An algorithm for finding a shortest vector in a two-dimensional modular lattice*

Mody Lempel and Azaria Paz
Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Israel

Communicated by A. Salomaa
Received October 1991
Revised September 1992

Abstract

Ahstract Lempel, M. and A. Paz, An algorithm for finding a shortest vector in a two-dimensional modular lattice, Theoretical Computer Science 125 (1994) 229-241.

Let $0<a, b<d$ be integers with $a \neq b$. The lattice $L_{d}(a, b)$ is the set of all multiples of the vector (a, b) modulo d. An algorithm is presented for finding a shortest vector in $L_{d}(a, b)$. The complexity of the algorithm is shown to be logarithmic in the size of d when the number of arithmetical operations is counted.

1. Introduction

A classical algorithm, due to Gauss, for finding a shortest vector in a twodimensional lattice has been used as one of the main building blocks in the recent L^{3} (Lenstra, A.K., Lenstra, H.W. Jr. and Lovasz, L.) basis reduction algorithm for general lattices [2]. The complexity of the Gauss algorithm has been shown to be logarithmic in the maximal integer among the entries of the vectors forming the basis of the lattice at input (when counting the number of arithmetical operations involved) [1].

Let $0<a, b<d$ be integers such that $a \neq b$. We define $L_{d}(a, b)$ to be the modular lattice generated by the vector (a, b) modulo d, i.e. the (finite) set of all vectors of the form $(i a(\bmod d), i b(\bmod d)), 0 \leqslant i<d$, which is closed under addition modulo d.

[^0]We present, in this paper, an algorithm for finding a shortest vector in a lattice $L_{d}(a, h)$ as above, and we prove that the complexity of the algorithm is logarithmic in the size of d when the number of arithmetical operations is counted.

While our algorithm bears certain similarities to the algorithm of Gauss, the two algorithms are different and cannot be reduced one to the other when the Gauss algorithm is considered over vectors with integer entries only. Thus, e.g. in the modular lattice generated by the vector (4,1) modulo 5 , a shortest (nonzero) vector is the vector $(2,3)=(3 \cdot 4(\bmod 5), 3 \cdot 1(\bmod 5))$ (or the vector $(3,2)$ which has the same length). The shortest vector in the corresponding general (nonmodular) lattice containing the vectors $(4,1)$ and $(3,2)$ is $(-1,1)=(3-4,2-1)$.

Conversely, consider the gencral (nonmodular) lattice with base vectors $(7,11)$ and
 circumstances no $d>1$ exists such that $(5,8)=(i 7(\bmod d), i 11(\bmod d)), 0 \leqslant i<d$, since the existence of such a d would imply that the above determinant has a value $\geqslant d$ (see Section 2).

It is hoped that this algorithm will enable generalizations for general n-dimensional modular lattices and will have applications to other areas of study (e.g. cryptology, coding theory, geometry of numbers, etc.).

2. Preliminaries

Given the integers $0<a, b<d$ and i, the notation $i(a, b)(\bmod d)$ stands for the vector $(i a(\bmod d), i b(\bmod d))$.

We shall denote by $L_{d}(a, b)$ the modular lattice $L_{d}(a, b)=\{i(a, b)(\bmod d)$: $0 \leqslant i \leqslant d-1\}$. We start with a few simple remarks:
(1) If $g c d(a, b, d)=g>1$ then the lattice $L_{d / g}(a / g, b / g)$ is an isomorphic contraction of the lattice $L_{d}(a, b)$. The shortest vector of the original lattice is equal to the shortest vector of the $L_{d / g}$ lattice multiplied by g. We shall assume therefore that $\operatorname{gcd}(a, b, d)=1$.
(2) If $g c d(a, b, d)=1$ but $\operatorname{gcd}(a, b)=g_{1}>1$ then $L_{d}\left(a / g_{1}, b / g_{1}\right)=L_{d}(a, b)$. This follows from the fact that g_{1} is invertible modulo d, given that $\operatorname{gcd}(a, b, d)=1$. Thus,

$$
i(a, b)(\bmod d)=j\left(\frac{a}{g_{1}}, \frac{b}{g_{1}}\right)(\bmod d)
$$

where

$$
j=i g_{1}(\bmod d) \text { if } i \text { is given and } i=j g_{1}{ }^{1}(\bmod d) \text { if } j \text { is given. }
$$

(3) Any two vectors in L_{d} whose determinant is equal to $\pm d$ will be called a geometrical basis for L_{d}. It will be shown in the next section that any vector $(a, b) \neq(1,1)$ (with $\operatorname{gcd}(a, b)=1)$ belongs to a geometrical basis. Vectors in L_{d} will be considered both as vectors and as points in two-dimensional space. Let (a, b) and (c, e) be a geometrical basis in L_{d}. Consider the topological torus formed from the square
$0 \leqslant x, y \leqslant d$ when its edges $x=0, y=0$ are identified with the edges $x=d, y=d$, respectively. The area of the face of this torus is d^{2} and it is covered by d nonoverlapping translates of the parallelogram whose vertices are $(0,0),(a, b),(c, e),(a+c, b+e)$ and whose area is d. It follows that the determinant of any 2 points in L_{d} which are not colinear is equal to $\pm k d$, where k is an integer such that $0<k<d$.

