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Although microwarse radiation is best known for heating food in the kitchen, in recent years it has found new 
applications in many industrial processes, such as those invoicing melting, smelting, sintering, drying, and 
joining. Heating by microwave radiation constitutes a highly coupled nonlinear problem giving rise to new and 
unexpected physical behavior, the best known of which is the appearance of “hot spots. ” That is, in many 
industrial applications of microwalle heating it has been observed that heating does not take place uniformly 
but rather regions of rery high temperature tend to form. In order to predict the occurrence of such phenomena 
it is necessar): to derjelop simplified mathematical models from which insight might be gleaned into an 
inherently complex physical process. The purpose of this paper is to review some of the recent developments in 
the mathematical modelling of microwave heating, including models that consider in isolation the heat 
equation with a nonlinear source term, in which case the electric-field amplitude is assumed constant, models 
imolving the coupling between the electric-field amplitude and temperature including both steady-state 
solutions and the initial heating, and also models that control the process of thermal runaway. Numerical 
modelling of the microwave heating process is also briefly reviewed. 
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1. Introduction 

Although the familiar domestic microwave oven has been 
in use for nearly 50 years, use of this technology for 
industrial heating applications is a recent development and 
the bulk of the theoretical work in this area has been 
undertaken only in the past few years. The present interest 
in industrial applications of heating by microwave radia- 
tion, such as in melting, smelting, sintering, drying, and 
joining, has prompted a good deal of research that aims to 
formulate mathematical models capable of accurately mod- 
elling the phenomena. In general a proper study of mi- 
crowave heating involves solving Maxwell’s equations of 
electromagnetism and the forced heat equation where all 
thermal, electrical, and magnetic properties of the material 
are nonlinearly dependent on the temperature T. In the full 
mathematical problem, Maxwell’s equations and the forced 
heat equation are coupled and grossly nonlinear and this 
depth of complexity is revealed in applications through the 
appearance of unusual and often unexpected physical be- 
havior such as “hot spots” and “waiting time” phenom- 
ena. Hot spots occur in a material irradiated by mi- 
crowaves due to the temperature-dependent material prop- 
erties. The rate of absorption of microwave energy referred 
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to as the thermal absorptivity usually increases with tem- 
perature, hence thermal runaway can result. The location 
of a hot spot in the material arises from differential heating 
and can be due to a small temperature anomaly, an impu- 
rity of higher thermal absorptivity, or simply to a geomet- 
rical feature such as a corner or edge. In addition some 
materials are transparent to microwave radiation and yet 
after heating by conventional means they respond to mi- 
crowave energy. Similarly, waiting-time behavior is exhib- 
ited by materials that respond to microwave heating only 
after a finite amount of time has elapsed. In this paper we 
review recent mathematical developments in these areas. 

To solve fully Maxwell’s equations coupled with the 
forced heat equation, it is necessary to prescribe the tem- 
perature-dependent material properties, namely the specific 
heat, c(T); thermal diffusivity, v(T); thermal absorptivity, 
y(T); magnetic permeability, p(T); electrical permittivity, 
E(T); and the electrical conductivity, (T(T). An accurate 
experimental determination of these six material parame- 
ters over some temperature range constitutes a formidable 
obstacle, and existing mathematical models of microwave 
heating emerge according to the assumed knowledge of 
these electrical, magnetic, and thermal properties. 

In Section 2 of this paper, the equations that govern 
microwave heating are given, namely Maxwell’s equations 
of electromagnetism, which describe the propagation of the 
electric and magnetic fields, and the forced heat equation, 
which describes the absorption and diffusion of heat. The 
usual approximations are made to simplify these equations 
to obtain the damped wave equation, obtained from 
Maxwell’s equations in the limit of small electrical con- 

0307-904X/96/$15.00 
SSDI 0307-904X(95)00107-U 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82457915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Modelling microwave heating: J. M. Hill and T. R. Marchant 

ductivity and slowly varying electrical permittivity and 
magnetic permeability, and the transport equation, derived 
from Maxwell’s equations in the high-frequency limit. 
Also presented are the appropriate initial and boundary 
conditions for the electric field and the temperature. 

In Section 3, thin materials are considered so that the 
assumption of constant electric-field amplitude is made. 
This assumption simplifies the problem by allowing the 
forced heat equation to be solved in isolation. Typically, 
the thermal absorptivity -y(T) is assumed to have a given 
dependence on temperature, and steady-state temperature 
profiles are found. In regions of parameter space where 
steady-state solutions do not exist, it is postulated that 
thermal runaway occurs. 

In Section 4, models are considered that incorporate the 
coupled electric-field amplitude and temperature. Hence, 
the electric-field amplitude decays through the slab with 
spatial exponential decay occurring in the case of constant 
electrical conductivity. Steady-state solutions of this cou- 
pled system are found. For some choices of electrical 
conductivity the power versus temperature curve is S- 
shaped giving rise to one or three steady-state solutions 
with a hystersis effect in the multivalued region. At a 
certain critical power level, the solution jumps from the 
lower branch to the upper branch of the S-shaped curve 
resulting in thermal runaway. 

In Section 5, the coupled system of the damped wave 
equation, valid for small electrical conductivity, and the 
forced heat equation are considered. Asymptotic solutions 
obtained by the methods of multiple scales and strained 
coordinates are reviewed. In Section 6, the dynamics and 
control of thermal runaway are examined. The input power 
is assumed to be a function of time, and various control 
models such as feedback stabilization are considered to 
enable the appropriate steady-state solution to be achieved. 
In Section 7, numerical modelling is briefly surveyed, 
which is important both as a means of verifying analytical 
solutions and to model problems that are intractable by 
other means, such as the drying of a porous material using 
microwave energy. 

2. Governing equations 

The equations that govern microwave heating of a material 
are Maxwell’s equations, which govern the propagation of 
the microwave radiation, and the forced heat equation, 
which governs the absorption and diffusion of heat by the 
material. If the material is assumed to be homogeneous, 
isotropic, and Ohmic, that is the current J and the dis- 
placement current LJ are both proportional to the electric 
field c and that the magnetic flux density c is propor- 
tional to the magnetic field strength H, then Maxwell’s 
equations of electromagnetism are given by’ 

v.p= v.(a) =p V.@= V.( p&7) =o 

VXE= -$@) vxg= -$a, + ag 

(1) 

where (T is the electrical conductivity, E is the electrical 
permittivity, and /J, is the magnetic permeability. In gen- 
eral, all the material properties are temperature-dependent. 
For a plane wave propagating in the positive x-direction, it 
can be assumed, without loss of generality, that the electric 
field is in the y-direction and the magnetic field is in the 
z-direction. Thus for the heating of a one-dimensional 
body, the electric and magnetic fields are functions of the 
spatial co-ordinate x and time f only. If the net free charge 
p is zero, then Maxwell’s equations reduce to 

E,= -(NQ, H,= -(eE),--(TE (2) 

Since equation (2) is temperature-dependent, it is coupled 
with the forced heat equation 

where v is the thermal diffusivity, y is the thermal 
absorptivity, p is the density that is usually assumed 
constant, and cp is the specific heat. The thermal absorp- 
tivity evidently depends on the square of the electric-field 
amplitude and it is assumed that the heating occurs on a 
length scale much greater than a microwave length, so that 
in equation (3) the absorption of heat is averaged over a 
wavelength. Alternatively, equation (3) can be obtained by 
assuming that the time taken for heat to diffuse a mi- 
crowave length is much greater than the period of the 
microwave radiation.2 

