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Abstract

We present a six-dimensional Higgsless Standard Model with a realistic gauge sector. The model uses only the Stan
Model gauge groupSU(2)L × U(1)Y with the gauge bosons propagating in flat extra dimensions compactified on a rec
The electroweak symmetry is broken by boundary conditions, and the correct splitting between theW andZ gauge boson
masses can be arranged by suitable choice of the compactification scales. The higher Kaluza–Klein excitations of
bosons decouple from the effective low-energy theory due to dominant brane kinetic terms. The model has the following
features compared to five-dimensional models. The dimensional couplings in the bulk Lagrangian, responsible for ele
symmetry breaking using mixed boundary conditions, are of order the electroweak scale. Moreover, with respect to “oblique
corrections, the agreement with the precision electroweak parameters is improved compared to five-dimensional warped or
space models. We also argue that the calculability of Higgsless models can be ameliorated in more than five dimensio
 2004 Published by Elsevier B.V.

1. Introduction

The Standard Model (SM) of electroweak interactions[1], based on the gauge symmetry groupSU(2)L×U(1)Y ,
provides a highly successful description of electroweak precision tests (EWPT)[2,3]. One fundamental ingredien
of the SM is the Higgs mechanism[4], which accomplishes electroweak symmetry breaking (EWSB) and at
energies unitarizes massiveW± andZ scattering through the presence of the scalar Higgs doublet[5]. However,
no fundamental scalar particle has been observed yet in Nature, and as long as there is no direct eviden
existence of the Higgs boson, the actual mechanism of EWSB remains a mystery. In case the Higgs bo
also not be found at the Tevatron or the LHC, it will therefore be necessary to consider alternative ways to ach
EWSB without a Higgs.
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It is well known, that in extra dimensions gauge symmetries can also bebroken by boundary conditions (BCs) o
a compact space[6]. Here, a geometric “Higgs” mechanism ensures tree-level unitarity of longitudinal gauge
scattering through a tower of Kaluza–Klein (KK)[7] excitations[8]. The SM in(TeV)−1-sized extra dimension
with gauge symmetry breaking by BCs, in connection with the problem of breaking supersymmetry in string
was first considered in Ref.[9]. In theories using only usual orbifold BCs[10] for gauge symmetry breaking
however, it is generally difficult to reduce the rank of a gauge group, as it would be required for realistic E
Rank reduction, on the other hand, is easily achieved in the recently proposed new type of Higgsless m
EWSB [11–15], which employ mixed (neither Dirichlet nor Neumann) BCs.1 The mixed BCs, when consiste
with the variation of a gauge invariant action, correspond to a soft breaking of the gauge symmetry, since
be ultraviolet completed by a boundary Higgs field.

The original model for Higgsless EWSB[11] is anSU(2)L × SU(2)R × U(1)B−L gauge theory compactifie
on an interval[0,πR] in five-dimensional (5D) flat space. At one end of the interval,SU(2)R ×U(1)B−L is broken
to U(1)Y . At the other end,SU(2)L × SU(2)R is broken to the diagonal subgroupSU(2)D , thereby leaving only
U(1)Q of electromagnetism unbroken in the effective four-dimensional (4D) theory. Although this model exh
some similarities with the SM, theρ parameter deviated from unity by∼ 10% and the lowest KK excitations o
theW± andZ were too light (∼ 240 GeV) to be in agreement with experiment. These problems have later
resolved by considering the setup in the truncated anti-de Sitter (AdS) space of the Randall–Sundrum model[17].
Here, the generators broken on the Planck branecan be associated via the AdS/CFT correspondence[18] in the 4D
dual [19] theory with a global custodialSU(2) symmetry[20], while the electroweak symmetry has been bro
by the presence of the TeV brane alone[12]. As a consequence, in the strongly coupled 4D theory, viola
of custodial isospin remains (even after inclusion of radiative corrections) only of order∼ 1%, while the higher
KK resonances of the gauge bosons would decouple below∼ 1 TeV [12,13]. In this framework, it is possible t
generate realistic quark and lepton masses with viable couplings toW± andZ, when the fermions propagate in th
bulk [13,14]. Based on the same gauge group, similar effects can be realized in 5D flat space[15], when 4D brane
kinetic terms[21–23]dominate the contribution from the bulk. In fact, brane kinetic terms seem also to be re
in Higgsless warped space models[24], to evade disagreement with EWPT due to tree-level “oblique” correc
[25–27].

In 5D Higgsless models, aρ parameter close to unity is achieved at the expense of enlarging the SM
group by an additional gauge groupSU(2)R , which introduces a gauged custodial symmetry in the bulk. Insp
by dimensional deconstruction[28,29], one can consider theSU(2)L ×SU(2)R subgroup of the model as belongin
to a chain of 5D gauge theories with product group structureSU(2)1×SU(2)2×· · ·×SU(2)N ⊃ SU(2)L×SU(2)R,
which is broken down toSU(2)D by BCs (for a discussion of Higgsless EWSB in deconstruction see Ref.[30]).
From the deconstruction point of view, such a product group may be reduced to a single six-dimensional (6
parent gauge groupSU(2)L, while keeping essential features of the corresponding 5D theory. Hence, it s
be possible to obtain consistent 6D Higgsless models of EWSB, which are based only on the SM gaug
SU(2)L × U(1)Y and allow theρ parameter to be set equal to unity. There is yet another advantage of goi
beyond five dimensions. In more than five dimensions, the physical space can be reduced (e.g., by orbif
to a domain smaller than the periodicity of the wavefunctions. As a result, theS, T , andU parameters[25] would
become suppressed by higher powers of the loop expansion parameter of the theory, thereby potentially im
the calculability of Higgsless models.