3. Some properties of L_{d}

Lemma 3.1. Let (c, e) be a point vector in $L_{d}(a, b)$ such that $\operatorname{gcd}(c, e)=1$. If $c>1$ then there is a vector $\left(c_{1}, e_{1}\right)$ in $L_{d}(a, b)$ such that $\left|\begin{array}{cc}c \\ c_{1} & e \\ e_{1}\end{array}\right|=d$. If $e>1$ then there is a vector $\left(c_{2}, e_{2}\right)$ in $L_{d}(a, b)$ such that $\left|\begin{array}{ll}c & e \\ c_{2} & e \\ e_{2}\end{array}\right|=-d$.

Proof. Assume that $c>1$. $\operatorname{gcd}(c, e)=1$ implies that there are integers u, v such that $c u-e v=1$. Multiplying by d we get $c u d-e v d=d$. This equality induces the set of equalities

$$
c(u d-k e)-e(v d-k c)=d
$$

for any integer k.
Let k_{0} be the maximal k such that both $\left(u d-k_{0} e\right)=e_{1} \geqslant 0$ and $\left(v d-k_{0} c\right)=c_{1} \geqslant 0$. If both e_{1} and c_{1} are smaller than d, then from $\left(c_{1}, e_{1}\right)=(v, u) d-(c, e) k_{0}$ we get that (c_{1}, e_{1}) is a modular multiple of a vector in $L_{d}(a, b)$ and satisfies therefore the requirement of Lemma 3.1. To complete the proof of the first part of the lemma we must show that $c_{1}, e_{1}<d$.

From the choice of k_{0} we know that either $c_{1}<c$ or $e_{1}<e$. Assume, by way of contradiction, that

$$
c e_{1}-e c_{1}=d
$$

and either

$$
c_{1}<c<d \text { together with } e_{1} \geqslant d
$$

or

$$
c_{1} \geqslant d \text { together with } e_{1}<e<d .
$$

In the first case we have that $c_{1} \leqslant c-1, e<d$ and $e_{1} \geqslant d$. Also, since $c>1$ (by assumption), $c-1>0$. Therefore,

$$
d=c e_{1}-e c_{1}>c d-d(c-1)=d
$$

a contradiction.
In the second case, we have that $e_{1} \leqslant e-1, c<d$ and $c_{1} \geqslant d$. This implies that

$$
d=c e_{1}-e c_{1}<d(e-1)-e d=-d,
$$

which is impossible.

It follows that $c_{1}, e_{1}<d$ and the proof of the first part of the lemma is complete. The proof of the second part is similar.

Remark. The excluded point vector $(1,1)$ can never belong to a geometrical basis since the value of the determinant $\left|\begin{array}{ll}1 & 1 \\ c\end{array}\right|$ is always less than d, in absolute value, given that $0 \leqslant c, e<d$. Moreover, if the vector $(1,1)$ belongs to a modular lattice L_{d}, then

$$
L_{d}=\{(k, k) ; 0 \leqslant k<d\} .
$$

No other vector $(c, e) \neq(k, k)$ can belong to L_{d}. Any such vector forms a determinant with $(1,1)$ in L_{d} whose value is less than d, which cannot happen for vectors in L_{d} (see Section 2).

The next few lemmas provide a characterization of the set of points forming a geometrical basis with a given vector.

Lemma 3.2. Let (a, b) be a vector in a lattice L_{d}. Let (c, e) be another vector in L_{d} such that (a, b) and (c, e) form a geometrical basis. If $g c d(a, b)=g>1$ with $(a, b)=g\left(a^{\prime}, b^{\prime}\right)$ then any vector of the form $k\left(a^{\prime}, b^{\prime}\right), 1 \leqslant k<g$, is not in L_{d}.

Proof. Since (a, b) and (c, e) form a basis we have that $\left|\begin{array}{c}a \\ c \\ e\end{array}\right|=\left|\begin{array}{c}g a_{c}^{\prime} \\ c_{e} \\ e\end{array}\right|= \pm d$. Assume that the determinant equals $+d$ (the other case is similar). This implies that $0<\left|\begin{array}{c}k a_{c} \\ { }^{k} b_{e}^{\prime}\end{array}\right|<\left|\begin{array}{c}g a_{c}^{\prime} \\ e\end{array} \underset{e}{g b^{\prime}}\right|=d$. Given that (c, e) is in L_{d}, if $k\left(a^{\prime}, b^{\prime}\right)$ is in L_{d} then $\left|\begin{array}{c}k a^{\prime}\end{array}{ }_{e}^{k b^{\prime}}\right|$ must be equal to 0 or a nonzero multiple of d, a contradiction.