In general, Maxwell’s nonlinear equations are in- 
tractable, and various simplifying assumptions are neces- 
sary to obtain analytical mathematical solutions. If the 
electrical permittivity and the magnetic permeability are 
assumed to both be slowly varying functions of the tem- 
perature, and the electrical conductivity is assumed to be 
small, then Pincombe and Smyth3 show that equation (2) 
can be reduced to the damped wave equation 

E,, + AE, = c2Exx 

A = /-UP + 24~ + U/E - c/lx/~ (4a-b) 

and p, E, and c = ( PE)- f are slowly varying and CT is 
small. In addition if cp and v are taken to be constant then 
the forced heat equation can be written in the form 

T, = ~Txx + y(T) I E I ’ (5) 

and the combination of this equation and the damped wave 
equation (4) is considerably, more amenable to analytical 
techniques. Initially we suppose that no microwave radia- 
tion is present in the material and that for a semi-infinite 
slab (X > 0) microwave radiation 

E=E,[e i(k, x- wt) +  ,.e-l(k, x+ wt) 1 x<o (6) 
of constant amplitude Ei, frequency w, and wavenumber 
k,. in free space is incident upon the slab. A portion of the 
radiation with amplitude r is reflected at the material 
boundary while the remainder of the radiation is transmit- 
ted into the material. The electric field and its derivative 
are continuous at the boundary (x = 0) and initially there 
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is no radiation present in the material so that we have the 
boundary and initial conditions 

E,(O, t) + ik,,E(O, t) = 2ik,E,e-‘w’ 

E( x, 0) = 0 (7) 
where c,, = w/k,, is the velocity of the radiation in free 
space. For a finite slab (with the rear edge at x = h) this is 
supplemented with the additional boundary condition 

E,( h, t) - ik,,E( h, t) = 0 (8) 

which ensures that the electric field and its derivative are 
also continuous at the rear edge of the slab. The appropri- 
ate initial and boundary conditions for the temperature T 
are 

T=T, on t=O 

T,-Bj(T-T,)-B,(T4-7’,4)=Oon x=0 

T,+B,(T-Ti)+B,(T4-T,4)=Oon X=/I 

(9a-c) 

where B, is the Biot number, which is a measure of the 
convective heat loss, and B, is the radiation equivalent of 
the Biot number. In the small convective and radiative 
heat-loss limit (B;, B, + 01, the zero heat-flux boundary 
condition applies. In the large radiative and convective 
heat-loss limit (Bi, B, + a>, heat loss from the material is 
significant and a fixed-temperature boundary condition 
applies. The fixed-temperature boundary condition is a 
good approximation for dielectric materials since the Biot- 
number and its radiation equivalent are small (for example, 
B, N 10m4 for ceramics4). Initially the material is assumed 
to be at a uniform temperature T, (equation [9a]>. 

A further simplification can be made by assuming that 
the frequency of the radiation is large (o B 1). The 
high-frequency assumption means that the wavelength of 
the radiation is very small compared with a typical body 
dimension of the material being heated which in the case 
of a semi-infinite body could be taken as the distance the 
wavefront has travelled. It is also implicitly assumed that 
the other parameters are all of order one. In particular, this 
implies w x=- (T and the high-frequency assumption is 
equivalent to assuming small electrical conductivity.3 A 
geometric optics (WKB) expansion is performed by as- 
suming the form 

E = C#I( x, t)eiwe + w-‘$,( x, t)e’“’ + . . . 

WFP 1 (10) 
where the phase function 0 represents the fast oscillations 
of the wavetrain, while the amplitude terms 4 and &~i are 
modulated by slow variations only since the wavetrain 
properties vary slowly over the scale of an extremely small 
wavelength. The expansion (10) is substituted into the 
damped wave equation (4) and expanded in powers of w. 
At order w2 the eikonal equation is obtained 

8,+c0,=0 (11) 
which shows that the wavetrain travels at speed c. At order 
o the transport equation 

24,% + %$+Ae, - 60: 

= c2(24,0, + +e,, - 6@) (12) 

is obtained. Using equation (11) in (12) gives the transport 
equation in the form 

+,+c&= -$[A-c,+c,,c] (13) 

which is the equation that governs the modulation of the 
leading order amplitude 4. Equation (13) can also be 
obtained directly by substituting equation (10) and an 
equivalent expression for the magnetic field strength H 
into Maxwell’s equations (2>.5 Equation (13) is also ident;- 
cal to equation (3.8) of Pincombe and Smyth,3 which is 
derived under the assumption of small electrical conductiv- 
ity and slowly varying electrical permittivity and magnetic 
permeability. 

In some work, the forced heat equation is considered in 
the limit of no diffusion (V = 0) so that equation (5) 
becomes 

T, = Y I 4 I 2 (14) 

and this assumption is valid when the time scale for 
microwave heating is small compared with the time scale 
over which the diffusion of heat occurs. For example, for 
certain ceramics the scaled diffusivity V= 1 X 10e9 (see 
Marchant and Smyth6). 

Maxwell’s equations (2) and the general forced heat 
equation (3) also admit travelling wave solutions of the 
form 

T=f(t) E=d5) H=h(‘c) (15) 
where 5 = ox + /3 t and (Y and p denote arbitrary con- 
stants. We observe that such special solutions may be 
valuable as a means of checking numerical schemes and 
also include time independent and spatially independent 
solutions as special cases arising from /!I = 0 and LY = 0, 
respectively. Further special solutions of the full coupled 
system of equations (2) and (3) can be obtained by assum- 
ing certain special forms of the material parameters. 
Metaxas and Meredith7 present experimental evidence that 
indicates that the thermal, electric, and magnetic properties 
of certain materials have a power-law dependence on 
temperature. Assuming that the various properties of the 
material all take the form 

@J(T) = Qo(T- T,)” (16) 

for various constants m and @a but where T, is assumed 
to be the same reference temperature for each property, 
then it is possible to deduce further special solutions of 
equations (2) and (3) such as stretching similarity solutions 
of the form 

T=xbf(5) E=x’g(5) H=x%( 6) 

(17) 

where [= xa/t and a, b, c, and d denote certain con- 
stants, or special separable solutions such as 

T= t”f( x) E = t”g( x) H = t%(x) 

(18) 

for certain constants A, B and C.8 In all the above 
solutions, f, g, and h refer to arbitrary functions of the 
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indicated argument which are determined by solving three 
ordinary highly nonlinear differential equations. Even if 
these equations can be integrated, the available solutions 
are limited to the above special forms and generally we 
may expect that further analytical results can only be 
achieved by major simplifications of the coupled system in 
equations (2) and (3). 