In this Letter, we consider a Higgsless model for EWSB in six dimensions, which is based only on t
gauge groupSU(2)L × U(1)Y , where the gauge bosons propagate in the bulk. The model is formulated
space with the two extra dimensions compactified on a rectangle and EWSB is achieved by imposing co
BCs. The higher KK resonances ofW± andZ decouple below∼ 1 TeV through the presence of a dominant
brane induced gauge kinetic term. Theρ parameter is arbitrary and can be set exactly to one by an appro

1 For GUT breaking with mixed BCs see Ref.[16].
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choice of the bulk gauge couplings and compactification scales. Unlike in the 5D theory, the mass sca
lightest gauge bosonsW andZ is solely set by the dimensionful bulk couplings, which (upon compactifica
via mixed BCs) are responsible for EWSB. We calculate the tree-level oblique corrections to theS, T , andU

parameters and find that they are in better agreement with data than in proposed 5D warped and flat H
models. Non-oblique corrections, however, can generally lead to a tension between the bottom quark mas
Z → bb̄ coupling, which could be modified at the level of current experimental uncertainties. By consideri
scattering of a scalar propagating inS1/Z2 andS1/(Z2 × Z′

2) extra dimensions, we estimate the raising of
strong coupling scale, which could improve the calculability of Higgsless models formulated on these man

The Letter is organized as follows. In Section2, we introduce the 6D model on a rectangle and discuss the
metry breaking by BCs. In Section3, we determine the wavefunctions in the presence of the brane terms, va
polarizations and KK spectra of the gauge bosons. We compare the oblique corrections to EWPT in Se4.
Non-oblique corrections of the SM couplings due to the generation of heavy fermion masses are then d
in Section5. Next, in Section6, we estimate the strong coupling scale on different orbifold extra dimension
outline potential implications for an improved calculability of Higgsless models. Finally, in Section7, we present
our summary and conclusions.

2. The model

Let us consider a 6DSU(2)L × U(1)Y gauge theory in a flat space–time background, where the two
spatial dimensions are compactified on a rectangle.2 The coordinates in the 6D space are written aszM = (xµ, ym),
where the 6D Lorentz indices are denoted by capital Roman lettersM = 0,1,2,3,5,6, while the usual 4D Lorent
indices are symbolized by Greek lettersµ = 0,1,2,3, and the coordinatesym (m = 1,2) describe the fifth and
sixth dimension.3 The physical space is thus defined by 0� y1 � πR1 and 0� y2 � πR2, whereR1 andR2 are
the compactification radii of a torusT 2, which is obtained by identifying the points of the two-dimensional pl
R2 under the actionsT5 : (y1, y2) → (y1 + 2πR1, y2) andT6 : (y1, y2) → (y1, y2 + 2πR2). We denote theSU(2)L
andU(1)Y gauge bosons in the bulk, respectively, byAa

M(zM) (a = 1,2,3 is the gauge index) andBM(zM). The
action of the gauge fields in our model is given by

(1)S =
∫

d4x

πR1∫
0

dy1

πR2∫
0

dy2
(
L6 + δ(y1)δ(y2)L0

)
,

whereL6 is a 6D bulk gauge kinetic term andL0 is a 4D brane gauge kinetic term localized at(y1, y2) = (0,0),
which read, respectively,

(2)L6 = −M2
L

4
Fa

MNFMNa − M2
Y

4
BMNBMN, L0 = − 1

4g2Fa
µνF

µνa − 1

4g′2BµνB
µν,

with field strengthsFa
MN = ∂MAa

N − ∂NAa
M + f abcAb

MAc
N (f abc is the structure constant) andBMN = ∂MBN −

∂NBM . In Eq.(2), the quantitiesML andMY have mass dimension+1, while g andg′ are dimensionless. Sinc
the boundaries of the manifold break translational invariance and are “singled out” with respect to the p
the interior of the rectangle, brane terms likeL0 can be produced by quantum loop effects[21,22]or arise from
classical singularities in the limit of vanishing brane thickness[23].

Unlike in five dimensions (for a discussion of theξ → ∞ limit in generalized 5DRξ gauges see, e.g., Ref.[32]
and also Ref.[11]), we cannot go to a unitary gauge where all fieldsAa

5,6 (a = 1,2,3) andB5,6 are identically

2 Chiral compactification on a square has recently been considered in Ref.[31].
3 For the metric we choose a signature(+,−,−,−,−,−).
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set to zero. Instead, there will remain after dimensional reduction one combination of physical scalar field
spectrum.4 To make these scalars sufficiently heavier than the Lee–Quigg–Thacker bound of≈ 2 TeV, we can
assume, e.g., a seventh dimension compactified onS1/Z2 with compactification radiusR3 � R1,R2. By setting
Aa

5,6,7 = B5,6,7 = 0 (Aa
7 andB7 are the seventh components of the gauge fields) on all boundaries of this ma

the associated scalars can acquire for compactification scalesR−1
1 ,R−1

2 � 1–2 TeV, masses well above 2 Te
Therefore, at low energies� 2–3 TeV, we have a model without anylight scalars and will, in what follows, negle
the heavy scalar degrees of freedom.