Lemma 3.3. Let (a, b) be a vector in a lattice L_{d} and let (c, e) and $\left(c^{\prime}, e^{\prime}\right)$ be two vectors in L_{d} such that both form a basis with (a, b). Then (c, e) can be written in the form

$$
(c, e)=\left(c^{\prime}, e^{\prime}\right)+i(a, b) \quad \text { or } \quad(c, e)=-\left(c^{\prime}, e^{\prime}\right)+i(a, b)
$$

for some $1 \leqslant i<d$.

Proof. It follows from the assumptions that $a e-b c= \pm\left(a e^{\prime}-b c^{\prime}\right)$. Let $\operatorname{gcd}(a, b)=g$ with $(a, b)=g\left(a^{\prime}, b^{\prime}\right)$. Then

$$
g a^{\prime}\left(e \pm e^{\prime}\right)=g b^{\prime}\left(c \pm c^{\prime}\right)
$$

implying that

$$
\hat{\varepsilon} \pm e^{\prime}=k b^{\prime} \quad \text { and } \quad c \pm c^{\prime}=k a^{\prime}
$$

(since $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$) for some integer k.

Thus,

$$
(c, e)=\left(c^{\prime}, e^{\prime}\right)+k\left(a^{\prime}, b^{\prime}\right) \quad \text { or } \quad(c, e)=-\left(c^{\prime}, e^{\prime}\right)+k\left(a^{\prime}, b^{\prime}\right)
$$

If $g=1$ or $g \mid k$ then we are done. To complete the proof we show that this is the only possible case. Otherwise, let $g>1$ and $k=g s+r, 0<r<g$. Then

$$
(c, e)=\left(c^{\prime}, e^{\prime}\right)+s(a, b)+r\left(a^{\prime}, b^{\prime}\right)
$$

or

$$
(c, e)=-\left(c^{\prime}, e^{\prime}\right)+s(a, b)+r\left(a^{\prime}, b^{\prime}\right)
$$

In both cases $r\left(a^{\prime}, b^{\prime}\right)$ must be in L_{d} since $(c, e),\left(c^{\prime}, e^{\prime}\right)$ and $s(a, b)$ are in L_{d} and all the entries of all the vectors involved are nonnegative. But this contradicts Lemma 3.2 since $0<r<g$.

Corollary 3.4. Let $(a, b),(c, e)$ be two vectors in L_{d} which are a geometrical basis. The set of all vectors forming a basis with (a, b) in L_{d} is the set (*):

$$
\begin{equation*}
\{(p, q)= \pm(c, e)+i(a, b):-d \leqslant i \leqslant d, 0 \leqslant p, q<d\} \tag{*}
\end{equation*}
$$

Lemma 3.5. Let i_{0} be the maximal i such that $(c, e)-i_{0}(a, b)$ is nonnegative and let i_{1} be the minimal i such that $-(c, e)+i_{1}(a, b)$ is nonnegative in the set $(*)$. Then the shortest vector in the set $(*)$ is the shortest of $\left(p^{\prime}, q^{\prime}\right)$ and $\left(p^{\prime \prime}, q^{\prime \prime}\right)$, where

$$
\begin{aligned}
& \left(p^{\prime}, q^{\prime}\right)=(c, e)-i_{0}(a, b), \\
& \left(p^{\prime \prime}, q^{\prime \prime}\right)=-(c, e)+i_{1}(a, b) .
\end{aligned}
$$

Proof. Left to the reader.

Remark. Note that i_{0} can be defined as

$$
i_{0}=\left\{\begin{array}{l}
\text { if } a, b>0 \text { then } \min \left\{\left\lfloor\left\lfloor\frac{c}{a}\right\rfloor,\left\lfloor\frac{e}{b}\right\rfloor\right\},\right. \\
\text { if } b=0 \text { then }\left\lfloor\frac{\varsigma}{a}\right\rfloor, \\
\text { if } a=0 \text { then }\left\lfloor\frac{e}{b}\right\rfloor,
\end{array}\right.
$$

and i_{1} can be defined in a similar way. It follows that the number of operations involved in the computation of the shortest vector in the set (*) is constant.

The algorithm to be presented in the sequel bears some resemblance to the classical algorithm of Gauss for finding a minimal vector in a general two-dimensional lattice. As in the classical algorithm, after a geometrical basis is found (Lemma 3.1), a sequence of decreasing vectors in the lattice is generated until the minimal vector is found. A particular case in our algorithm needs special attention in order to keep the
complexity of the general algorithm linear (in the magnitude of d). A procedure for handling this particular case (defined below) is provided in Section 4.