3. Nonlinear heat model and hot spots 

In view of the practical difficulty in determinating the six 
physical properties of the material over some temperature 
range, the prospect of replacing the full coupled system (1) 
and (3) simply with a heat equation that incorporates a 
nonlinear thermal absorptivity is an extremely attractive 
one. Assuming constant specific heat and that the thermal 
conductivity and electrical-field amplitude are constant, the 
appropriate form of equation (3) generalized to three di- 
mensions becomes 

f3T 
- = V2T+ y(T) 
at (19) 

where V2 is the usual Laplacian operator and we assume 
that the length and time scales have been suitably nondi- 
mensionalized. In a recent article appearing in this journal, 
Hill and Jennings’ undertake an exhaustive investigation 
of the experimental results of Von Hippel” to determine 
as accurately as possible the precise nature of the thermal 
absorptivity y(T). The form of y(T) depends upon the 
material under consideration, the temperature range under 
investigation, and the frequency of the microwave radia- 
tion. At higher frequencies (10” Hz) materials such as 
fused silica glass are very accurately approximated by 
quadratic and linear functions for y(T), namely 

y(T) =A +BT+ CT* y(T) =A +BT (20) 

for certain constants A, B, and C. We remark that in these 
cases the close agreement with experimental results is 
quite striking. At lower frequencies (lo7 Hz), y(T) can be 
adequately approximated by one of the exponential forms 

y(T) =AeaT y(T) = Be-P(T-Td2 
(21) 

where A, B, To, CY, and /3 denote constants and both 
provide almost the same level of agreement with experi- 
mental results which is not as good as the agreement 
obtained for the higher frequencies. At even lower fre- 
quencies (lo*-lo4 Hz) the experimental results of Von 
Hippel” can be quite accurately approximated by a linear 
combination of the exponential in equation (21), namely 

?(T) =A~~T+B~-P(T~T,)’ (22) 

Figure 2 shows the thermal absorptivity y(T) versus T for 
Mycalex 2021, which is a form of mica, at lo4 Hz. The 
figure shows both the experimental data and the fitted 
curve (22). The initial portion of the curve shown in 
Figure 1 is the exponential growth previously described, 
while the variation in y(T) about the minimum is accu- 
rately approximated by a quadratic, indicating that the 
forms obtained at the higher frequencies are embodied in 
the general picture described by equation (22). 

0.3 
I 

0.2 - 

0.1 - 

I d I 

..” 0.0 [d, 1 I 
0 100 200 300 400 

Temperature (‘C) 

Figure 1. Thermal absorptivity y(T) versus T for Mycalex 
2021 at lo4 Hz. 

Even though, at first sight equation (19) appears to be a 
very naive approximation to the full coupled system, we 
can immediately recognize its relevance to the theory of 
hot spots in the following manner. In this phenomena, a 
localized temperature anomaly is magnified out of all 
proportion. For example, bricks undergoing microwave 
drying often explode due to the formation of hot spots. As 
a first approximation for a body with initial uniform 
temperature, we might assume that spatial variations in 
temperature are negligible and accordingly replace equa- 
tion (19) by 

dT 
x = Y(T) (23) 

which is a reasonable first approximation for most mi- 
crowave applications, because the heating is so rapid that 
there is neglibible heat loss through the surface of the 
body. For example, in the case of exponential thermal 
absorptivity y(T) = yoeT, the solution to equation (23) is 
the spatially uniform temperature field 

T,(t) = -log(l - yet) (24) 

where initially the material is of zero temperature. Solution 
(24) clearly “blows-up” in finite time tf = 70’. The same 
property holds for any y(T), which grows faster than a 
linear thermal absorptivity.” Coleman” postulates that the 
phenomenon of hot spots is due to the existence of thermal 
instabilities and he examines the conditions under which a 
spatially uniform temperature field Tr( t> is unstable. For a 
small perturbation from this temperature distribution, 
namely 

T(r, t) =T,(t) +u(:, t) 
we find from equation (19) that 

- = V*u + y’(TI)u 
dt 

where the prime here denotes differentiation with respect 
to TI. Equation (26) has a separable solution for u(_T, t) of 
the form 

u(_Y, t) =f(r)r[W)]e-*’ (27) 
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where A denotes the separation constant and f(r) satisfies 
the Helmholtz equation 

v’f+ /if = 0 (28) 
Now the spatially uniform temperature distribution T,(l) is 
unstable in finite time if U(T, t)/T,(t) tends to infinity in 
finite time, which will certainly be the case for equation 
(27) provided 

y( T,)/T, --) a as t + tr (29) 

where tf designates some 
Vance in the short term is 
perturbation u([, t)/T,(t) 
(27) and the condition 

finite time. Of particular rele- 
whether or not the normalized 
will peak, and from equation 

cJ u(;, t) 

[ I ~ = at T,(t) 
0 (30) 

we may deduce 

Y’(T1) = h + Y(T,)/T, (31) 

Coleman” demonstrates that in the case of the Arrhenius 
law y(T) = Yoe- 1/T the roots of equation (31) cease to 
exist for A/y, above a value of about 0.305 and therefore 
the ratio A/y, needs to be as large as possible for the 
peak to be eliminated, or at least moderated. 

Alternatively, if a finite material of initially uniform 
temperature subject to fixed temperature boundary condi- 
tions (T = Tr ) is considered, then Hill and Smyth12 postu- 
late that a hot spot occurs when a steady-state solution of 
the forced heat equation ([19] with T, = 0) does not exist. 
In particular for exponential y(T) = +yoeT, the problems 
for a slab of length two and for a cylinder of unit radius 
are described by 

d2T 
dx2 + Yoe r=O E(O)=0 T(fl)=T, 

d2T 1 dT 
dr:+---+YoeT=O g(o) =o (32) 

T( 1) = T, 

Equations (32) have well known exact solutions, 

x 

(33a-b) 

T(r) = To - 2 log, 

respectively, where in each case To, the temperature in the 
center, is determined from the transcendental equation 
arising from the fixed-temperature boundary condition 
T(1) = Tl. If the stability condition 

Tr < hL(2/Yo’d) (34) 

is satisfied where ~~ is a number given by 

~~ = 1.5089( planar) K~ = 1 .O( cylinder) 

~~ = 0.786( sphere) 

X 

Figure 2. The temperature T versus x for y0 = 0.8, q = 0, and 
f = 10. Shown are the two steady-state temperature profiles 
(33a) and the numerical solution to equation (5) (--- ). 

then two steady-state temperature profiles exist. If equation 
(34) is not satisfied then thermal runaway occurs resulting 
in a hot spot. In the planar and cylindrical geometries the 
steady-state solutions are given by equations (33), while in 
the case of a sphere of unit radius an explicit analytical 
solution cannot be found and the stability condition (34) is 
found numerically. Figure 2 shows the slab temperature T 
versus x for y. = 0.8, T, = 0, and t = 10. Two steady-state 
temperature profiles are shown, obtained directly from 
equation (33), and the numerical solution to (5&-- > is 
also shown. We observe that the agreement between the 
lower steady-state solution and the numerical solution is 
excellent. This confirms the stability analysis performed by 
Hill and Smyth,12 which suggests that the lower tempera- 
ture profile is the stable one while the higher temperature 
profile is unstable. 

