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Abstract 

Lempel, M. and A. Paz, An algorithm for finding a shortest vector in a two-dimensional modular 

lattice, Theoretical Computer Science 125 (1994) 229-241. 

Let 0 <a, bid be integers with a # b. The lattice L,(a, b) is the set of all multiples of the vector (a, b) 
modulo d. An algorithm is presented for finding a shortest vector in L,(a, b). The complexity of the 
algorithm is shown to be logarithmic in the size of d when the number of arithmetical operations is 

counted. 

1. Introduction 

A classical algorithm, due to Gauss, for finding a shortest vector in a two- 

dimensional lattice has been used as one of the main building blocks in the recent L3 

(Lenstra, A.K., Lenstra, H.W. Jr. and Lovasz, L.) basis reduction algorithm for general 

lattices [Z]. The complexity of the Gauss algorithm has been shown to be logarithmic 

in the maximal integer among the entries of the vectors forming the basis of the lattice 

at input (when counting the number of arithmetical operations involved) [l]. 

Let 0 <a, b< d be integers such that a # b. We define &,(a, b) to be the modular 

lattice generated by the vector (a, b) modulo d, i.e. the (finite) set of all vectors of the 

form (ia(mod d), ib (mod d)), 0 Q i < d, which is closed under addition modulo d. 
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We present, in this paper, an algorithm for finding a shortest vector in a lattice 

&(a, 6) as above, and we prove that the complexity of the algorithm is logarithmic in 

the size of d when the number of arithmetical operations is counted. 

While our algorithm bears certain similarities to the algorithm of Gauss, the two 

algorithms are different and cannot be reduced one to the other when the Gauss 

algorithm is considered over vectors with integer entries only. Thus, e.g. in the 

modular lattice generated by the vector (4,l) modulo 5, a shortest (nonzero) vector is 

the vector (2,3) = (3.4 (mod 5), 3.1 (mod 5)) (or the vector (3,2) which has the same 

length). The shortest vector in the corresponding general (nonmodular) lattice con- 

taining the vectors (4, 1) and (3,2) is (- 1,l) = (3 - 4,2 - 1). 

Conversely, consider the general (nonmodular) lattice with base vectors (7, 11) and 

($8). The determinant 1: ‘2 1 is equal to 1. It can be shown that under these 

circumstances no d > 1 exists such that (5,8) = (i7 (mod d), ill (mod d)), 0 < i < d, since 

the existence of such a d would imply that the above determinant has a value > d (see 
Section 2). 

It is hoped that this algorithm will enable generalizations for general n-dimensional 

modular lattices and will have applications to other areas of study (e.g. cryptology, 

coding theory, geometry of numbers, etc.). 

2. Preliminaries 

Given the integers 0 <a, b < d and i, the notation i(u, b) (mod d) stands for the vector 

(ia (mod d), ib (mod d)). 
We shall denote by Ld(a, b) the modular lattice Ld(u, b)= {i(u, 6)(modd): 

0 did d - 1 }. We start with a few simple remarks: 

(1) If gcd(u, b, d) = g > 1 then the lattice Ldis (u/g, b/g) is an isomorphic contraction 

of the lattice &(a, b). The shortest vector of the original lattice is equal to the shortest 

vector of the Ldis lattice multiplied by g. We shall assume therefore that 

gcd(u,b,d)= 1. 

(2) Ifgcd(u, b,d)= 1 but gcd(u,b)=g, > 1 then Ld(u/g,, b/gl)=L,(u,b). This follows 

from the fact that g1 is invertible modulo d, given that gcd(u, b,d)= 1. Thus, 

i(u,b)(modd)=j i, h (modd), 
( > 

where 

j= ig, (mod d) if i is given and i =jg; ’ (mod d) if j is given. 

