 a3(p?) — == + Zpp(p?) — =— | £ 2,/ Z3z(pD) - — — = = »2.(p?),
) =5 (Z200%) — 25+ Zmnl0?) - g ) 5 (002 - 25 = Zwa+ L)+ 2,(7)
(15)

where the KK towers of thg andZ are given by the solutions of the equationg p?) = 0 (fory) andi (p?) =0
(for Z), respectively. By taking in Eq15)the limit p2 — 0, it is easily seen that_(p?) = 0 has a solution with
p? =0, which we identify with the masslessof the SM, corresponding to the unbroken gauge gaup . The
lowest excitation in the tower of solutions tq.(p2) = 0 has a mass-squared

2(g%+ ¢ HMIME Ry
(M? + M?)R2

which we identify with theZ of the SM. All other KK modes of thg andZ have masses of order1/ R, and thus

decouple for YR1,1/Ry = O( TeV), leaving only a masslessand aZ with massn z in the low-energy theory.

m2 = +0(g*M}R)), (16)
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4. Relation to EWPT

One important constraint on any model for EWSB results from the measurement@ptrameter, which is
experimentally known to satisfy the relatipn= 1 to better than 1%2]. In our model, we find from Eq$13) and
(16) a fit of the natural zeroth-order SM relation for thgparameter in terms of

1, (17)

, m2, g2 M2+ M? (&)2 1

mZco2ly  g2+g? M2 R1) coR6y

wherefy ~ 28.8° is the Weinberg angle of the SM. For definiteness, we will choose in the following the 4D brane
couplingsg andg’ to satisfy the usual SM relatiog?/ (g% + g'2) = cos Oy ~ 0.77. Definingp = 1+ Ap, we then
obtain from Eq(17)that Ap = 0O if the bulk kinetic couplings and compactification radii satisfy the relation

(M? + M2)/M? = R}/R3. (18)

Although we can thus setp = 0 by appropriately dialing the gauge couplings and the size of the extra dimensions,
we observe in Eq(10) that Leff introduces a manifest breaking of custodial symmetry (which transforms the

three gauge bosons;, among themselves) and will thus contribute to EWPT via oblique corrections to the SM

parameters.

To estimate the effect of the oblique corrections in our model let us consider in the 4D effective theory a general
vacuum polarization tensdﬂﬁf,”;(pz) between two gauge field$ and B which can (for canonically normalized
fields) be expanded §87]

. . 0 1

AR (p?) = igagp[M1y + pPI15y 8w + pupy terms (19)
whereg, andgp are the couplings corresponding to the gauge fidldend B, respectively. After going irCeg
back to canonical normalization by redefining — A) = Af /g andB, — B, = B, /g’, we identify X, (p?) ~
39 + p2P, for (aa) = (11), (22), (33), (BB) while Z3p(p?) ~ 11 + p2I15;). From Eqs(11) we then
obtain the polarization amplitudes

2

2
© _ 0 2R2 W _ @ _ M
Iy =1I,, :2MLR—, 7 =115 =—2TR1R2»
1
my =25tV 2 §§)=—22L7122<M§+_M5)’
M7 + My R2 M7+ My 3

M2MZ R 4°MEM?
m - MMy AT 2

ML+MYR2 3]ML—F]MY

A wide range of effects from new physics on EWPT can be parameterized ig; the, and ez framework

[26], which is related to theS, T, and U formalism of Ref.[25] by €1 = aT, €2 = —(aU/4) sir? Oy, and

€3 = (aS/4) sir? By . The experimental bounds on the relative shifts with respect to the SM expectations are roughly
of the ordefey, €2, €3 < 3 x 10~3 [34]. From Eqs(20) we then obtain for these parameters explicitly

0 0
217{1)_17:§3) o ME Ry M R2\?
€1=g N R =—2g > o732 a2 \ 5 s (213.)
m$, m$, Ro| My + My, Ry

7 Note, however, that in the limjp2 — 0, we haveX;; = X33, which restores custodial symmetry.
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472 M?
_ 2 (1) Dy _ 2 L
€2=g (35 — ;7)) =—¢ T R1R2, (21b)
472 M?M?
1
e3=—g?II) = g°—— L1 (21c)