Since the Lagrangian in Eq.(2)does not contain any explicit gauge symmetry breaking, we can obtain cons
new BCs on the boundaries by requiring the variation of the action to be zero. Variation of the action in(2)
yields after partial integration

δS =
∫

d4x

πR1∫
y1=0

dy1

πR2∫
y2=0

dy2
[
M2

L

(
∂MFaMµ − f abcF bMµAc

M

)
δAa

µ + M2
Y ∂MBMµδBµ

]

+
∫

d4x

πR2∫
y2=0

dy2
[
M2

LFa
5µδAaµ + M2

Y B5µδBµ
]πR1
y1=0

+
∫

d4x

πR1∫
y1=0

dy1
[
M2

LFa
6µδAaµ + M2

Y B6µδBµ
]πR2
y2=0

(3)+
∫

d4x

[
1

g2

(
∂µFaµν − f abcF bµνAc

µ

)
δAc

ν + 1

g′2∂µBµνδBν

]
(y1,y2)=(0,0)

= 0,

where we have (as usual) assumed that the gauge fields and their derivatives go to zero forxµ → ∞. The bulk
terms in the first line in Eq.(3), lead to the familiar bulk equations of motion. Moreover, since the minimizatio
the action requires the boundary terms to vanish as well, we obtain from the second and third line in Eq.(3) a set
of consistent BCs for the bulk fields.

We break the electroweak symmetrySU(2)L × U(1)Y → U(1)Q by imposing on two of the boundaries follow
ing BCs:

(4a)aty1 = πR1: A1
µ = 0, A2

µ = 0,

(4b)aty2 = πR2: ∂y2

(
M2

LA3
µ + M2

Y Bµ

) = 0, A3
µ − Bµ = 0.

The Dirichlet BCs in Eq.(4a)breakSU(2)L → U(1)I3, whereU(1)I3 is theU(1) subgroup associated with th
third component of weak isospinI3. The BCs in Eq.(4b) breakU(1)I3 × U(1)Y → U(1)Q, leaving onlyU(1)Q
unbroken on the entire rectangle (seeFig. 1). Note, in Eq.(4b), that the first BC involving the derivative with respe
to y2 actually follows from the second BCδA3

µ = δBµ by minimization of the action. The gauge groupsU(1)I3

andU(1)I3 × U(1)Y remain unbroken at the boundariesy1 = 0 andy2 = 0, respectively. Locally, at the fixed poi
(y1, y2) = (0,0), SU(2)L ×U(1)Y is unbroken. We can restrict ourselves, for simplicity, to the solutions which
relevant to EWSB, by imposing on the other two boundaries the following Dirichlet BCs:

(5a)aty1 = 0: A1,2
µ (zM) = Ā1,2

µ (xµ),

(5b)aty2 = 0: A3
µ(zM) = Ā3

µ(xµ), Bµ(zM) = B̄µ(xµ),

4 We thank H. Murayama and M. Serone for pointing out this fact.
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Fig. 1. Symmetry breaking ofSU(2)L × U(1)Y on the rectangle. At one boundaryy1 = πR1, SU(2)L is broken toU(1)I3 while on the
boundaryy2 = πR2 the subgroupU(1)I3 × U(1)Y is broken toU(1)Q, which leaves onlyU(1)Q unbroken on the entire rectangle. Local
at the fixed point(0,0), SU(2)L ×U(1)Y remains unbroken. The dashed arrows indicate thepropagation of the lowest resonances of the ga
bosons.

where the bar indicates a boundary field. The Dirichlet BCs in Eqs.(5a), (5b) requireA1,2
µ to be independen

of y2, while A3
µ andBµ become independent ofy1, such that we can generally writeA1,2

µ = A1,2(xµ, y1), A3
µ =

A3
µ(xµ, y2), andBµ = Bµ(xµ, y2). For the transverse5 components of the gauge fields the bulk equations of mo

then take the forms

(6)
(
p2 + ∂2

y1

)
A1,2

µ (xµ, y1) = 0,
(
p2 + ∂2

y2

)
A3

µ(xµ, y2) = 0,
(
p2 + ∂2

y2

)
Bµ(xµ, y2) = 0,

wherep2 = pµpµ and pµ = i∂µ is the momentum in the uncompactified 4D space. Since we assume a
gauge couplings to be small, we will, in what follows, treatAa

µ approximately as a “free” field (i.e., without se
interaction) and drop all cubic and quartic terms inAa

µ.
We assume that the fermions, in the first approximation, are localized on the brane at(y1, y2) = (0,0), away

from the walls of electroweak symmetry breaking. This choice will avoid any unwanted non-oblique correct
the electroweak precision parameters.