4. Crossing vector procedure

Definition 4.1. Let $v_{1}=\left(v_{11}, v_{12}\right)$ and $v_{2}=\left(v_{21}, v_{22}\right)$ be nonnegative vectors. Let $\delta=\left(\delta_{1}, \delta_{2}\right)=\left(v_{11}-v_{21}, v_{12}-v_{22}\right)$ be their difference vector. v_{1} and v_{2} are crossing if $\delta_{1} \delta_{2}<0$. They are left crossing if $\delta_{1}>0\left(\delta_{2}<0\right)$ and are right crossing if $\delta_{1}<0\left(\delta_{2}>0\right)$. $|v|$ denotes the length of a vector v.

Procedure Min-Cross (finding a minimal-length vector in a lattice defined by a crossing basis).
Input: A basis v_{2}, v_{1} for a lattice L_{d} such that $\left|v_{2}\right|<\left|v_{1}\right|, v_{2}$ and v_{1} are crossing. Let $v_{2 j}$ and $v_{1 j}$ be the entries in v_{2} and v_{1} such that $v_{1 j}-v_{2 j}=\delta_{j}>0$. Denote by u_{s} the vector $u_{\mathrm{s}}=v_{2}-s\left(\delta_{1}, \delta_{2}\right)$ with $u_{-1}=v_{1}$.

1. If $v_{2 j}=0$ return v_{2}, halt.
2. Repeat until

$$
\left|v_{2}\right|>\left|v_{1}\right| \text { or } v_{2 j}=0 .
$$

begin
2.1. Find $k:=\left\lceil\frac{v_{1 j}}{v_{2 j}}\right\rceil$
$\left\{\right.$ Remark: $v_{1 j}>v_{2 j}$ implies that $\left.k \geqslant 2\right\}$
2.2. If $k=2$ do begin

Set $m:=\left\lfloor\frac{v_{2 j}}{\delta_{j}}\right\rfloor$;
\{Remark: $k=2$ implies $m \geqslant 1\}$
Set $p_{1}=\left\lfloor\frac{v_{21} \delta_{1}+v_{22} \delta_{2}}{\delta_{1}^{2}+\delta_{2}^{2}}\right\rfloor$
\{Remark: $p_{1} \leqslant m$ \}
2.3. If $p_{1}<0$ return v_{2}, halt;
define $p= \begin{cases}p_{1} & \text { if }\left|u_{p 1}\right| \leqslant\left|u_{p_{1}+1}\right| \text { or } p_{1}=m \\ p_{1}+1 & \text { otherwise }\end{cases}$
2.4. If $p \leqslant m-1$ return u_{p}, halt;
2.5. Set $v_{2}:=u_{p}, v_{1}:=u_{p-1}, k:=\left\lceil\frac{v_{1 j}}{v_{2 j}}\right\rceil$
end;
\{Remark: Now $k>2$ and $\left.\delta_{j}>0\right\}$
2.6. Set $v_{3}:=v_{2}, v_{2}:=-v_{1}+k v_{2}, v_{1}:=v_{3}$ end (repeat);
3. If $\left|v_{2}\right|>\left|v_{1}\right|$ return v_{1}, else return v_{2} end of algorithm.

5. Properties of the Min-Cross procedure

The vectors at input v_{1} and v_{2} are assumed to satisfy the following properties:
(a) $\left|v_{2}\right|<\left|v_{1}\right|$,
(b) v_{2} and v_{1} are cross vectors,
(c) v_{2} and v_{1} are a geometrical basis for a lattice L_{d}.

Consider the sequence of vectors

$$
\begin{equation*}
v_{1}, v_{2}, v_{3}, \ldots, v_{t} \tag{1}
\end{equation*}
$$

such that for all $i>2$ the following properties hold:
(d) $\left|v_{i}\right|<\left|v_{i-1}\right|, i \geqslant 2$,
(e) v_{i} is the shortest vector in L_{d} which forms a basis for L_{d} with v_{i-1}.

We proceed to prove the following theorem.
Theorem 5.1. (f) v_{i} and v_{i-1} are cross vectors, of the same type (left or right) as v_{2} and v_{1}, for all $i \geqslant 2$.
(g) The vectors generated at steps 2.5 and 2.6 by the procedure Min-Cross are a subsequence of the sequence (1), starting from v_{2} and on.
(h) v_{t}, the last vector in (1), is the last vector generated by the procedure, at one of the steps 1, 2.3, 2.4, 3 .
(i) The number of iterations of the procedure is logarithmic in the magnitude of d.