Roussy et a1.13 adopt a similar approach for a cylindri- 
cal sample, assuming a quadratic thermal absorptivity. 
Assuming constant specific heat and thermal conductivity, 
they examine numerically the conditions under which the 
solution of 

(35) 
subject to the initial and boundary conditions comprising 
an initial uniform temperature (9a) and the convective 
heat-loss boundary condition applied at r = u ([SC] with 
B, = 0). On introducing the new variables and the function 
R(cr, P, yl, y2) defined by 

2TO 2 BiTo 
(y=- 

a2Yo 
p=_ 

aY0 

Rta2 P, Ylj 72) = y2+4y lp2 2(l-s) (36) 
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j 

; 

constants, say pO, Ed, and (TV, respectively, in which case 
the decay constant K is given by 

K~~(~)1~z[~~+(~)2]1’2-~]1’2 (38) 

POWER 

Figure 3. A typical S-shaped power versus temperature pro- 
file. The dashed lines are drawn at the critical power levels. 

the authors make the fascinating speculation, based on 
numerical evidence, that thermal runaway occurs when 
R < 1 while the solution of equation (25) is stable for 
R > 1. Brodwin et a1.14 found steady-state solutions of 
equation (19) with thermal absorptivity, y(T) = yoeYIT, 
with convective and radiative heat-loss boundary condi- 
tions ([9b] and [SC]). They found that the steady-state 
temperature as a function of incident microwave power is 
an S-shaped curve. Figure 3 shows a typical S-shaped 
power versus temperature curve. It can be seen that the 
temperature is a multivalued function of the power. The 
upper and lower branches of the curve are stable, while the 
middle branch is unstable and the hystersis effect is gener- 
ated as follows. As the power increases from zero, the 
steady-state solution stays on the lower branch until a 
certain critical power; then an infinitesimal increase in 
power will cause the steady-state solution to jump to the 
upper branch. This temperature jump is indicated by the 
dashed line on the right and represents thermal runaway. If 
the power is now decreased, the steady-state solution will 
stay on the upper branch until reaching the second critical 
power level where the steady-state solution jumps back to 
the lower branch, and this temperature decrease is indi- 
cated by the dashed line on the left and represents thermal 
rundown. 

4. Models incorporating the electric field 

In an attempt to provide a more realistic model of mi- 
crowave heating, we retain the nonlinear heat equation (5) 
but assume that the electric-field amplitude decays expo- 
nentially with distance, that is we assume 

IEl =EOeeK+ (37) 

where E, is the amplitude of the incident radiation and K 

is the decay rate. This assumption is made because first it 
is a well known result in the case when the permeability, 
permittivity and electrical conductivity are known to be 

where o denotes the frequency of the microwave radia- 
tion.’ Second, the assumption in equation (37) will be 
locally valid within a limited region, depending on the 
variation of p.(T), E(T), and a(T). Finally the assumption 
in (37) pertains to the electric-field amplitude rather than 
the electric field itself, so that provided E(x, t> takes the 
form 

E( X, t) = EOe-KXeLe(X.f) 
(39) 

for some real phase function 0(x, t), assumption (37) 
remains valid. Thus equation (37) represents the simplest 
possible spatial dependence which has some accepted 
physical basis but which still enables the heating aspects of 
the problem to be isolated from the electric and magnetic 
fields. 

Hill and Pincombels consider similarity solutions for 
two basic models, the first based on power-law thermal 
properties and the second based on exponential thermal 
properties, namely 

aT a 
as=z 

aT a 

at=ax 
(40a-b) 

where the constants (Y, /3, n, m, y, and 6 are assumed 
positive. In particular for the first model, Hill and 
Pincombe” examine in detail the following similarity tem- 
perature profiles: 

T( x, t) = e-x/ma+( 6) 5~ te-x/a 

(m+l-n) 
a= 

pm 
(m#O, n#m+l) 

T( x, t) = t-““+(x) (m#O, n=m+l) 

(41a-c) 

T( x, t) = e-““+( x - bt) 
P 

a=(l- 

(m = 0, n # 1, b arbitrary) 

where in each case the function 4 is determined by 
substitution into equation (40a). A particularly simple spe- 
cial case of the last solution (b = 0) is 

T( x, t) = e-‘Jx Ce(‘-“)“*f _ ” 

i 1 

l/Cl-n) 

a2 
(44 

where a is as previously defined and C denotes an arbi- 
trary constant of integration. If n > 1 and p > 0 then 
a < 0 and blow-up occurs after a finite time tf given by 

1 Ca2 

G= (n_ l)a210ge (y 
i i 

(43) 
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provided the constant C is such that C > ar/a2. For the 
second model, Hill and Pincombe” consider the following 
similarity profiles: 

T(x,1)=;+6(5) 5 = te-x/a 

a- (r-s) b=_l 
Pr Y 

(Y#O> a+ r) 

loget 
T(x, t) = -- y +4(x> (r#O, a= Y) 

(44) 
T(x, t) 

=+ pX-2log,(X+X”)++ 

I i (l::d:/J 

( y = 0, 8 # 0, t, arbitrary) 

and again the functions 4 are determined by substitution 
into equation (40b) and solving the resulting ordinary 
differential equation numerically. Figure 4 shows the solu- 
tion to equation (41a) for m = 1, it = 3, p = 1, and t = 10 
and cy = 0.5 (A), cy = 1 (B), and (Y = 2 (0. Figure 4a 
shows the variable 4 and Figure 4b shows the tempera- 
ture T. Both the variable 4 and the temperature profiles 
show the moving thermal front, which over time moves 
into the region of zero temperature. This solution is en- 
tirely consistent with the observed characteristics of mi- 
crowave heating. For the second model, moving fronts are 
also predicted but in this case T = 0 is not a valid trivial 
solution of the equation and therefore the model does not 
admit the possibility that certain materials can be transpar- 
ent to microwave radiation. 

Usi:! the notion of a hot spot formulated by Hill and 
Smyth, Smyth16 utilizes the first power-law model with 
m = - 1 to examine the effect of electrical conductivity on 
hot spot formation. It is shown that the electrical conduc- 
tivity of the material can have a significant effect and if 
large enough can stop a hot spot from forming altogether. 
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This is because the electrical conductivity causes the mi- 
crowave radiation to decay as it propagates through the 
material, and for large enough values of the electrical 
conductivity hot spots cannot form. The dependence of the 
critical value of the thermal conductivity on the other 
physical parameters of the problem is also determined. 

Coleman” utilizes the forced heat equation (5) to inves- 
tigate the microwave heating of a frozen half-space which 
is an idealization that might provide useful information 
about the initial stages of heating in more complex geome- 
tries. The problem is considered in terms of the low 
diffusivity limit of the classical Stefan problem, which 
exhibits superheating, and an alternative formulation based 
on the enthalpy method is adopted. This indicates that the 
superheated region should be replaced by a “mushy zone” 
containing a mixture of phases. The effects of moderate 
diffusivity and convective heating are investigated since 
many modern microwave ovens employ both microwave 
and convective heating, which provides the food with a 
more conventional appearance. It is found that the mushy 
zone can be completely eliminated for a suitable combina- 
tion of conventional and microwave heating. 