(3) Any two vectors in Ld whose determinant is equal to kd will be called 

a geometrical basis for L,,. It will be shown in the next section that any vector 

(u,b)#(l, 1) (with gcd(u, b)= 1) belongs to a geometrical basis. Vectors in Ld will be 

considered both as vectors and as points in two-dimensional space. Let (a, b) and (c, e) 

be a geometrical basis in Ld. Consider the topological torus formed from the square 



Algorithm for jinding a shortest vector 231 

O<x, y<d when its edges x=0, y=O are identified with the edges x=d, y=d, 
respectively. The area of the face of this torus is d2 and it is covered by d nonoverlap- 
ping translates of the parallelogram whose vertices are (0, 0), (a, b), (c, e), (a + c, b + e) 
and whose area is d. It follows that the determinant of any 2 points in Ld which are not 
colinear is equal to + kd, where k is an integer such that 0 < k < d. 

3. Some properties of Ld 

Lemma 3.1. Let (c,e) be a point uector in L,(u, b) such that gcd(c,e)= 1. 1fc> 1 then 
there is a vector (cl, ei) in L,(u, b) such that 1 i, i, I= d. Zf e > 1 then there is a vector 
(c2,e2) in L,(u,b) such that I,‘, &I= -d. 

Proof. Assume that c> 1. gcd(c,e)= 1 implies that there are integers U, v such that 
cu - eu = 1. Multiplying by d we get cud -cud =d. This equality induces the set of 
equalities 

c(ud - ke) - e(vd - kc) = d 

for any integer k. 
Let k,, be the maximal k such that both (ud - koe) = e, 2 0 and (vd - k,c) = c1 2 0. If 

both e, and cl are smaller than d, then from (cl,e,)=(v, u)d-(c,e) k0 we get that 
(c,,ei) is a modular multiple of a vector in L,,(u, b) and satisfies therefore the 
requirement of Lemma 3.1. To complete the proof of the first part of the lemma we 
must show that ci,ei cd. 

From the choice of k0 we know that either cl CC or el <e. Assume, by way of 
contradiction, that 

ce,-ecl=d 

and either 

c1 <c<d together with e, >d 

or 

c1 >d together with e1 <e<d. 

In the first case we have that c1 <c- 1, e <d and e, Bd. Also, since c > 1 (by 
assumption), c - 1> 0. Therefore, 

d=ce,-ecI>cd-d(c-l)=d, 

a contradiction. 
In the second case, we have that e, <e- 1, c <d and c1 >d. This implies that 

d=ce, -ccl <d(e- 1)-ed= -d, 

which is impossible. 
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It follows that cl, e, <d and the proof of the first part of the lemma is complete. The 

proof of the second part is similar. 0 

Remark. The excluded point vector (1,l) can never belong to a geometrical basis 

since the value of the determinant ( i d I is always less than d, in absolute value, given 

that Ofc,e<d. Moreover, if the vector (1,l) belongs to a modular lattice L,,, then 

Ld={(k,k);O<k<d}. 

No other vector (c, e) #(k, k) can belong to Ld. Any such vector forms a determinant 

with (1,1) in Ld whose value is less than d, which cannot happen for vectors in L,, (see 

Section 2). 

The next few lemmas provide a characterization of the set of points forming 

a geometrical basis with a given vector. 

Lemma 3.2. Let (a, b) be a vector in a lattice Ld. Let (c, e) be another vector in Ld such 
that (a, b) and (c, e)form a geometrical basis. Ifgcd(a, b) = g > 1 with (a, b) = g(u’, b’) then 
any vector of the form k(a’, b’), 1~ k<g, is not in L,,. 

Proof. Since (a, b) and (c, e) form a basis we have that 1: “,I = Is:’ “,“‘I = +d. Assume 

that the determinant equals +d (the other case is similar). This implies that 

O<I kz’ “,“‘/<1”:’ “;‘I=d. G’ iven that (c, e) is in Ld, if k(a’, b’) is in L,, then Ik:’ “,“’ I must 

be equal to 0 or a nonzero multiple of d, a contradiction. 0 

Lemma 3.3. Let (a, b) be a vector in a lattice Ld and let (c, e) and (c’, e’) be two vectors in 
Ld such that both form a basis with (a, b). Then (c, e) can be written in the form 

(c,e)=(c’,e’)+i(a,b) or (c,e)= -(c’,e’)+i(a,b) 

for some 1 <i<d. 