3. Effective theory

The total effective 4D Lagrangian in the compactified theoryLtotal can be written asLtotal = L0 + Leff, where
Leff = ∫ πR1

0 dy1
∫ πR2

0 dy2L6 denotes the contribution from the bulk, which follows from integrating out the e
dimensions. After partial integration along they1 andy2 directions, we obtain forLeff the non-vanishing boundar
term

(7)Leff = −M2
LπR2

[
Ā1

µ∂y1A
1µ + Ā2

µ∂y1A
2µ

]
y1=0 − πR1

[
M2

LĀ3
µ∂y2A

3µ + M2
Y B̄µ∂y2B

µ
]
y2=0,

where we have applied the bulk equations of motion and eliminated the terms from the boundaries aty1 = πR1 and
y2 = πR2 by virtue of the BCs in Eqs.(4). Notice, that in arriving at Eq.(7) we have redefined the bulk gauge fie
asAµ → A′

µ ≡ Aµ/
√

2 to canonically normalize the kinetic energy terms of the KK modes. In order to dete
Ltotal explicitly, we first solve the equations of motion in Eq.(6) and insert the solutions into the expression

5 Note that∂MFaMµ = p2Pµν(p)Aaµ + (∂2
y1

+ ∂2
y2

)Aa
ν = 0, wherePµν(p) = gµν − pµpν/p2 is the operator projecting onto transver

states.
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Leff in Eq.(7). The most general solutions for Eqs.(6) can be written as

(8a)A1,2
µ (xµ, y1) = Ā1,2

µ (xµ)cos(py1) + b1,2
µ (xµ)sin(py1),

(8b)A3
µ(xµ, y2) = Ā3

µ(xµ)cos(py2) + b3
µ(xµ)sin(py2),

(8c)Bµ(xµ, y2) = B̄µ(xµ)cos(py2) + bY
µ(xµ)sin(py2),

wherep = √
pµpµ and we have already applied the BCs in Eqs.(5). The coefficientsba

µ(xµ) andbY
µ(xµ) are

then determined from the BCs in Eqs.(4). For b1,2
µ (xµ), e.g., we find from the BCs in Eq.(4a) that b1,2

µ (xµ) =
−Ā1,2

µ (xµ)cot(pπR1) and hence one obtains

(9a)A1,2
µ (xµ, y1) = Ā1,2

µ (xµ)
[
cos(py1) − cot(pπR1)sin(py1)

]
.

In a similar way, one arrives after some calculation at the solutions

A3
µ(xµ, y2) = Ā3

µ(xµ)

[
cos(py2) + M2

L tan(pπR2) − M2
Y cot(pπR2)

M2
L + M2

Y

sin(py2)

]

(9b)+ B̄µ(xµ)
M2

Y tan(pπR2) + M2
Y cot(pπR2)

M2
L + M2

Y

sin(py2),

Bµ(xµ, y2) = Ā3
µ(xµ)

M2
L tan(pπR2) + M2

L cot(pπR2)

M2
L + M2

Y

sin(py2)

(9c)+ B̄µ(xµ)

[
cos(py2) + M2

Y tan(pπR2) − M2
L cot(pπR2)

M2
L + M2

Y

sin(py2)

]
.

Inserting the wavefunctions in Eqs.(9) into the effective Lagrangian in Eq.(7), we can rewriteLeff as

(10)Leff = Āa
µΣaa(p

2)Āaµ + Ā3
µΣ3B(p2)B̄µ + B̄µΣBB(p2)B̄µ,

where(aa) = (11), (22), and(33)and the momentum-dependent coefficientsΣ are given by

Σ11
(
p2) = Σ22

(
p2) = πR2M

2
Lp cot(pπR1),

Σ33
(
p2) = −πR1M

2
Lp

M2
L tan(pπR2) − M2

Y cot(pπR2)

M2
L + M2

Y

,

Σ3B

(
p2) = −2πR1M

2
LM2

Y p
tan(pπR2) + cot(pπR2)

M2
L + M2

Y

,

(11)ΣBB

(
p2) = −πR1M

2
Y p

M2
Y tan(pπR2) − M2

L cot(pπR2)

M2
L + M2

Y

.

The Σ ’s can be viewed as the electroweak vacuum polarization amplitudes which summarize in the low ene
theory the effect of the symmetry breaking sector. The presence of these termsleads at tree level to oblique corre
tions (as opposed to vertex corrections and box diagrams) of the gauge boson propagators and affects el
precision measurements[25,26]. SinceLeff in Eq. (7) generates effective mass terms for the gauge bosons i
4D theory,6 the KK masses of theW± bosons are found from the zeros of the inverse propagator as given b
solutions of the equation

(12)Σ11
(
p2) − p2

2g2
= 0.

6 For an effective field theory approach to oblique corrections see, e.g., Ref.[27].
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Fig. 2. Effect of the brane kinetic termsL0 on the KK spectrum of the gauge bosons (for example, ofW±). Solid lines represent massiv
excitations, the bottom dotted lines would correspond to the zero modes which have been removed by the BCs. Without the brane terms (a
lowest KK excitations are of order 1/R � 1 TeV. After switching on the dominant brane kinetic terms (b), the zero modes are approxima
“restored” with a small massmW 
 1/R (dashed line), while the higher KK-levels receive small corrections to their masses (thin solid line
and decouple below∼ 1 TeV.