Marchant16 models a material with an impurity that has 
a higher thermal absorptivity than the surrounding mate- 
rial. Experimentally it is found that hot spots occur at 
interfaces, such as two sections of a waveguide held 
together with glue. The glue has a higher thermal absorp- 
tivity than its surrounds and a hot spot is generated at the 
join. Thermal absorptivites of the form 

Y(X, q = Yo + (Yl + YJY3)+) (45) 

are considered where 6(x) is the Dirac-delta function. 
This represents a material of constant thermal absorptivity 
with an additional source of temperature-dependent ther- 
mal absorptivity at the impurity. The forced heat equation 
(5) is considered incorporating the thermal absorptivity of 
equation (45) for a finite slab with fixed-temperature 
boundary conditions. Here the electric-field amplitude is 
assumed constant so that the theory is valid only for thin 
slabs, since the decay of the electric field is ignored. 
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Figure 4. The solution (41a) for m = 1, n = 3, p = 1, and t= 10 and for LY = 0.5 (A), (Y = 1 (B), and CY = 2 (C). Figure 4a shows the 
variable 4 and Figure 4b shows the temperature T. 
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Steady-state temperature profiles are obtained and, for 
example, in the case y3 = 2 the profiles are 

T=a,- ul-: 1x1+x2 i 1 
1 t- \i’l- Y2(Yo+ r,) 

a, = 

Y2 
Y*(Yo+ ?I> <I 

(46) 

We notice that in this case there are again two steady-state 
temperature profiles in existence: the higher one is unsta- 
ble while the lower one is stable. We notice also that the 
steady-state temperature profile only exists in a certain 
parameter range and outside this parameter range thermal 
runaway occurs. 

The decay of the electric field as it propagates from the 
incident boundary and the interaction of the electric-field 
amplitude with temperature is also considered. For con- 
stant wavespeed, the thermal absorptivity must be propor- 
tional to the electrical conductivity so a balance is achieved 
between energy lost from the microwave radiation and 
heat absorption by the material. Assuming the electrical 
conductivity is proportional to the thermal absorptivity, 
equation (45) gives an electric-field amplitude of the form 

, E , = e- q1y,,cx+ l)+gu(x)l 
g = y1 + Y27yO, t> 

(47) 

and u(x) is the Heaviside step function. If no impurity is 
present in the material (g = O), then the electric field 
decays exponentially with a decay rate of ~~y”yu/2. With the 
impurity present, the electric-field amplitude is reduced by 
a factor of e-ag/2 at x = 0, and therefore the electric-field 
amplitude is reduced in the region x > 0 as the tempera- 
ture increases. Figure 5 shows stable steady-state tempera- 
ture profiles of the forced heat equation (5) with electric- 
field amplitude (47). The thermal absorptivity is y = 5 + 
(2+ l.ST)a(x) with CY= 0.05, 0.1, 0.2, and 0.4. As the 
decay rate (Y is increased, the heat absorption is lowered, 
which in turn lowers the steady-state temperature profiles. 
In addition, the temperature profiles become less nearly 
symmetric as the decay rate is increased. If the decay of 
the electric field is high enough, then the temperature peak 
occurs before the impurity (see the (Y = 0.4 curve). 

Kriegsmann et a1.2 consider a semi-infinite material 
with temperature-dependent electrical conductivity and 
thermal absorptivity, while the wavespeed of the system is 
assumed constant. This system is governed by Maxwell’s 
equations (2) and the forced heat equation (5). The electri- 
cal conductivity and thermal absorptivity are assumed to 
have the form 

(48) 

where f is an arbitrary function scaled so that cr= CT” at 
T= T,. It is assumed that the temperature has reached a 

Figure 5. Stable steady-state temperature profiles of the forced 
heat equation (5) with electric-field amplitude (47). The thermal 
absorptivity is y = 5+(2+ 1.8T)6( x) with LY = 0.05, 0.1, 0.2, and 
0.4. 

steady state and that the electric field comprises a steady- 
state amplitude and a time harmonic term, 

T= T(x) E = U( x)e-‘wf (49) 

Substituting equations (48) and (49) into (2) and (5) gives 
the coupled system 

(50 _b) 

a 

to solve for the electric-field amplitude U and the tempera- 
ture T. The wave number in the material is k, = 
k,( E/E,,)~‘/~, where E,, is the electrical permittivity of 
free space. These equations are subject to the boundary 
condition 

u, i- iK,,U= 2iK,,E, x=0 (51) 

which is equation (7) with the time harmonic component 
removed. The radiative and convective heat-loss boundary 
condition (9b) also applies. The authors assume that the 
electric conductivity is small (u,, -=K 1) and look for a 
perturbation solution, 

U=U,(x, X) +oa,u,(x, X) + . . . 

T = T,( x, X) + q,T,( x, X) + . . . (52) 

using the method of multiple scales (the long length scale 
is X = oa x). The form of the first-order solution is found 
for general electrical conductivity, go f, and the surface 
temperature (a measure of the heating of the slab) is found 
to be a monotonic increasing function of incident power. 
As the temperature increases, so does the electrical con- 
ductivity. This in turn reduces the electric-field amplitude 
in the material which limits the additional heating, a 
process the authors call “structural stabilization.” This 
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means that a steady-state temperature profile can be found 
for all choices of incident power. 

Kriegsmann’” considers a finite slab with the wavespeed 
assumed constant and the electrical conductivity and ther- 
mal absorptivity temperature dependent. The mathematical 
formulation of the problem is similar to Kreigsmann et 
al.,’ with the addition of the boundary condition 

U, - ik,.U = 0 at x = h (53) 

and equation (SC>, which are the appropriate conditions for 
the electric-field amplitude and the temperature at the rear 
edge of the slab. In addition, the steady-state version of the 
forced heat equation is written in the form 

(54) 

where p is an order one parameter which is the ratio of the 
power of an incident wave with amplitude unity to the 
power lost at the boundaries by convection. The steady- 
state solution is found as a series in the small Biot number 
(B, -+ O>, thus 

T(x) =T,,(x) +B,Tl(x) + . . 

U(x)=U,,(n:)+B,U,(x)+... (55) 

and where the ratio B,/B, is assumed fixed. The first-order 
solutions are obtained and these are used to determine the 
power as a function of the temperature in the slab. The 
conductivity is assumed to be monotonic increasing with 
temperature (in fact an exponential dependence on temper- 
ature is assumed). The power versus temperature curve is 
S-shaped, hence beyond a certain power level a large jump 
can occur in the steady-state temperature (and therefore a 
hot spot results). As the temperature stabilizes on the upper 
branch of the S-shaped curve, the sample is again struc- 
turally stabilized. A linear stability analysis is also per- 
formed, which shows that the steady-state temperature is 
stable when dT/dp > 0 and unstable when dT/dp < 0, 
with a hystersis effect occuring. 

Kriegsmann’” formulates the problem as in Kriegs- 
mann’9 obtaining the power versus temperature relation- 
ship 

(T-T,)+:(T~-T,“) 

p=2 
ff(T\Q 

I 

by averaging the forced heat equation over the length of 
the slab. In equation (56), p is the ratio of the power 
generated by an electric field of amplitude unity to the 
power lost by conduction, T is the temperature, Q is the 
average of the square of the electric-field amplitude U, 
through the slab, and q. is the ambient temperature. With 
the electrical conductivity a(T) chosen to have an expo- 
nential dependence on temperature, equation (56) exhibits 
the typical S-shaped response curve as described previ- 
ously. 