Proof. It follows from the assumptions that ae- bc = +(ae’- bc’). Let gcd(a, b) =g 
with (a, b) = g(a’, b’). Then 

ga’(e+e’)=gb’(cfc’), 

implying that 

efe’=kb and cfc’=ka’ 

(since gcd(a’, b’) = 1) for some integer k. 
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Thus, 

(c,e)=(c’,e’)+k(a’,b’) or (c,e)= -(c’,e’)+k(a’,b’). 

If g = 1 or gl k then we are done. To complete the proof we show that this is the only 

possible case. Otherwise, let g > 1 and k = gs + r, 0 <Y < g. Then 

(c,e)=(c’,e’)+s(a,b)+r(a’,b’) 

or 

(c,e)= -(c’,e’)+s(a, b)+r(a’,b’). 

In both cases r(a’, b’) must be in Ld since (c, e), (c’, e’) and ~(a, b) are in L,, and all the 

entries of all the vectors involved are nonnegative. But this contradicts Lemma 3.2 

since O<r<g. 0 

Corollary 3.4. Let (a, b), (c, e) be two vectors in Ld which are a geometrical basis. The set 

of all vectors forming a basis with (a, b) in Ld is the set (*): 

{(p,q)= +(c,e)+i(a,b): -d,<i<d,O<p,q<d). (*) 

Lemma 3.5. Let i0 be the maximal i such that (c, e) - i,(a, b) is nonnegative and let iI be 

the minimal i such that -(c, e)+ iI (a, b) is nonnegative in the set (*). Then the shortest 

vector in the set (*) is the shortest of (p’, q’) and (p”, q”), where 

(p’,q’)=(c,e)-i&b), 

(p”,q”)= -(c,e)+ &(a, b). 

Proof. Left to the reader. 0 

Remark. Note that i0 can be defined as 

i 

if a,b>O then min{Li],L%J}, 

i,,= if b=O then LiJ, 

if a=0 then LgJ, 

and iI can be defined in a similar way. It follows that the number of operations 

involved in the computation of the shortest vector in the set (*) is constant. 

The algorithm to be presented in the sequel bears some resemblance to the classical 

algorithm of Gauss for finding a minimal vector in a general two-dimensional lattice. 

As in the classical algorithm, after a geometrical basis is found (Lemma 3.1), a se- 

quence of decreasing vectors in the lattice is generated until the minimal vector is 

found. A particular case in our algorithm needs special attention in order to keep the 
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complexity of the general algorithm linear (in the magnitude of d). A procedure for 

handling this particular case (defined below) is provided in Section 4. 

4. Crossing vector procedure 

Definition 4.1. Let u~=(u~~,u~~) and ~=(o~i, uz2) be nonnegative vectors. Let 

6=(81,62)=(u11 -u~~,u~~--u~~) be their difference vector. u1 and u2 are crossing if 

6 id2 < 0. They are left crossing if 6 1 > 0 (6, < 0) and are right crossing if 6 I < 0 (6, > 0). 

Iv1 denotes the length of a vector u. 

Procedure Min-Cross (finding a minimal-length vector in a lattice dejined by a crossing 

basis). 
Znput : A basis u2, ui for a lattice Ld such that luzl < Iul 1, u2 and ui are crossing. Let U2j 

and ulj be the entries in u2 and u1 such that Ulj- U2j= 6j>O. Denote by U, the vector 

u~=u~-s(~~,&) with uel=ul. 

1. If uzj =0 return ul, halt. 

2. Repeat until 

IUJ>IU~l or U,j=O. 

begin 

2.1. Find k := s r 1 
2.2. 

2.3 

2.4. 

2.5. 

I u2j I 
{Remark: ulj>Uaj implies that k>2} 

If k=2 do begin 

u2j . 