———5RiRo,
3 M?+ M2

where we have used in the last equation thag/(gg') = 173())1/)/sin2 Ow — 155 = cotdy I15;) [26]. Note in
Eq.(21a), that for our choice of parameters we have- Ap = 0. The quantitie$e,| and|ez|, on the other hand,
are bounded from below by the requirement of haviniaantly many KK modes below the strong coupling (or
cutoff) scale of the theory. Using “naive dimensional analysis” (N[[8%),36], one obtains for the strong coupling
scaleA of a D-dimensional gauge theof$7] roughly AP—4 ~ (47'[)D/21"(D/2)/g2D, wheregp is the bulk gauge
coupling. In our 6D model, we would therefore hate~ /2(47)%2M; y which leads forM; y ~ 10 GeV to

a cutoff A ~ 6 TeV. Assuming for simplicityM; = My, it follows from Eq.(18) that R, = R1/+/2, and using
Eqgs.(21b) and (21cyve obtain

g2

96v/21

while €2 >~ 3. It is instructive to compare the value feg in our 6D setup as given by E?2) with the corre-
sponding result of the 5D model in R¢l.5]. We find that by going from 5D to 6D, the strong coupling scale
of the theory is lowered from- 10 TeV down to~ 6 TeV. Despite the lowering ofhe cutoff scale, however, the
parameteks is in the 6D model by~ 15% smaller than the corresponding 5D vafuEhis is due to the fact that
in the 6D model the bulk gauge kinetic couplings satiéfy = My >~ 100 GeV, while they take in 5D the values
My ~ My ~ 10 GeV, which is one order of magnitude below the electroweak scale. Frof2Bqgve then con-
clude that one can take for the inverse loop expansion paramé&er- 1/¢g ~ 1.6 in agreement with EWPT. Like
in the 5D case, however, the 6D model seems not toitaa loop expansion parameter in the regirh®; > 1 as
required for the model to be calculable.

€3~ (AR2)? ~2.3x 103(gAR»)?, (22)

5. Non-oblique corrections and fermion masses

In the previous discussion, we have assumed that the fermions are (approximately) locahzegbat= (0, 0).
This would make the fermions exactly massless, since they have no access to the EWSBrd; andy, = 7 R».
In this limiting case, the effects on the electroweak precision parametets, €3/S, T, U) come from the oblique
corrections due to the vector self energies as given byHQ. A more realistic case will be to extend the fermion
wave functions to the bulk, i.e., to the walls of EWSB, where fermion mass operators of th€tbrhg (C is
some appropriate mass parameter) can be written. Thus, although the fermion wave functions will be dominantly
localized at(0, 0), the profile of the wavefunctions in the bulk will be such that it will have small contributions
from the symmetry breaking walls, giving rise to fermion masses. The hierarchy of fermion masses would then be
accommodated by some suitable choice of the param€étg2e].

To make the incorporation of heavy fermions in our model explicit, let us introduce the 6D chiral quark fields
Q;, Ui, andD; (i =1, 2, 3 is the generation index), whegg; are the isodoublet quarks, whil¢ andD; denote
the isosinglet up and down quarks, respectively. For the cancellation 88 ¢ x SU(2);, x U(1)y gauge and
gravitational anomalies we assume tlaathave positive andf;, D; have negativ€0(1, 5) chiralities[38]. Next,

8 Notice that in Ref[15], the strong coupling scale is defined hytl=1/A; +1/Ag, while we assume fabf; = My thatA = A; = Ay.
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we consider the action of the top quark fields with zero bulk mass, which is given by

TRy TRy

Sfermionzfdx4 / dy1 / dyZi(Q_SFMDMQ?,-FL_{SFMDMu?,)
0 0

TRy 7 R>

+ / dx* / dy1 / dy2 K8(y1)8(y2)i[ Q3" Dy, Q3 + UsI D, Us]
0 0

TRy TRy

+/dx4 f dy1 f dy2 C8(y1 — w R1)8(y2 — 7 R2) QarUsg + h.c., (23)
0 0

where we have added in the second line 4D brane kinetic terms with a (common) gauge kinetic pakameter
[m]~2at(y1, y2) = (0, 0) and in the third line we included a boundary mass term with coefficieatm] 1, which

mixes Qs; andifzg at(y1, y2) = (r R1, w R2). Note, that the addition of the boundary mass term in the last line of
Eq.(23)is consistent with gauge invariance, sii¢€l) o the only gauge group surviving @1, y2) = (7 R1, 7 R2).
Consider now first the limit of a vanishing brane kinetic tekm— 0. Like in the 5D cas§l4], appropriate Dirichlet

and Neumann BCs fas; g andifa;, g would give, in the KK tower corresponding to the top quark, a lowest mass
eigenstate, which is a Dirac fermion with massof the ordenn, ~ C/R?, where we have defined the length scale