Proof. (f): It is proved by induction. By assumption v_{2} and v_{1} are cross vectors. Assume that v_{i-1} and $v_{i-2}, i \geqslant 3$, are left cross vectors with $v_{i-1,1}<v_{i-2,1}$ and $v_{i-1,2}>v_{i-2,2}$ (the right cross case is similar). If v_{i-1} is not the last vector in the sequence then, by the properties of $v_{i}\left((\mathrm{~d})\right.$ and (e)) and by Lemma 3.5, v_{i} must be one of the vectors

$$
v_{i}=v_{i-2}-i_{0} v_{i-1} \quad \text { or } \quad v_{i}=-v_{i-2}+i_{1} v_{i-1},
$$

where i_{0} and i_{1} are as defined in Lemma 3.5. The first of the two choices requires $i_{0}=0$, otherwise v_{i} is a vector with negative entries since v_{i-1} and v_{i-2} are cross. The only possible choice which can result in a shorter vector is therefore $v_{i}=-v_{i-2}+i_{1} v_{i-1}$. If $v_{i-1,1}=0$ (steps 1 and 2 in the procedure) then no shorter vector in L_{d} can form a basis with v_{i-1}. This follows from the fact that $v_{i-2,1}>v_{i-1,1}=0$ (our assumption) so that $v_{i}=-v_{i-2}+i_{1} v_{i-1}$ is a vector with negative entries. Therefore, if $v_{i-1,1}=0$ then $v_{i-1}=v_{t}$ is the last vector in the sequence (1). Otherwise, with $i_{1}=\left\lceil v_{i-2,1} / v_{i-1,1}\right\rceil \geqslant 2$ (since $v_{i-2,1}>v_{i-1,1}$) and $v_{i}=-v_{i-2}+i_{1} v_{i-1}$ we have that $v_{i, 1}$ is $v_{i-1,1}$ minus the

Fig. 1.
remainder from the division of $v_{i-2,1}$ by $v_{i-1,1}$, so $v_{i, 1}<v_{t-1,1}$. The second entry in v_{i} satisfies

$$
\begin{aligned}
v_{i, 2} & =-v_{i-2,2}+i_{1} v_{i-1,2} \geqslant-v_{i-2,2}+2 v_{i-1,2} \\
& =\left(-v_{i-2,2}+v_{i-1,2}\right)+v_{i-1,2}>v_{i-1,2}
\end{aligned}
$$

(since $v_{i-1,2}>v_{i-2,2}$). It follows that v_{i} and v_{i-1} are left cross vectors as required.
(g) and (h): We shall follow the procedure step by step to verify that the generated sequence satisfies the required properties, using an inductive argument. Assume that the procedure has gone through several iterations and that the subsequence of vectors, ending in the currently defined vectors v_{1}, v_{2}, generated so far, satisfies the required properties (this is vacuously true at the input stage). For the sake of simplicity, we shall assume w.l.o.g. that j, as defined in the procedure, is given by $j=1$ (i.e. v_{2} and v_{1} are left cross vectors).

Step 1: If $v_{21}=0$ then, as explained in the proof of property (f), v_{2} is the last vector in the sequence (1) and is the last vector generated by the procedure, as required.

Before considering steps 2 and 3, we must prove some additional properties of the lattice L_{d}. Consider Fig. 1, where the line passing through v_{1} and v_{2} is

$$
l(\alpha)=v_{2}-\alpha\left(v_{1}-v_{2}\right)=v_{2}-\alpha \delta
$$

Let $m=\left\lfloor v_{21} / \delta_{1}\right\rfloor$ and assume $k=\left\lceil v_{11} / v_{21}\right\rceil=2$.
Claim 1. $k=2$ implies that $m \geqslant 1$.

Proof of Claim 1. $k=2$ implies that $v_{11} \leqslant 2 v_{21}$ by the definition of k. This implies that $\delta_{1}=v_{11}-v_{21} \leqslant v_{21}$ or $v_{21} / \delta_{1} \geqslant 1$, resulting in $m=\left\lfloor v_{21} / \delta_{1}\right\rfloor \geqslant 1$.

Define, as before, $u_{i}=v_{2}-i \delta\left(u_{-1}=v_{1}, \delta=v_{1}-v_{2}\right), k_{i}=\left\lceil u_{i-1,1} / u_{i, 1}\right\rceil\left(k=k_{0}\right)$, and assume the following: $k_{0}=2, u_{0}$ is the shortest vector in L_{d} forming a basis with u_{-1} and u_{0}, u_{-1} are left cross vectors.

Claim 2. Under the above assumptions, for all $0 \leqslant i<m, k_{i}=2$, the vector u_{i} is the shortest vector forming a basis in L_{d} with u_{i-1}, u_{i} and u_{i-1} are left cross, and $u_{i-1}-u_{i}=\delta$.

Proof of Claim 2. By induction. For $i=0$, the properties follow from the definitions and assumptions.

Assume now that, for $i>0, k_{i-1}=2, u_{i-1}$ is the shortest vector forming a basis in L_{d} with $u_{i-2} \cdot u_{i-1}$ and u_{i-2} are left cross vectors and $u_{i-2}-u_{i-1}=\delta$. The shortest vector forming a basis in L_{d} with u_{i-1} is

$$
2 u_{i-1}-u_{i-2}=u_{i-1}-\left(u_{i-2}-u_{i-1}\right)=u_{i-1}-\delta
$$

and

$$
u_{i-1}-\delta=v_{2}-(i-1) \delta-\delta=v_{2}-i \delta=u_{i} .
$$

It follows from the above equalities that $u_{i-1}-u_{i}=\delta$.
To show that u_{i} and u_{i-1} are left cross, one can use an argument similar to the argument used in the proof of property (f).