Set m:= 6j ’ 11 
{Remark : k = 2 implies m > 1) 

Set pi = 
1 

u2161 +u2282 

S:+S$ 1 

(Remark: p1 <m} 
If pi ~0 return u2, halt; 

define p= ” 
if I~pll~l~pl+ll or h=m 

p1 + 1 otherwise 

If p < m - 1 return up, halt; 

Set u2:=uP, u1 :=uPel, k:= 

end; 

{Remark: NOW k>2 and 6j>O} 

2.6. Set U~ZU~, uZ:= -~l+kU2, U~I=U~ 

end (repeat); 
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3. If luzl >lull return ur, else return v2 
end of algorithm. 

5. Properties of the Min-Cross procedure 

The vectors at input v1 and v2 are assumed to satisfy the following properties: 

(a) IvzI<I~II, 
(b) v2 and u1 are cross vectors, 
(c) v2 and or are a geometrical basis for a lattice L,,. 

Consider the sequence of vectors 

V1,Vz,V3,..., Vt (1) 

such that for all i > 2 the following properties hold: 

(d) lvil<l~i-~l, i22, 
(e) vi is the shortest vector in Ld which forms a basis for Ld with Ui- 1. 

We proceed to prove the following theorem. 

Theorem 5.1. (f) vi and vi-, are cross vectors, of the same type (left or right) as u2 and 

VI, for all ia2. 
(g) The vectors generated at steps 2.5 and 2.6 by the procedure Min-Cross are 

a subsequence of the sequence (l), starting from v2 and on. 
(h) v,, the last vector in (I), is the last vector generated by the procedure, at one of the 

steps 1,2.3,2.4,3. 
(i) The number of iterations of the procedure is logarithmic in the magnitude of d. 

Proof. (f): It is proved by induction. By assumption v2 and u1 are cross vectors. 
Assume that vi_ r and ai_ 2, i> 3, are left cross vectors with vi-r, 1 < ai_2, r and 
vi_ 1, 2 > Vi_2, 2 (the right cross case is similar). If Ui_ 1 is not the last vector in the 
sequence then, by the properties of ai ((d) and (e)) and by Lemma 3.5, ai must be one of 
the vectors 

Vi=Ui_2-ZgUi-l or Vi= -Vi_2+ilUi-1, 

where i,, and iI are as defined in Lemma 3.5. The first of the two choices requires i,, = 0, 
otherwise vi is a vector with negative entries since Vi_ 1 and Vi_ 2 are cross. The only 
possible choice which can result in a shorter vector is therefore vi = - ai _ 2 + i, vi _ 1. If 
ai- 1, 1 = 0 (steps 1 and 2 in the procedure) then no shorter vector in Ld can form a basis 
with Vi _ 1. This follows from the fact that vi _ 2, I > ai_ 1, I = 0 (our assumption) so that 
vi= -vi_2 + il Vi- 1 is a vector with negative entries. Therefore, if ai_ r, r =0 then 
vi-r =v, is the last vector in the sequence (1). Otherwise, with iI =r~i-~,~/v~_~, 11>2 
(since Vi_2,1 >Ui_ 1,1) and Vi=-Vi_2+ilVi_l we have that Vi,1 is ui_r,l minus the 
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Fig. 1. 

remainder from t’he division of vi _ 2,iby~i-i,i,~0vi,i<vi-l,i.Thesecondentryin~i 

satisfies 

(since vi_ 1, 2 > vi _ 2, 2). It follows that Vi and Vi _ I are left cross vectors as required. 

(g) and (h): We shall follow the procedure step by step to verify that the generated 

sequence satisfies the required properties, using an inductive argument. Assume that 

the procedure has gone through several iterations and that the subsequence of vectors, 

ending in the currently defined vectors vi, v2, generated so far, satisfies the required 

properties (this is vacuously true at the input stage). For the sake of simplicity, we shall 

assume w.1.o.g. thatj, as defined in the procedure, is given byj= 1 (i.e. v2 and v1 are left 

cross vectors). 