5. Damped wave equation model 

Assuming that the electrical conductivity is small, and that 
the magnetic permeability and electrical permittivity are 
slowly varying functions of temperature, it is possible to 
reduce Maxwell’s equation (2) to the damped wave equa- 
tion (4). This equation, derived by Pincombe and Smyth,3 
describes the decay of the electrical field as it propagates 
through a medium with slowly varying properties and 
small conductivity. Pincombe and Smyth” consider equa- 
tion (4) in conjunction with the forced heat equation (14) 
which is obtained by assuming that the time scale for heat 
absorption is much shorter than the time scale for heat 
diffusion (V < -y>. Material properties of the form 

u= Ck!(T’ y= CYY’ Ly-== 1, 

c = cO( 1 + qT)+ 

(T’ = a,( 1 + cqT)uz y’ = yo( 1 + Y~T)~’ (57) 

are assumed where the small parameter (Y represents the 
magnitude of the electrical conductivity and of the slow 
variations. The perturbation solution is assumed to have 
the form 

iO(X,T) ifftx, T) 

E=a(X,T)e n +~ua,(X,~)e a + . . . 

T= cwT,(t, x, X, T) + a”T,(t, x, X, 7) + . . . 

(58) 

7= fft x=ax 

This is a two-timing perturbation expansion, where the 
phase function 13 represents the fast oscillations of the 
wave train, while the amplitude terms a and a, are 
modulated by slow variations only. Hence a and a, are 
functions of the new slow length and time scales X and r, 
respectively. Notice also that the induced temperature is of 
order (Y. At order one substituting the expansion (58) into 
(4) and (14) gives 

e,+c0,=0 T,, = Y’( aTr)a’( X, T) (59) 

The first equation simply states that the wavetrain travels 
at speed c, while the second gives the heat absorption at 
order LY. At order (Y in the expansion the transport equa- 
tion, 

is obtained, which governs the modulation of the first-order 
amplitude. Pincombe and Smyth3 find explicit solutions to 
equation (60) for particular choices of equation (57) and 
compare them with numerical solutions of the damped 
wave equation (4) and the forced heat equation (14). 

Smyth’ considers a high-frequency radiation limit, 
which is also referred to as the geometrical optics limit and 
obtains the transport equation (60) directly from Maxwell’s 
equations (2). This occurs because the assumption of 
high-frequency radiation is equivalent to the assumption of 
small electrical conductivity and slowly varying material 
properties, since in the high-frequency limit the wave train 
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properties vary slowly over the scale of an extremely small 
wavelength. Smyth’ assumes that the material properties 
depend linearly on temperature and are slowly varying, 
namely 

a=a,+acr,T CL = PO + ‘Y&T 

E = e. + cqT ff -=z 1 (61) 

and develops perturbation solutions to the transport equa- 
tion (60) and the forced heat equation (5) in the limit of 
small diffusivity. Using the method of strained co-ordinates 
solutions are found for semi-infinite, cylindrically symmet- 
ric, and spherically symmetric bodies. In addition a ther- 
mal boundary layer solution is developed for a fixed-tem- 
perature boundary condition and a zero heat-flux boundary 
condition. Smyth’l considers the model first-order equa- 
tion 

E,+c(T)E,= -(T(T)E (62) 

which is essentially the transport equation (60) with a 
simplified form for the effective conductivity. Equation 
(62) is considered in conjunction with the forced heat 
equation (14). Power laws 

c = c,,TCl u = UNTO’ I_’ = u,T“ 

y = yoTY’ (63) 

are used for the material properties together with a solution 
method similar to that used in Smyth.5 In this case the 
method of strained co-ordinates does not allow an explicit 
perturbation solution to be developed and the result is 
given in terms of an integral for which good agreement 
with numerical solutions is obtained. 

Marchant and Pincombe** use the method of Smyth’ to 
solve the damped wave equation (4) and the forced heat 
equation (5) in the limit -of small 
power laws 

u= CXao p = 1 + cq+Tp* 

y = yoTY’ a +c 1 

diffusivity, with the 

E = 1 + aqTQ 

(64) 

taken for the material properties. As well as the method of 
strained co-ordinates, the method of multiple scales is 
introduced to enable an explicit solution to be obtained. 
The model includes the temperature dependency of the 
transmission and reflection of radiation at the boundary, 
with the electric-field amplitude at the boundary, to order 
(Y, given by 

a(0, t) = l- 2T;; 
L’ 

) ( Tp”z - Tipz) 

- 

I’ 
) (T” - CQ) (65) 

where c,, is the wave speed of the radiation in free space 
and it is assumed that a wave of amplitude unity is 
transmitted at the initial temperature T = Ti. Hence it can 
be seen that the transmission of radiation decreases as the 
material heats up if the magnetic permeability and electri- 
cal permittivity are increasing functions of temperature. If 
the magnetic permeability and electrical permittivity are 
decreasing functions of temperature, then the reverse is 

(4 

e.221 

‘3. 

Figure 6. (a) The electric-field amplitude 1 El versus x for 
y=T’~“,~=0.1,~=E=1+0.1T-~~~~‘, w=5, 7y=l, v=o,t= 
5.6 and a zero-heat flux boundary condition is applied. (b) The 
natural logarithm of temperature versus x for the same param- 
eters as (a). Shown is the the first-order asymptotic solution 
( -), the second-order asymptotic solution t-----j, and 
the numerical solution (-.-.). 

true, with the transmission of radiation increased as the 
material heats up. Figure 6a shows the electric-field am- 
plitude I E I versus x for y = T’.“, U= 0.1, p = E = 1 + 
0.1T-0.“51, o = 5, Ti.= 1, Y = 0, t = 5.6 and a zero heat- 
flux boundary condition is applied. The figure shows the 
first-order asymptotic solution (- ), the second-order 
asymptotic solution (-----), and the numerical solution 
(- .-. ). Figure 6a shows the wavefront travelling more 
slowly at second-order, in addition the second-order 
asymptotic solution predicts a higher electric-field ampli- 
tude due to an increased transmission of radiation as the 
material heats up and to the effective conductivity (4b) 
being reduced at second order. These effects occur because 
the electrical permittivity and the magnetic permeability 
are both decreasing functions of temperature. Figure 6b 
shows the natural logarithm of temperature versus x for 
the same parameters as Figure 6a. The figure shows the 
first-order asymptotic solution (- ), the second-order 
asymptotic solution (-----), and the numerical solution 
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(- .-. >. In this case y, > 1, so thermal runaway will occur 
at the boundary x = 0. The hot spot occurs at the boundary 
since the electric-field amplitude has a maximum there and 
there is no heat loss through the boundary. Figure 6b 
shows that the material is rapidly approaching thermal 
runaway at the boundary. Because the transmission of 
microwaves increases as the material heats up, the 
second-order theory predicts a higher temperature near the 
boundary and hence that thermal runaway will occur sooner 
than the first-order theory. Since the calculations and 
asymptotics are performed on the transformed variable, 
19 = T’~ ye, which rema’ ms bounded, there is an extremely 
good correspondence between the numerical solution and 
the second-order asymptotic solution even just before ther- 
mal runaway occurs (see Figure 6b near x = 0). 