Finally, since $i<m$, we have that $u_{m, 1}=v_{21}-m \delta_{1}$ is positive and closer to the origin than $u_{i 1}=v_{21}-i \delta_{1}$ by a multiple of δ_{1}. Thus, $u_{i 1} \geqslant \delta_{1}$. Therefore, $u_{i 1} \geqslant u_{i-1,1}-u_{i, 1}=\delta_{1}$ or $2 u_{i 1} \geqslant u_{i-1,1}$. But $u_{i, 1}<u_{i-1,1}$ since u_{i} and u_{i-1} are left cross. Therefore, $k_{i}=\left\lceil u_{i-1,1} / u_{i, 1}\right\rceil=2$ and the proof is now complete. \lceil

Claim 3. Under the same assumptions as in Claim $2, u_{m}$ is the shortest vector forming a basis for L_{d} with $u_{m-1}, u_{m-1}-u_{m}=\delta . u_{m}$ and u_{m-1} are left cross but $k_{m} \geqslant 3$.

Proof of Claim 3. The proofs of the first three properties are similar to the corresponding proofs in Claim 2. Now, by the definition of $m, u_{m, 1}<\delta_{1}$ (since $u_{m}-\delta$ has a negative x-coordinate), while $u_{m-1,1}=\delta_{1}+u_{m, 1}$. Thus, $u_{m-1,1}>2 u_{m, 1}$ and $k_{m}=\left\lceil u_{m-1.1} / u_{m, 1}\right\rceil>2$.

Claim 3 proves the remark after step 2.5.
To find the shortest vector on the line $l(\alpha)$ we can differentiate the value $\beta^{2}(\alpha)=\left(v_{21}-\alpha \delta_{1}\right)^{2}+\left(v_{22}-\alpha \delta_{2}\right)^{2}:$

$$
\frac{\mathrm{d}}{\mathrm{~d} \alpha}\left(\beta^{2}(\alpha)\right)=-2\left(\left(v_{21}-\alpha \delta_{1}\right) \delta_{1}+\left(v_{22}-\alpha \delta_{2}\right) \delta_{2}\right)=0
$$

The solution is $\bar{\alpha}=\left(v_{21} \delta_{1}+v_{22} \delta_{2}\right) /\left(\delta_{1}^{2}+\delta_{2}^{2}\right)$, resulting in $\bar{u}=v_{2}-\bar{\alpha} \delta$.
We can proceed now with the analysis of our procedure.
Assume $k=2$. If $\bar{\alpha}<0\left(\operatorname{step} 2.3, p_{1}=\lfloor\bar{\alpha}\rfloor\right)$ then there is no vector shorter than v_{2} forming a basis for L_{d} with v_{1} (the shortest such vector is the vector $v_{2}-\delta$ which must be longer than v_{2} since v_{2} is longer than $\left.v_{2}+(-\bar{\alpha}) \delta\right)$. v_{2} must therefore be the final vector in the sequence (1) and the procedure halts.

Let u_{r} be the shortest vector in the sequence $\left(u_{i}\right)$ on $l(\alpha)$.
If $r=m$: this happens if $p_{1}=\lfloor\bar{\alpha}\rfloor=m$ or $p_{1}=\lfloor\bar{\alpha}\rfloor=m-1$ but $p=m\left(\left|u_{m}\right|<\right.$ $\left|u_{m-1}\right| \mid$. Then the sequence $u_{-1}, u_{0}, \ldots, u_{m}$ is the subsequence $v_{1}, v_{2}, \ldots, v_{m+2}$ of (1), by Claim 2 with $m \geqslant 1$ (Claim 1). This case corresponds to step 2.5 in the procedure. The vectors v_{1} and v_{2} are reset and the procedure continues with step 3 .

If $r<m$, then u_{r} is one of the vectors $v_{2}-\lfloor\bar{\alpha}\rfloor \delta, v_{2}-\lceil\bar{\alpha}\rceil \delta . u_{r+1}$ with $r+1 \leqslant m$ is the shortest vector in L_{d} which forms a base with u_{r}. But in this case $\left|u_{r+1}\right|>\left|u_{r}\right|$ and therefore the sequence (1) terminates with $u_{r}=v_{r+2}$. If this is the case the procedure halts with u_{r} at output.

If $k \geqslant 3$, then the procedure proceeds directly to step 2.6 and it either halts with v_{1} at output (if the new v_{2} (the shortest vector forming a basis with v_{1}) is longer than v_{1}) or it halts with the new v_{2} at output (if the new v_{2} is terminal) or it proceeds with a new iteration. The proof of properties (g) and (h) is thus complete.