Step 1: If vzl = 0 then, as explained in the proof of property (f), v2 is the last vector in 

the sequence (1) and is the last vector generated by the procedure, as required. 

Before considering steps 2 and 3, we must prove some additional properties of the 

lattice Ld. Consider Fig. 1, where the line passing through a1 and v2 is 

Let m=Lvzl/Sl] and assume k=rv,,lvz,l=2. 

Claim 1. k=2 implies that m> 1. 
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Proof of Claim 1. k = 2 implies that u 1 1 < 2u2 l by the definition of k. This implies that 

81=011-U21<U21 or uz1/6i >, 1, resulting in ~=Lu,~/S, J>- 1. •I 

Define, as before, ui=uz-iS (u-~=u~, c5=u1-u2), ki=rui_,,,/ui,ll (k=k,), and 

assume the following: k0 =2, u,, is the shortest vector in Ld forming a basis with 

a_ I and a,,, u _ 1 are left cross vectors. 

Claim 2. Under the above assumptions, for all 0~ i<m, ki=2, the vector Ui is the 
shortest vector forming a basis in Ld with ui- 1, Ui and ui- 1 are left cross, and 

Ui_,-Ui=6. 

Proof of Claim 2. By induction. For i=O, the properties follow from the definitions 

and assumptions. 

Assume now that, for i > 0, ki _ 1 = 2, Ui _ 1 is the shortest vector forming a basis in Ld 

with u~_~. #i-l and Ui-2 are left cross vectors and Ui_2-ui-l=& The shortest vector 

forming a basis in L, with Ui- 1 is 

2Ui-~-Ui_~'Ui-~-(Ui_*-Ui_~)=Ui-l_8 

and 

It follows from the above equalities that Ui- 1 -ui=6. 

To show that ni and Ui-l are left cross, one can use an argument similar to the 

argument used in the proof of property (f). 

Finally, since i < m, we have that u,, 1 = u21 - mh 1 is positive and closer to the origin 

than uil=u21-iSl by a multiple of 6,. Thus, Uil>,61. Therefore, 

Uil~Ui_l,l_Ui,1=6, or 2Ui1>Ui-,,i. But ui,1<Ui_l,, since Ui and Ui_l are left 

cross. Therefore, ki = r ui- 1,1/ui,11=2 and the proof is now complete. 0 

Claim 3. Under the same assumptions as in Claim 2, u, is the shortest vector forming 
a basisfor Ld with u,,_~, u,,,_~-u m = 6. u, and u, _ 1 are left cross but k, > 3. 

Proof of Claim 3. The proofs of the first three properties are similar to the corres- 

ponding proofs in Claim 2. Now, by the definition of m, u,, 1 ~6, (since u,-6 has 

a negative x-coordinate), while u,_ 1, 1 = a1 + u,, 1. Thus, u,_ 1, 1 >2u,, I and 

kn=r&n-l,Ilht,11>2. 0 

Claim 3 proves the remark after step 2.5. 

To find the shortest vector on the line l(a) we can differentiate the value 

B2(~)=(U21-C181)2+(U22-~82)2: 

-$ (/F(tl))= -2((uz1 -a&)& +(I&-W&)82)=0. 
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The solution is E=(uz18i +vzzS,)/(6: +S$, resulting in U=u2-&5. 

We can proceed now with the analysis of our procedure. 

Assume k=2. If a<0 (step 2.3, pl=LcIJ) then there is no vector shorter than v2 

forming a basis for Ld with ui (the shortest such vector is the vector u2 - 6 which must 

be longer than v2 since v2 is longer than u2 +(-ii) 6). u2 must therefore be the final 

vector in the sequence (1) and the procedure halts. 

Let u, be the shortest vector in the sequence (ui) on l(cr). 