To determine the KK masses of the gauge bosons, we will from now on assume that the brane termsL0 dominate
the bulk kinetic terms, i.e., we take 1/g2,1/g′2 � (ML,Yπ)2R1R2. As a result, we find for theW± ’s the mass
spectrum

mn = n

R1

(
1+ 2g2M2

LR1R2

n2
+ · · ·

)
, n = 1,2, . . . ,

(13)m2
0 = 2g2M2

LR2

R1
+O

(
g4M4

LR2
2

) = m2
W,

where we identify the lightest state with massm0 with the W±. Observe in Eqs. (13), that the inclusion of the
brane kinetic termsL0 for 1/R1,1/R2 � O( TeV) leads to a decoupling of the higher KK-modes with massesmn

(n > 0) from the electroweak scale, leaving only theW± states with a small massm0 in the low-energy theory (se
Fig. 2). Note that a similar effect has been found for warped models in Ref.[33].

The calculation of the mass of theZ boson goes along the same lines as forW±, but requires, due to the mixin
of Ā3

µ with B̄µ in Eq.(10), the diagonalization of the kinetic matrix

(14)Mkin =
(

Σ33(p
2) − p2

2g2
1
2Σ3B(p2)

1
2Σ3B(p2) ΣBB(p2) − p2

2g′2

)
,

which has the eigenvalues

(15)

λ±
(
p2) = 1

2

(
Σ33

(
p2) − p2

2g2
+ ΣBB

(
p2) − p2

2g′2

)
± 1

2

√(
Σ33(p2) − p2

2g2
− ΣBB + p2

2g′2

)2

+ Σ2
3B

(
p2

)
,

where the KK towers of theγ andZ are given by the solutions of the equationsλ−(p2) = 0 (forγ ) andλ+(p2) = 0
(for Z), respectively. By taking in Eq.(15) the limit p2 → 0, it is easily seen thatλ−(p2) = 0 has a solution with
p2 = 0, which we identify with the masslessγ of the SM, corresponding to the unbroken gauge groupU(1)Q. The
lowest excitation in the tower of solutions toλ+(p2) = 0 has a mass-squared

(16)m2
Z = 2(g2 + g′2)M2

LM2
Y R1

(M2
L + M2

Y )R2
+O

(
g4M4

LR2
2

)
,

which we identify with theZ of the SM. All other KK modes of theγ andZ have masses of order� 1/R2 and thus
decouple for 1/R1,1/R2 � O( TeV), leaving only a masslessγ and aZ with massmZ in the low-energy theory.
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4. Relation to EWPT

One important constraint on any model for EWSB results from the measurement of theρ parameter, which is
experimentally known to satisfy the relationρ = 1 to better than 1%[2]. In our model, we find from Eqs.(13) and
(16)a fit of the natural zeroth-order SM relation for theρ parameter in terms of

(17)ρ ≡ m2
W

m2
Z cos2 θW

= g2

g2 + g′2
M2

L + M2
Y

M2
Y

(
R2

R1

)2 1

cos2 θW

= 1,

whereθW ≈ 28.8◦ is the Weinberg angle of the SM. For definiteness, we will choose in the following the 4D
couplingsg andg′ to satisfy the usual SM relationg2/(g2 +g′2) = cos2 θW ≈ 0.77. Definingρ = 1+�ρ, we then
obtain from Eq.(17) that�ρ = 0 if the bulk kinetic couplings and compactification radii satisfy the relation

(18)
(
M2

L + M2
Y

)
/M2

Y = R2
1/R2

2.

Although we can thus set�ρ = 0 by appropriately dialing the gauge couplings and the size of the extra dimen
we observe in Eq.(10) that Leff introduces a manifest breaking of custodial symmetry (which transform
three gauge bosonsAa

µ among themselves) and will thus contribute to EWPT via oblique corrections to th
parameters.7

To estimate the effect of the oblique corrections in our model let us consider in the 4D effective theory a
vacuum polarization tensorΠµν

AB(p2) between two gauge fieldsA andB which can (for canonically normalize
fields) be expanded as[27]

(19)iΠAB
µν (p2) = igAgB

[
Π

(0)
AB + p2Π

(1)
AB

]
gµν + pµpν terms,

wheregA andgB are the couplings corresponding to the gauge fieldsA andB, respectively. After going inLeff
back to canonical normalization by redefiningAa

µ → A′
µ ≡ Aa

µ/g andBµ → B ′
µ ≡ Bµ/g′, we identifyΣaa(p

2) �
1
2[Π(0)

aa + p2Π
(1)
aa ], for (aa) = (11), (22), (33), (BB), while Σ3B(p2) � Π

(0)
3B + p2Π

(1)
3B . From Eqs.(11) we then

obtain the polarization amplitudes

Π
(0)
11 = Π

(0)
22 = 2M2

L

R2

R1
, Π

(1)
11 = Π

(1)
22 = −2

π2M2
L

3
R1R2,

Π
(0)
33 = 2

M2
LM2

Y

M2
L + M2

Y

R1

R2
, Π

(1)
33 = −2

π2M2
LR1R2

M2
L + M2

Y

(
M2

L + 1

3
M2

Y

)
,

(20)Π
(0)
3B = −2

M2
LM2

Y

M2
L + M2

Y

R1

R2
, Π

(1)
3B = −4

3

π2M2
LM2

Y

M2
L + M2

Y

R1R2.