Proof of Theorem 5.1 (conclusion). Let v_{j+2} be the new v_{2} vector created at step 2.6 at iteration j. The application of step 2.6 is based on $k>2$. Therefore, $k=\left\lceil v_{j+1,1} / v_{j}+2,1\right\rceil>2$ or $v_{j+1,1}>2 v_{j+2,1}$. Thus, the new first coordinate of v is decreased by a factor of at least 2 . The number of iterations is therefore logarithmic in the magnitude of the coordinates of the vectors at input which are bounded by d.

All properties of the procedure are now proved.

6. The main algorithm

To find the shortest vector in a modular lattice L_{d} generated by a vector $v_{1}=(a, b)$, modulo $d, a \neq b$, apply the following algorithm.

1. Assume $\operatorname{gcd}(a, h, d)=1$
2. If $g c d(a, b)=g>1$ then reset $(a, b):=(1 / g)(a, b)$. Now $(a, b) \neq(1,1)$
3. Based on Lemmas 3.1 and 3.5 find the shortest vector v_{2} forming a basis with v_{1}
4. While $\left|v_{2}\right|<\left|v_{1}\right|$
4.1. If v_{2} and v_{1} are crossing return (Min-Cross (v_{1}, v_{2}))
4.2. $v_{1}:=v_{2}$
4.3. Based on Lemma 3.5 find the shortest vector v_{2} forming a basis with v_{1}
5. Return v_{1}

We conclude now by showing that the algorithm is correct and that its complexity is logarithmic in the size of d (when counting the number of arithmetical operations).

7. Proof of correctness

When the algorithm terminates, either via the Min-Cross procedure or at step 5, it produces a vector v such that no vector in L_{d} forming a basis with v is shorter than v. We claim that such a vector v is the shortest vector in L_{d}. We first need the following.

Lemma 7.1. Let ABC be a triangle in the plane such that the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ correspond to vectors in L_{d}. If the area of ABC is greater than d/2 then there must be a point of L_{d} different from A, B and C on the border of or inside the triangle.

Proof. Consider the torus formed by identifying the edges $x=d, y=d$ with the edges $x=0, y=0$, respectively, of the square $\{(x, y): 0 \leqslant x, y \leqslant d\}$. The area of the face of this torus is d^{2}. If no lattice point exists inside or on the border of $A B C$ then the parallelogram formed by the edges $A B$ and $A C$ has no lattice points inside or on its border, except its vertices. Under the assumption of Lemma 7.1, the area of the parallelogram is greater than d. Thus, d translates of this parallelogram will cover the whole torus with no overlap, implying that the area of the torus is greater than d^{2}, a contradiction.

Theorem 7.2. If a vector v in L_{d} has the property that no vector in L_{d} forming a basis with v is shorter than v, then v is the shortest vector in L_{d}.

Proof. Assume to the contrary that there is a vector v_{1} shorter than v in L_{d}. v_{1} cannot form a basis with v by the properties of v_{1}. Therefore, the triangle whose vertices are $0, v, v_{1}(0$ is the origin) must have an area which is greater than $d / 2$. Both vectors v and v_{1} belong to some basis and therefore, by Lemma 3.2, no vector in L_{d} can subdivide v or v_{1}. By Lemma 7.1 there must be a point in L_{d} inside the triangle or on the line joining v to v_{1}. Let v_{2} be such a point; then obviously $\left|v_{2}\right|<|v|$ (since $\left.\left|v_{1}\right|<|v|\right)$ and the area of the triangle whose vertices are $0, v_{2}, v$ is smaller than the area of the original triangle. Choose v_{2} to be a point as above and such that the area of the triangle whose vertices are $0, v_{2}, v$ is minimal. It follows from the choice of v_{2} that no vector in L_{d} can be inside the minimal triangle or on its $\left(0, v_{2}\right)$ or $\left(v, v_{2}\right)$ boundaries. Now v_{2} cannot form a basis with v since $\left|v_{2}\right|<|v|$. Therefore, the area of the minimal triangle must be greater than $d / 2$. But this contradicts, by Lemma 7.1, the fact that no points of L_{d} exist inside or on the boundary of this minimal triangle. The algorithm is thus shown to be correct.

8. Complexity analysis

If, at step $4,\left|v_{2}\right| \geqslant\left|v_{1}\right|$, the algorithm halts. If, at step $4.1, v_{2}$ and v_{1} are crossing, then the algorithm enters procedure Min-Cross and will eventually halt, while executing this procedure, in at most $\mathrm{O}\left(\log _{2} d\right)$ steps.