If r=m: this happens if pl=LiiJ=m or Pi=L&J=m-1 but p=m(lu,l< 

lu,_,l).Thenthesequence~_,,u,,...,u,isthesubsequenceu,,v,,...,u,+~of(l),by 

Claim 2 with m> 1 (Claim 1). This case corresponds to step 2.5 in the procedure. The 

vectors u1 and v2 are reset and the procedure continues with step 3. 

If r<m, then u, is one of the vectors v2-Lc(]S, u2-r&18. u,+iwith r+ 1 <m is the 

shortest vector in Ld which forms a base with u,.. But in this case [u,+i 1 >[u,I and 

therefore the sequence (1) terminates with u, = u,+ 2. If this is the case the procedure 

halts with a,. at output. 

If k 2 3, then the procedure proceeds directly to step 2.6 and it either halts with u1 at 

output (if the new u2 (the shortest vector forming a basis with o1 ) is longer than ul) or 

it halts with the new v2 at output (if the new u2 is terminal) or it proceeds with a new 

iteration. The proof of properties (g) and (h) is thus complete. 

Proof of Theorem 5.1 (conclusion). Let Uj+2 be the new u2 vector created at step 

2.6 at iteration j. The application of step 2.6 is based on k> 2. Therefore, 

k=ruj+i,i /Uj+2,11>2 or Uj+l,1>2Oj+2,1. Thus, the new first coordinate 

factor of at least 2. The of iterations 

The main algorithm 

To find the shortest vector in a modular lattice Ld generated by a vector ui = (a, b), 

modulo d, a# b, apply the following algorithm. 

1. Assume gcd(a, b, d) = 1 

2. If gcd(a,b)=g>l then reset (u,b):=(l/g)(a,b). Now (u,b)#(l, 1) 

3. Based on Lemmas 3.1 and 3.5 find the shortest vector u2 forming a basis with r1 

4. While ~u21<Iu1~ 

4.1. If u2 and vi are crossing 

return (Min-Cross (vi, u2)) 

4.2. vi := v2 

4.3. Based on Lemma 3.5 find the shortest vector u2 forming a basis with a1 

5. Return ui 
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We conclude now by showing that the algorithm is correct and that its complexity 

is logarithmic in the size of d (when counting the number of arithmetical operations). 

7. Proof of correctness 

When the algorithm terminates, either via the Min-Cross procedure or at step 5, 

it produces a vector u such that no vector in Ld forming a basis with u is shorter 

than u. We claim that such a vector v is the shortest vector in Ld. We first need the 

following. 

Lemma 7.1. Let ABC be a triangle in the plane such that the vertices A, B, C correspond 
to vectors in Ld. If the area of ABC is greater than d/2 then there must be a point of Ld 
Arerent from A, B and C on the border of or inside the triangle. 

Proof. Consider the torus formed by identifying the edges x =d, y=d with the edges 

x = 0, y = 0, respectively, of the square {(x, y): 0 <x, y < d}. The area of the face of this 

torus is d’. If no lattice point exists inside or on the border of ABC then the 

parallelogram formed by the edges AB and AC has no lattice points inside or on its 

border, except its vertices. Under the assumption of Lemma 7.1, the area of the 

parallelogram is greater than d. Thus, d translates of this parallelogram will cover the 

whole torus with no overlap, implying that the area of the torus is greater than d2, 
a contradiction. 0 

Theorem 7.2. If a vector v in Ld has the property that no vector in Ld forming a basis 
with v is shorter than v, then v is the shortest vector in Ld. 