Pincombe and Smythz3 consider the damped wave 
equation (4) and the forced heat equation (141 assuming 
power laws of the form 

p =p, + ap2TP3 a c 1 (66) 

for all material properties. A semi-infinite slab is consid- 
ered with a zero heat-flux boundary condition and includes 
the temperature-dependent transmission of radiation (see 
equation [65]). Using the methods of characteristics and 
multiple scales, perturbation solutions are developed for 
the case of small thermal absorptivity. These perturbation 
solutions are compared with numerical solutions of (4) and 
(5). 

Marchant and Smyth’ consider a material that has 
non-Ohmic electrical conductivity and thermal absorptivity 
with constant wavespeed, 

o( E, T) = ( a0 + a,T”)( 1 + a,E) 

y(E, T) = (~0 + V”)(l + P,E) (67) 

and show that the propagation of microwaves is governed 
by a modified damped wave equation 

E,, + ( ATE) t = c2Exx (68) 

and the forced heat equation (5) with thermal absorptivity 
and electrical conductivity given by equations (67). Notice 
that the dependence of equations (6) on the electric field 
and the temperature couples (5) and (68). A perturbation 
solution is found for small electrical conductivity, and a 
full numerical solution is developed using the method of 
characteristics. In addition, a Ginzburg-Landau equation is 
derived for a = 1 E 1 assuming small amplitude and slowly 
varying scales, 

ia,-uaii+(a,+ia,)Ia12a=0 (69) 

where r is a slow time scale, 5 is a slow scale moving at 
the characteristic speed, and a, and a, are constants. In 
general the Ginszburg-Landau equation posesses breather, 
hole and front solutions. Due to the particular form of 
equation (69), these exact solutions do not exist in this 
case; however, asymptotic solutions such as a slowly 
varying soliton and a moving front solution are found. 
Figure 7 shows a slowly varying soliton which is a 
solution of equation (69). The figure shows the asymptotic 
theory (- > for both t = 0 and t = 10, which is com- 
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Figure 7. A slowly varying soliton which is a solution of 
equation (69) is shown. Drawn is the asymptotic theory (- ) 
for both t= 0 and t= 10 and the numerical solution for r= 10. 

pared with the numerical solution at t = 10. The soliton 
moves slowly to the right as it decays and good agreement 
is obtained between the numerical solution and the asymp- 
totic theory. 

6. Dynamics and control of thermal runaway 

Kriegsmann4 considers the steady-state model of Kriegs- 
mann” with the steady-state version of the forced heat 
equation (54) replaced by the full forced heat equation 

(70) 

to enable the dynamical behavior of the heating process to 
be modelled. Equations (70) and (50a) are solved in the 
small Biot number limit (Bi -=K l), subject to boundary and 
initial conditions (50), (52) .and (9), by the method of 
multiple scales, 

T=T0(7) +BiTl(x, T) + . . . 

u= Uo(x, 7) +BJI,(x, 7) + . . . (71) 

The slow time scale, r = B, t, is introduced since the 
forcing term in (70) is order Bi, hence the temperature and 
the electric-field amplitude are modified on this slow time 
scale. Notice that because the heating is order Bi and the 
slab is nearly insulated the order one temperature is spa- 
tially uniform. 

At first-order the evolution equation 

is obtained for the first-order temperature in the slab. In 
the steady state, dT,,/h= 0 (72) becomes the power 
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versus temperature relation (56). A procedure for con- 
trolled heating is analyzed with the power changing on the 
slow time scale, 

p(7) =pl + ( p0 -pl)e-A(T-‘u) T> To (73) 

To speed up the heating of the sample, a power level p0 is 
used initially, which without modification would lead to 
thermal runaway. At time T= TV, the power is decreased 
exponentially such that the power level approaches p1 as 
7 + ~0, where if the power level p1 where applied initially 
it would result in a steady-state temperature on the lower 
branch of the S-shaped curve. It is found that there is a 
critical temperature above which the material experiences 
a thermal runaway and below which the temperature 
evolves to the lower branch of the S-shaped curve. 

Kriegsmann24 considers a simple control model for 
microwave heating by averaging the forced heat equation 
over the length of a thin slab to obtain 

d T” 
-= -2[Bi(T,,-T,)+B,(T;-T;)] 
dt 

a(To) f- 
2 p (74) 

where T, is the leading-order temperature in the small Biot 
number limit and p is the microwave power density. Note 
that the electric-field amplitude is assumed constant be- 
cause the slab is thin and the power is assumed to depend 
on the temperature through the relation 

dp 
-= -Y(P-P,)-P(T,-T,) dt (75) 

where the parameters y and p are positive. Relation (75) 
provides feedback to the heating process to stabilize it at 
the desired steady-state, at which the temperature is q and 
the power is ps. It is assumed that the electrical conductiv- 
ity obeys the Arrhenius law 

a(t) = a- + c7BepX/(T-TA) (76) 

Hence the power versus temperature curve has the usual 
S-shaped profile even though a thin slab is considered. It is 
found that for the appropriate choice of y and p, that the 
system, for any initial power level, will evolve to a steady 
state on the upper branch on the S-shaped curve without 
ever exceeding the melting point of the material. Inappro- 
priate choices of the feedback parameters lead to over- 
shoot, where the material is heated beyond its melting 
point, and thus destroyed, or lead to relaxation oscillations 
where the system never reaches a steady state. 

Kriegsmann2’ considers the control process of Kriegs- 
mann24 for a thin cylindrical sample. The cylinder has 
length L and radius d, with the ratio d/Z_. assumed small. 
The leading-order temperature satisfies 

T,=T,,-2[B,(T-q)+B,(T4-T;)] 

a(T) +- 2 I-qz)l” (77) 

with zero heat-flux boundary conditions applied at the 
ends of the rod z = 0, h. Depending on the type of inci- 

dent electromagnetic mode used to heat the material, the 
electric-field amplitude can vary along the length of the 
rod. In particular a maximum in amplitude can occur in the 
middle of the rod which leads to raised temperatures at this 
location. This form of heating is potentially useful for 
joining applications. 

7. Numerical modelling 

Jolly and Turner2h apply Maxwell’s equations (2) with 
zero electrical conductivity and constant magnetic perme- 
ability and the forced heat equation (5) to a one-dimen- 
sional slab. At the front edge of the slab a convective 
heat-loss boundary condition is applied ([9b] with B, = 0) 
while at the rear edge of the slab a zero heat-flux boundary 
condition is applied ([SC] with B, = B, = 0). The solution 
is assumed time harmonic so the boundary conditions for 
the electric field are (51) and (53) with k, = 0. These 
allow reflection and transmission of radiation at the front 
edge and complete reflection of radiation at the rear edge 
of the slab. The equations are solved numerically using a 
finite-difference scheme with the absorbed power and tem- 
perature profiles showing peaks and troughs. This is due to 
the standing wave pattern set up by the incident and 
reflected electric fields. The authors examine the effect of 
extending the slab using a loss-less material such as teflon. 
This alters the standing wave pattern in the material and 
can result in flatter power and temperature profiles. The 
electrical permittivity and thermal absorptivity are as- 
sumed to have a cubic dependence on temperature. 