R ~ R1 ~ R>. Next, by analogy with the generation of tf&* and Z masses, switching on a dominant brane
kinetic term K /R? >> 1, ensures an approximate localization@4; andifai at (y1, y2) = (0, 0) and leads to

m; ~ C/K [15]. Now, the typical values of non-oblique corrections to the SM gauge couplings coming from
the bulk aré ~ CR/K ~ m;/(1/R) and keeping these contributions under control, the compactification scale
1/R must be sufficiently large. Like in 5D models, this generally introduces a possible tension between the 3rd
generation quark masses and the coupling of4he the bottom quark. Replacing in the above discussigng

with D3y g andm; by the bottom quark mass,(mz) ~ 3 GeV, we thus estimate for/R ~ 1 TeV a shift of

the SMZ — b, by coupling by roughly~ 0.3%, which is of the order of current experimental uncertaintfes.
Similarly, we predict in our model the coupling of tizeto the top quark to deviate by 10% from the SM value,

which can be checked in the electroweak production of single top in the Tevatron Run 2. It can also be tested in the
¢t pair production in a possible future linear collider.

6. Improving the calculability

To improve the calculability of the model, it seems necessary to raise (for gj\g%") the strong coupling scale
A, which would allow the appearance of more KK modetokv the cutoff. In fact, it has recently been argued
that the compactification of a 5D gauge theory on an orbifd|tZ, gives a cutoff which is by a factor of 2 larger
than the NDA estimate obtained for an uncompactified sf@tje Let us now demonstrate this effect explicitly by
repeating the NDA calculation of Rdf35] on an orbifold following the methods of Refi22] and[39]. For this
purpose, consider a 5D scalar fieddx,, y) (where we have defined= y1), propagating in arsl/Z, orbifold
extra dimension. The radius of the 5th dimensioRiand periodicity impliesy + 27 R ~ y. As a consequence,
the momentum in the fifth dimension is quantizedpgs= n/R for integern. Under theZ, actiony — —y the
scalar transforms ag(x,., y) = +¢ (x,., —y), where the+ (—) sign corresponds t¢ being even (odd) undefs.

9 The factorC becomes obvious when treating the brane fields in(E8).as 4D fields, in which cas€ = [m]+1 andK = [m]o.
10 The LEP/SLC fit of}, /Thagin Z decay requires the shift of the — b; b; coupling to be< 0.3% [3].
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Fig. 3. One-loop diagram fap—¢ scattering or:Sl/Zz. The total incoming momentum {p, p/s) and the total outgoing momentum(ig, ps).
Generally, it is possible thap’s\ # | psl, since the orbifold fixed points bak 5D translational invariance.

The scalar propagator on this space is giveffid2y39]

Spe . £SO /
D(p, ps, pb) = {M} (24)
p - p5
where the additional factor/2 takes into account that the physical space is only half of the periodicity. Consider
now the one-loogp—¢ scattering diagram iRig. 3. The total incoming momentum (g, ps) and the total outgoing
momentum igp, ps), which can in general be different, since 5D translation invariance is broken by the orbifold
boundaries. Locally, however, momentum is conserved at the vertices. The diagram then reads

. 122 Z f d* [ Sks.ky £ S—rs iy | [ Sps—ks).(py—kt) E O—(ps—ks), (py—kp) (25)
T 42 27TR o4l k-2 (p — k)% — (ps — ks)? ’

wherex is the quartic coupling and the additional factgdesults from working or$'/Z,. After summing over
kg, the integrand can be written as

1
{8 s
(k2 = k3)[(p — k)2 — (ps —ks)?] 7"
In Eq. (26), the first two terms in the bracket conseiyg| and contribute to the bulk kinetic terms of the scalar.
The last two terms, on the other hand, violgtg| conservation and thus lead to a renormalization of the brane

couplings[22]. Note that these brane terms lead in E2p) to a logarithmic divergence. Applying, on the other
hand, to the bulk terms the Poisson resummation identity