Proof. Assume to the contrary that there is a vector v1 shorter than v in L,,. v1 cannot 

form a basis with u by the properties of vl. Therefore, the triangle whose vertices are 

0, v, v1 (0 is the origin) must have an area which is greater than d/2. Both vectors v and 

u1 belong to some basis and therefore, by Lemma 3.2, no vector in Ld can subdivide 

v or ul. By Lemma 7.1 there must be a point in Ld inside the triangle or on the line 

joining v to ul. Let u1 be such a point; then obviously ) v2 I< 1 v 1 (since 1 v1 I< 1 VI) and the 

area of the triangle whose vertices are 0, va, v is smaller than the area of the original 

triangle. Choose v2 to be a point as above and such that the area of the triangle whose 

vertices are 0, v2, v is minimal. It follows from the choice of v2 that no vector in Ld can 

be inside the minimal triangle or on its (0, v2) or (v, v2) boundaries. Now v2 cannot 

form a basis with v since 1 v2 1-c 101. Therefore, the area of the minimal triangle must be 

greater than d/2. But this contradicts, by Lemma 7.1, the fact that no points of Ld exist 

inside or on the boundary of this minimal triangle. The algorithm is thus shown to be 

correct. 0 
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8. Complexity analysis 

If, at step 4, I v2 12 I v1 1, the algorithm halts. If, at step 4.1, v2 and v1 are crossing, then 

the algorithm enters procedure Min-Cross and will eventually halt, while executing 

this procedure, in at most O(log, d) steps. 

Let Ui, Ui- 1, vi- 2 be the vectors generated at step 4.3 at the i, i - 1 and i- 2 iterations, 

respectively, with i 2 2. Since 1 vi- 1 I < 1 Vi- 2 I with I vi- 1 I2 and 1 vi_ 2 I2 integers, the 

algorithm will eventually halt. Since the algorithm did not enter the procedure 

Min-cross at step 4.1, we must have that 1 UC _ 1 I < 1 Ui _ 2 1 and Vi _ 1, vi _ 2 are not crossing. 

Therefore, Vi- 1, I < Ui - 2, 1, Vi- 1, 2 < Ui- 2, 2, and at least one of the inequalities is strict. 

Let ki=min(LU1_2,1/Vi_ 1,1J,LVi-2,2/Vi-l,2J);ki~1( . since the vectors are not cross). 

The vector Ui generated at step 4.3 is either equal to Ui_ 2 - ki vi _ 1 or a shorter vector 

(in case -Vi_2+ilVi_l, as defined in Lemma 3.5, is shorter than Vi- 2 + i0 Ui_ 1). Set 

u:=vi_2_kivi_1. It follows that 

NOW vi _ 2 = V: + ki vi _ 1, which implies that 

since ki is positive and the entries of the vectors involved are nonnegative. 

Consider the parallelogram whose vertices are the origin 0 and the points A, B, C, 

corresponding to Ui _ 1, II: and vi + Vi _ 1, all in the positive quadrant. Since u; and 

Ui_l are both in the positive quadrant, the origin is an acute angle in the parallelo- 

gram and the angle between the edges OA and AC is obtuse. It follows from the law of 

cosines that OC2 > OA2 + AC2 = OA2 + OB2, which implies that 

IU~+Ui_~~2~~U~~2+IVi_~~2~ 

Combining the last three inequalities we get that 

~Vi-2(2~~U~+Ui-~~2~~V~~2+~Vi-1~2~~U~~2+(Ui-~~2~ 

Note also that the numbers involved in the above inequality are nonnegative integers. 

Let t be the number of iterations of the algorithm through step 4.3 and let 4 be the 

positive solution of the equation x2 = x + 1, $J = (1 + $)/2. Then 

Ivt123 1, 

l~,-112~lu,12>1, 
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We get that 

or 

410gd 
-+ 1. 

r< logq5 

The complexity of the algorithm is thus shown to be logarithmic in the magnitude 

of d. If the algorithm does not enter the Min-Cross procedure then the number of 

iterations before it halts is bounded as above. If it enters the procedure Min-Cross 

then the number of iterations before entering the procedure is also bounded as above, 

and after entering the procedure Min-Cross the algorithm will stay in the procedure 

no more than a logarithmic number of iterations before halting. 

References 

[l] J.C. Lagarias, Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. 

J. Algorithms 1 (1980) 142-186. 

[2] A.K. Lenstra, H.W. Lenstra and L. Lovasz, Factoring polynomials with rational coefficients, Math. 

Ann. 261 (1982) 513-534. 