A wide range of effects from new physics on EWPT can be parameterized in theε1, ε2, and ε3 framework
[26], which is related to theS, T , and U formalism of Ref.[25] by ε1 = αT , ε2 = −(αU/4)sin2 θW , and
ε3 = (αS/4)sin2 θW . The experimental bounds on the relative shifts with respect to the SM expectations are r
of the orderε1, ε2, ε3 � 3× 10−3 [34]. From Eqs.(20)we then obtain for these parameters explicitly

(21a)ε1 = g2Π
(0)
11 − Π

(0)
33

m2
W

= −2g2 M2
L

m2
W

R1

R2

[
M2

Y

M2
L + M2

Y

−
(

R2

R1

)2]
,

7 Note, however, that in the limitp2 → 0, we haveΣ11 = Σ33, which restores custodial symmetry.
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(21b)ε2 = g2(Π(1)
33 − Π

(1)
11

) = −g2 4π2

3

M4
L

M2
L + M2

Y

R1R2,

(21c)ε3 = −g2Π
(1)
3B = g2 4π2

3

M2
LM2

Y

M2
L + M2

Y

R1R2,

where we have used in the last equation that−ε3/(gg′) = Π
(1)
3γ /sin2 θW − Π

(1)
33 = cotθW Π

(1)
3B [26]. Note in

Eq. (21a), that for our choice of parameters we haveε1 = �ρ = 0. The quantities|ε2| and|ε3|, on the other hand
are bounded from below by the requirement of having sufficiently many KK modes below the strong coupling (
cutoff) scale of the theory. Using “naive dimensional analysis” (NDA)[35,36], one obtains for the strong couplin
scaleΛ of aD-dimensional gauge theory[37] roughlyΛD−4 � (4π)D/2Γ (D/2)/g2

D , wheregD is the bulk gauge
coupling. In our 6D model, we would therefore haveΛ � √

2(4π)3/2ML,Y which leads forML,Y � 102 GeV to
a cutoffΛ � 6 TeV. Assuming for simplicityML = MY , it follows from Eq.(18) that R2 = R1/

√
2, and using

Eqs.(21b) and (21c)we obtain

(22)ε3 � g2

96
√

2π
(ΛR2)

2 � 2.3× 10−3(gΛR2)
2,

while ε2 � ε3. It is instructive to compare the value forε3 in our 6D setup as given by Eq.(22) with the corre-
sponding result of the 5D model in Ref.[15]. We find that by going from 5D to 6D, the strong coupling sc
of the theory is lowered from∼ 10 TeV down to∼ 6 TeV. Despite the lowering of the cutoff scale, however, th
parameterε3 is in the 6D model by∼ 15% smaller than the corresponding 5D value.8 This is due to the fact tha
in the 6D model the bulk gauge kinetic couplings satisfyML = MY � 100 GeV, while they take in 5D the value
ML � MY � 10 GeV, which is one order of magnitude below the electroweak scale. From Eq.(22) we then con-
clude that one can take for the inverse loop expansion parameterΛR2 � 1/g ≈ 1.6 in agreement with EWPT. Like
in the 5D case, however, the 6D model seems not to admit a loop expansion parameter in the regimeΛR2 � 1 as
required for the model to be calculable.

5. Non-oblique corrections and fermion masses

In the previous discussion, we have assumed that the fermions are (approximately) localized at(y1, y2) = (0,0).
This would make the fermions exactly massless, since they have no access to the EWSB aty1 = πR1 andy2 = πR2.
In this limiting case, the effects on the electroweak precision parameters(ε1, ε2, ε3/S,T ,U) come from the oblique
corrections due to the vector self energies as given by Eq.(10). A more realistic case will be to extend the fermi
wave functions to the bulk, i.e., to the walls of EWSB, where fermion mass operators of the formCΨ̄LΨR (C is
some appropriate mass parameter) can be written. Thus, although the fermion wave functions will be dom
localized at(0,0), the profile of the wavefunctions in the bulk will be such that it will have small contribut
from the symmetry breaking walls, giving rise to fermion masses. The hierarchy of fermion masses would
accommodated by some suitable choice of the parametersC [20].

To make the incorporation of heavy fermions in our model explicit, let us introduce the 6D chiral quark
Qi , Ui , andDi (i = 1,2,3 is the generation index), whereQi are the isodoublet quarks, whileUi andDi denote
the isosinglet up and down quarks, respectively. For the cancellation of theSU(3)C × SU(2)L × U(1)Y gauge and
gravitational anomalies we assume thatQi have positive andUi ,Di have negativeSO(1,5) chiralities[38]. Next,

8 Notice that in Ref.[15], the strong coupling scale is defined by 1/Λ = 1/ΛL +1/ΛR , while we assume forML = MY thatΛ = ΛL = ΛY .
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we consider the action of the top quark fields with zero bulk mass, which is given by

Sfermion=
∫

dx4

πR1∫
0

dy1

πR2∫
0

dy2 i
(
Q̄3Γ

MDMQ3 + Ū3Γ
MDMU3

)