F(ks) = 8 ps,—pi £ Baks, (pe-t pty £ B2k (ps—pip - (26)

oo o0

1 B [ dk —2rikRn
ZjT—Rm;OOF(m/R)_ Z /Zne F k), (27)

we obtain a sum of momentum spaneegrals, where the “locali = 0 term diverges linearly like in 5D uncom-
pactified space. This term contributes a linear divergence to the diagram such that the scattering amplitude becomes
under order one rescalings of the random renorm@dizgoint for the external momenta of the order

A2 [ d%k _
i =7 | Gl -7 =

A2 A
2 (47)%2r(5/2)°

(28)

where A is an ultraviolet cutoff. Ons1/Z,, we thus indeed obtain for the strong coupling scale: 487312,
which is two times larger than the NDA value obtainedD uncompactified space. iBtis also in agreement with
the definition ofA for a 5D gauge theory on an interval given in R&4].
Similarly, when the 5th dimension is compactified ' (Z5 x Z5) [40], we expect a raising ofl by a factor of
4 with respect to the uncompactified case. Let us briefly estimate how far this could improve the calculability of our
6D model. To this end, we assume, besides the two extra dimensions compactified on the rectangle, two additional
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extra dimensions with radits and R4, each of which has been compactifiedxia(zg x Z5). \We assume that the
gauge bosons are even under the actions ofthe Z; groups. Moreover, we take for the bulk kinetic coefficients

in eight dimensions\/} = My and setR3 = R4 = Rz = R1/+/2. From the expression analogous to E2{Lc),

we then obtain the estimatg ~ g2(x M R2)*/3+/2, where the relative factarr R»/2)2, arises from integrating

over the physical space on each circle, which is only 1/4 of the circumference. With respect to the NDA value
A%~ (4m)*I" (4 M} in uncompactified space, the cutoff gets now modifiedts- 16 A%, implying that

2 4 4
g ARz) 3<AR2>
€32 —— ] ~13x10 — . 29
3 192ﬁ< 4 4 (29)

In agreement with EWPT, the loop expansiongraeter could therefe assume here a val&l Ro)~1 ~ 0.25,
corresponding to the appearance of 4 KK modes per extra dimension below the cutoff. Taking also a possible
additional raising ofA by a factor ofy/2 due to the reduced physical space aaréctangle intaccount, one could
have(AR2)~1 ~ 0.2 with 5 KK modes per extra dimension below the cutoff. In conclusion, this demonstrates that
by going beyond five dimensions, the cadbhility of Higgsless models could be improved by factors related to the
geometry.

7. Summary and conclusions

In this Letter, we have considered a 6D Higgsless model for EWSB based only on the SM gaudg.ffi@)up<
U(1)y. The model is formulated in flat space with the two extra dimensions compactified on a rectangle of size
~ (TeV)~2. EWSB is achieved by imposing (in the unitary gauge) consistent BCs on the edges of the rectangle.
The higher KK resonances &f* and Z decouple below- 1 TeV through the presence of a dominant 4D brane
induced gauge kinetic term at the point wh&t&2); x U (1)y remains unbroken. The parameter is arbitrary and
can be set exactly to unity by appropriately choosing the bulk gauge couplings and compactification scales. As a
consequence of integrating duto extra dimensions, the mass scale of the gauge bosons is essentially independent
of the compactification scales and thus set by the bulk gauge kinetic paratvgtarsd My alone, which are of the
order of the electroweak scale. The resulting gauge lawggin the effective 4D theory arise essentially from the
brane couplings, slightly modified (at the level of one percent) by the bulk interaction. Thus, the main role played
by the bulk interactions is to break the electroweak gaugesgtry. We calculate the tree-level oblique corrections
totheS, T, andU parameters and find them to be consistent with current data. Non-oblique corrections to the SM
gauge couplings, however, can generally modify the coupling ofthe the bottom quark at the level of current
experimental uncertainties. By considering at one-loopgthiteraction of a scalap propagating ors/Z, and
S1/(Z2 x Z5), we estimate the shift of the strong coupling scale for models formulated on these manifolds. We
thus conclude that a stronger suppression of the tree-level oblique corrections could be obtained in the presence
of one or two extra dimensions (in addition to the ones compactified on the rectangle), each of which has been
compactified ors/(Zs x Z}), thereby improving the calculability of the model.
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