Let v_{i}, v_{i-1}, v_{i-2} be the vectors generated at step 4.3 at the $i, i-1$ and $i-2$ iterations, respectively, with $i \geqslant 2$. Since $\left|v_{i-1}\right|<\left|v_{i-2}\right|$ with $\left|v_{i-1}\right|^{2}$ and $\left|v_{i-2}\right|^{2}$ integers, the algorithm will eventually halt. Since the algorithm did not enter the procedure Min-cross at step 4.1, we must have that $\left|v_{i-1}\right|<\left|v_{i-2}\right|$ and v_{i-1}, v_{i-2} are not crossing. Therefore, $v_{i-1,1} \leqslant v_{i-2,1}, v_{i-1,2} \leqslant v_{i-2,2}$, and at least one of the inequalities is strict. Let $k_{i}=\min \left(\left\lfloor v_{1-2,1} / v_{i-1,1}\right\rfloor,\left\lfloor v_{i-2,2} / v_{i-1,2}\right\rfloor\right) ; k_{i} \geqslant 1$ (since the vectors are not cross). The vector v_{i} generated at step 4.3 is either equal to $v_{i-2}-k_{i} v_{i-1}$ or a shorter vector (in case $-v_{i-2}+i_{1} v_{i-1}$, as defined in Lemma 3.5, is shorter than $v_{i-2}+i_{0} v_{i-1}$). Set $v_{i}^{\prime}=v_{i-2}-k_{i} v_{i-1}$. It follows that

$$
\left|v_{i}^{\prime}\right|=\left|v_{i-2}-k_{i} v_{i-1}\right| \geqslant\left|v_{i}\right|
$$

Now $v_{i-2}=v_{i}^{\prime}+k_{i} v_{i-1}$, which implies that

$$
\left|v_{i-2}\right|=\left|v_{i}^{\prime}+k_{i} v_{i-1}\right| \geqslant\left|v_{i}^{\prime}+v_{i-1}\right|
$$

since k_{i} is positive and the entries of the vectors involved are nonnegative.
Consider the parallelogram whose vertices are the origin O and the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, corresponding to v_{i-1}, v_{i}^{\prime} and $v_{i}^{\prime}+v_{i-1}$, all in the positive quadrant. Since v_{i}^{\prime} and v_{i-1} are both in the positive quadrant, the origin is an acute angle in the parallelogram and the angle between the edges OA and AC is obtuse. It follows from the law of cosines that $\mathrm{OC}^{2} \geqslant \mathrm{OA}^{2}+\mathrm{AC}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}$, which implies that

$$
\left|v_{i}^{\prime}+v_{i-1}\right|^{2} \geqslant\left|v_{i}^{\prime}\right|^{2}+\left|v_{i-1}\right|^{2}
$$

Combining the last three inequalities we get that

$$
\left|v_{i-2}\right|^{2} \geqslant\left|v_{i}^{\prime}+v_{i-1}\right|^{2} \geqslant\left|v_{i}^{\prime}\right|^{2}+\left|v_{i}-1\right|^{2} \geqslant\left|v_{i}\right|^{2}+\left|v_{i-1}\right|^{2}
$$

Note also that the numbers involved in the above inequality are nonnegative integers.
Let t be the number of iterations of the algorithm through step 4.3 and let ϕ be the positive solution of the equation $x^{2}=x+1, \phi=(1+\sqrt{5}) / 2$. Then

$$
\begin{aligned}
& \left|v_{t}\right|^{2} \geqslant 1 \\
& \left|v_{t-1}\right|^{2} \geqslant\left|v_{t}\right|^{2} \geqslant 1 \\
& \left|v_{t-2}\right|^{2} \geqslant\left|v_{t-1}\right|^{2}+\left|v_{t}\right|^{2} \geqslant 2>\phi, \\
& \left|v_{t-3}\right|^{2} \geqslant\left|v_{t-2}\right|^{2}+\left|v_{i-1}\right|^{2}>\phi+1=\phi^{2} \\
& \left|v_{t-j}\right|^{2} \geqslant\left|v_{t-j+1}\right|^{2}+\left|v_{t-j+2}\right|^{2}>\phi^{j-1} \\
& \left|v_{0}\right|^{2}=\left|v_{t-t}\right|^{2}>\phi^{t-1}
\end{aligned}
$$

We get that

$$
(t-1) \log \phi<\log \left|v_{0}\right|^{2}<4 \log d
$$

or

$$
t<\frac{4 \log d}{\log \phi}+1
$$

The complexity of the algorithm is thus shown to be logarithmic in the magnitude of d. If the algorithm does not enter the Min-Cross procedure then the number of iterations before it halts is bounded as above. If it enters the procedure Min-Cross then the number of iterations before entering the procedure is also bounded as above, and after entering the procedure Min-Cross the algorithm will stay in the procedure no more than a logarithmic number of iterations before halting.

References

[1] J.C. Lagarias, Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. J. Algorithms 1 (1980) 142-186.
[2] A.K. Lenstra, H.W. Lenstra and L. Lovasz, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982) 513-534.

[^0]: Correspondence to: A. Paz, Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Isracl.

 * The results shown in this paper are part of the M.Sc. Thesis of the first author done under the supervision of the second author, submitted to the Senate of the Technion.