+
∫

dx4

πR1∫
0

dy1

πR2∫
0

dy2Kδ(y1)δ(y2)i
[
Q̄3Γ

µDµQ3 + Ū3Γ
µDµU3

]

(23)+
∫

dx4

πR1∫
0

dy1

πR2∫
0

dy2Cδ(y1 − πR1)δ(y2 − πR2)Q̄3LU3R + h.c.,

where we have added in the second line 4D brane kinetic terms with a (common) gauge kinetic parameK =
[m]−2 at(y1, y2) = (0,0) and in the third line we included a boundary mass term with coefficientC = [m]−1, which
mixesQ3L andU3R at (y1, y2) = (πR1,πR2). Note, that the addition of the boundary mass term in the last lin
Eq.(23)is consistent with gauge invariance, sinceU(1)Q the only gauge group surviving at(y1, y2) = (πR1,πR2).
Consider now first the limit of a vanishing brane kinetic termK → 0. Like in the 5D case[14], appropriate Dirichlet
and Neumann BCs forQ3L,R andU3L,R would give, in the KK tower corresponding to the top quark, a lowest m
eigenstate, which is a Dirac fermion with massmt of the ordermt ∼ C/R2, where we have defined the length sc
R ∼ R1 ∼ R2. Next, by analogy with the generation of theW± andZ masses, switching on a dominant bra
kinetic termK/R2 � 1, ensures an approximate localization ofQ3L andU3R at (y1, y2) = (0,0) and leads to
mt ∼ C/K [15]. Now, the typical values of non-oblique corrections to the SM gauge couplings coming
the bulk are9 ∼ CR/K ∼ mt/(1/R) and keeping these contributions under control, the compactification
1/R must be sufficiently large. Like in 5D models, this generally introduces a possible tension between
generation quark masses and the coupling of theZ to the bottom quark. Replacing in the above discussionU3L,R

with D3L,R andmt by the bottom quark massmb(mZ) ≈ 3 GeV, we thus estimate for 1/R ∼ 1 TeV a shift of
the SMZ → b̄LbL coupling by roughly∼ 0.3%, which is of the order of current experimental uncertaintie10

Similarly, we predict in our model the coupling of theZ to the top quark to deviate by∼ 10% from the SM value
which can be checked in the electroweak production of single top in the Tevatron Run 2. It can also be test
t t̄ pair production in a possible future linear collider.

6. Improving the calculability

To improve the calculability of the model, it seems necessary to raise (for given 1/g2
D) the strong coupling scal

Λ, which would allow the appearance of more KK modes below the cutoff. In fact, it has recently been argu
that the compactification of a 5D gauge theory on an orbifoldS1/Z2 gives a cutoff which is by a factor of 2 large
than the NDA estimate obtained for an uncompactified space[34]. Let us now demonstrate this effect explicitly b
repeating the NDA calculation of Ref.[35] on an orbifold following the methods of Refs.[22] and[39]. For this
purpose, consider a 5D scalar fieldφ(xµ, y) (where we have definedy = y1), propagating in anS1/Z2 orbifold
extra dimension. The radius of the 5th dimension isR and periodicity impliesy + 2πR ∼ y. As a consequence
the momentum in the fifth dimension is quantized asp5 = n/R for integern. Under theZ2 actiony → −y the
scalar transforms asφ(xµ, y) = ±φ(xµ,−y), where the+ (−) sign corresponds toφ being even (odd) underZ2.

9 The factorC becomes obvious when treating the brane fields in Eq.(23) as 4D fields, in which caseC = [m]+1 andK = [m]0.
10 The LEP/SLC fit ofΓb/Γhad in Z decay requires the shift of theZ → b̄LbL coupling to be� 0.3% [3].
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Fig. 3. One-loop diagram forφ–φ scattering onS1/Z2. The total incoming momentum is(p,p′
5) and the total outgoing momentum is(p,p5).

Generally, it is possible that|p′
5| 
= |p5|, since the orbifold fixed points break 5D translational invariance.

The scalar propagator on this space is given by[22,39]

(24)D(p,p5,p
′
5) = i

2

{
δp5,p

′
5
± δ−p5,p

′
5

p2 − p2
5

}
,

where the additional factor 1/2 takes into account that the physical space is only half of the periodicity. Con
now the one-loopφ–φ scattering diagram inFig. 3. The total incoming momentum is(p,p′

5) and the total outgoing
momentum is(p,p5), which can in general be different, since 5D translation invariance is broken by the or
boundaries. Locally, however, momentum is conserved at the vertices. The diagram then reads

(25)iΣ = 1

4

λ2

2

1

2πR

∑
k5,k′

5

∫
d4k

(2π)4

{
δk5,k

′
5
± δ−k5,k

′
5

k2 − k2
5

}{
δ(p5−k5),(p′

5−k′
5) ± δ−(p5−k5),(p′

5−k′
5)

(p − k)2 − (p5 − k5)2

}
,

whereλ is the quartic coupling and the additional factor 1/4 results from working onS1/Z2. After summing over
k′

5, the integrand can be written as

(26)F(k5) = 1

(k2 − k2
5)[(p − k)2 − (p5 − k5)2] {δp5p

′
5
+ δp5,−p′

5
± δ2k5,(p5+p′

5)
± δ2k5,(p5−p′

5)
}.

In Eq. (26), the first two terms in the bracket conserve|p′
5| and contribute to the bulk kinetic terms of the sca

The last two terms, on the other hand, violate|p′
5| conservation and thus lead to a renormalization of the b

couplings[22]. Note that these brane terms lead in Eq.(25) to a logarithmic divergence. Applying, on the oth
hand, to the bulk terms the Poisson resummation identity

(27)
1

2πR

∞∑
m=−∞

F(m/R) =
∞∑

n=−∞

∞∫
−∞

dk

2π
e−2πikRnF (k),

we obtain a sum of momentum spaceintegrals, where the “local”n = 0 term diverges linearly like in 5D uncom
pactified space. This term contributes a linear divergence to the diagram such that the scattering amplitude
under order one rescalings of the random renormalization point for the external momenta of the order

(28)iΣ → λ2

4

∫
d5k

(2π)5

[
k2(p − k)2]−1 � λ2

2

Λ

(4π)5/2Γ (5/2)
,

whereΛ is an ultraviolet cutoff. OnS1/Z2, we thus indeed obtain for the strong coupling scaleΛ � 48π3λ−2,
which is two times larger than the NDA value obtained in 5D uncompactified space. This is also in agreement wit
the definition ofΛ for a 5D gauge theory on an interval given in Ref.[34].

Similarly, when the 5th dimension is compactified onS1/(Z2×Z′
2) [40], we expect a raising ofΛ by a factor of

4 with respect to the uncompactified case. Let us briefly estimate how far this could improve the calculabilit
6D model. To this end, we assume, besides the two extra dimensions compactified on the rectangle, two a



S. Gabriel et al. / Physics Letters B 603 (2004) 74–87 85

e
nts

value

possible

s that
the

of size
tangle.

ane
d
es. As a
endent

the
played

ons
the SM
nt

ds. We
presence
as been

us-
work

R46140
extra dimensions with radiiR3 andR4, each of which has been compactified onS1/(Z2 ×Z′
2). We assume that th

gauge bosons are even under the actions of theZ2 × Z′
2 groups. Moreover, we take for the bulk kinetic coefficie

in eight dimensionsM4
L = M4

Y and setR3 = R4 = R2 = R1/
√

2. From the expression analogous to Eq.(21c),
we then obtain the estimateε3 � g2(πMLR2)

4/3
√

2, where the relative factor(πR2/2)2, arises from integrating
over the physical space on each circle, which is only 1/4 of the circumference. With respect to the NDA
Λ4 � (4π)4Γ (4)M4

L in uncompactified space, the cutoff gets now modified asΛ4 → 16Λ4, implying that

(29)ε3 � g2

192
√

2

(
ΛR2

4

)4

� 1.3× 10−3
(

ΛR2

4

)4

.

In agreement with EWPT, the loop expansion parameter could therefore assume here a value(ΛR2)
−1 � 0.25,

corresponding to the appearance of 4 KK modes per extra dimension below the cutoff. Taking also a
additional raising ofΛ by a factor of

√
2 due to the reduced physical space on the rectangle intoaccount, one could

have(ΛR2)
−1 � 0.2 with 5 KK modes per extra dimension below the cutoff. In conclusion, this demonstrate

by going beyond five dimensions, the calculability of Higgsless models could be improved by factors related to
geometry.

7. Summary and conclusions

In this Letter, we have considered a 6D Higgsless model for EWSB based only on the SM gauge groupSU(2)L×
U(1)Y . The model is formulated in flat space with the two extra dimensions compactified on a rectangle
∼ (TeV)−2. EWSB is achieved by imposing (in the unitary gauge) consistent BCs on the edges of the rec
The higher KK resonances ofW± andZ decouple below∼ 1 TeV through the presence of a dominant 4D br
induced gauge kinetic term at the point whereSU(2)L ×U(1)Y remains unbroken. Theρ parameter is arbitrary an
can be set exactly to unity by appropriately choosing the bulk gauge couplings and compactification scal
consequence of integrating outtwo extra dimensions, the mass scale of the gauge bosons is essentially indep
of the compactification scales and thus set by the bulk gauge kinetic parametersML andMY alone, which are of the
order of the electroweak scale. The resulting gauge couplings in the effective 4D theory arise essentially from
brane couplings, slightly modified (at the level of one percent) by the bulk interaction. Thus, the main role
by the bulk interactions is to break the electroweak gauge symmetry. We calculate the tree-level oblique correcti
to theS, T , andU parameters and find them to be consistent with current data. Non-oblique corrections to
gauge couplings, however, can generally modify the coupling of theZ to the bottom quark at the level of curre
experimental uncertainties. By considering at one-loop theφ4 interaction of a scalarφ propagating onS1/Z2 and
S1/(Z2 × Z′

2), we estimate the shift of the strong coupling scale for models formulated on these manifol
thus conclude that a stronger suppression of the tree-level oblique corrections could be obtained in the
of one or two extra dimensions (in addition to the ones compactified on the rectangle), each of which h
compactified onS1/(Z2 × Z′

2), thereby improving the calculability of the model.
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