Turner and Jolly 27,28 examine the application of mi- 
crowave energy in drying porous materials such as wood 
or bricks. The model of Jolly and TurnerZh is extended to 
examine the mass and heat transfer which occurs during 
the combined microwave and convective drying of a porous 
material. The material consists of a solid matrix, in which 
a liquid phase and a gaseous phase where both air and 
water vapor reside. The equations that govern the drying 
process are conservation of mass, liquid, and enthalpy 
coupled with the appropriate flux laws (Darcy’s for the gas 
and liquid, Fick’s for the water vapor). The boundary 
conditions adopted allow convective drying at the front 
edge of the slab while the rear edge of the slab is imperme- 
able. These equations are considered in conjuction with the 
form of Maxwell’s equations and the forced heat equation 
considered by Jolly and Turner.2h In this case the electrical 
permittivity and the thermal absorptivity are both mois- 
ture- and temperature-dependent. This is due to the fact the 
energy absorption is high when a large water fraction is 
present in the material. The results show that the combined 
use of convective and microwave drying can halve drying 
times. The microwave radiation heats the moisture deep 
within the material, causing the moisture to be pumped to 
the surface. When the material is nearly dry, care must be 
taken to avoid thermal runaway and thus damage to the 
sample. The authors present perspective plots of power 
absorption over time for combined microwave and convec- 
tive drying of a brick. These show that peaks in power 
absorption occur which are due to the standing waves 
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set-up in the brick arising because reflection occurs from 
the metal backing. 

DoRego et akz9 consider the microwave joining of 
polymers, which requires the material to be joined (in this 
example Nylon-6) to be placed in a ridged wave guide, 
which concentrates the microwave energy at the weld. As 
the thermal absorptivity of Nylon-6 is temperature-depen- 
dent, thermal runaway can occur, destroying the sample. A 
two-dimensional finite-difference model is developed to 
predict the occurence of thermal runaway. The appropriate 
version of the forced heat equation (5) is considered 
subject to convective heat-loss boundary conditions ([9] 
with B, = 0) on the slab’s boundaries. The form of the 
thermal absorptivity y(T), is found from the tabulated 
dielectric loss data available for Nylon-6 over the tempera- 
ture range of interest. The incident electric-field amplitude, 
determined from ridged waveguide theory, is assumed 
constant over the area of the join and zero elsewhere on 
the slab. The model predicts the temperature distribution 
over the slab for a given incident power and exposure 
time. For an effective join, the maximum temperature 
needs to be greater than the melting point but less than the 
temperature at which combustion occurs so the material is 
not destroyed. 

Pincombe and Smyth” and Marchant and Pincombe22 
develop a numerical solution of the damped wave equation 
(4) and the forced heat equation (5) for a semi-infinite slab 
subject to initial and boundary conditions (7) for the 
electric field, which allow reflection and transmission of 
the incident electric field and zero heat-flux and fixed-tem- 
perature boundary conditions. The damped wave equation 
is discretized using a three-point centered difference 
scheme in space and a four-point centered scheme in time, 
while for the forced heat equation a variant of the Crank- 
Nicolson finite-difference scheme is used. If the numerical 
scheme discretized the electric field over the discontinuity 
at the wavefront, then unphysical oscillations appear in the 
solution due to the large x-derivatives at the wavefront. To 
overcome this the spatial discretization is carried out up to 
the wavefront where the exact value is known for the 
electric field. This enables the position of the wavefront 
and the electric field in the region of the wavefront to be 
accurately determined. 

References 

1. Portis, A. M. Electromagnetic Fields: Sources and Media. John 
Wiley & Sons, 1978 

2. Kriegsmann, G. A., Brodwin, M. E. and Watters, D. G. Microwave 
heating of a ceramic halfspace. SIAM J. Appl. Math. 1990, 50, 
1088-1098 

3. Pincombe, A. H. and Smyth, N. F. Microwave heating of materials 
with low conductivity. Proc. Roy. Sot. Land. A 1991, 433, 479-498 

4. 

5. 

6. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

Kriegsmann, G. A. Thermal runaway in microwave heated ceramics: 
A one-dimensional model. L Appl. Phys. 1992, 71, 1960-1966 
Smyth, N. F. Microwave heating of bodies with temperature depen- 
dent properties. Wave Motion 1990, 12, 171-186 
Marchant, T. R. and Smyth, N. F. Microwave heating of materials 
with non-Ohmic conductance. SIAMJ. Appl. Math. 1993, 53, 1591- 
1612 
Metaxas, A. S. and Meredith, R. J. Industrial MicrowaL,e Heating. 
IEE Power Engineering Series 4, P. Peregrinus, London, 1983 
Hill, J. M. Simple exact solutions applicable to microwave heating. 
J. Atml. Math. Phvs. (ZAMP) 1990. 40, 872-882 
Hill: -J. M. and Jennings, M. J. Formulation of model equations for 
heating by microwave radiation. Appl. Math. Model. 1993, 17, 
369-379 
Von Hippel, A. R. Dielectric Materials and Applications. MIT Press, 
Cambridge, MA, 1954 
Coleman, C. J. On the microwave hotspot problem. J. Aust. Math. 
Sot. Ser. B 1991, 33, 1-8 
Hill, J. M. and Smyth, N. F. On the mathematical analysis of 
hotspots arising from microwave heating. Math. Eng. Industry 1990, 
2, 267-278 
Roussy, G., Bennani, A. and Thiebaut, J. Temperature runaway of 
microwave irradiated materials. J. Appl. Phys. 1987, 62, 1167-1170 
Brodwin, M. E. Kriegsmann, G. A. and Watters, D. G. Temperature 
instability in the microwave heating of a uniformly illuminated planar 
slab. IEEE, 1995, in press 
Hill, J. M. and Pincombe, A. H. Some similarity temperature profiles 
for the microwave heating of a half-space. J. Aust. Math. Sot. Ser. B 
1991, 33, 290-320 
Smyth, N. F. The effect of conductivity on hot-spots. J. Aust. Math. 
Sot. B 1992, 33, 403-413 
Coleman, C. J. Microwave heating of frozen substances. Appl. Math. 
Model. 1990, 14, 439-443 
Marchant, T. R. Microwave heating of materials with impurities. J. 
Eng. Math. 1994, 28, 379-400 
Kriegsmann, G. A. Microwave heating of ceramics. Ordinary and 
Partial Differential Equations 3, ed. B. Sleeman and R. Jarvis, 
Longman House, 1991, pp. 45-56 
Kriegsmann, G. A. Microwave heating of ceramics: A mathematical 
theory. Microwaoes: Theory and Applications in Materials Process- 
ing, ed. D. E. Clarke, F. D. Gac, and W. H. Sutton, Ceramic 
Transactions 21, American Ceramic Society, 1991, pp. 117-183 
Smyth, N. F. A model of microwave heating. Research report, 
Department of Mathematics, University of Edinburgh, 1992 
Marchant, T. R. and Pincombe, A. H. Microwave heating of materi- 
als with temperature, dependent wavespeed. Warbe Motion 1994, 19, 
67-82 
Pincombe A. H. and Smyth N. F. Microwave heating of materials 
with power law temperature dependencies. IMA J. Appl. Math. 1994, 
52, 141-176 
Kriegsmann, G. A. Feedback stabilization of thermal runaway in 
microwave heated ceramics. J. Am. Ceramic Sot. 1995, submitted 
Kriegsmann, G. A. Thermal runaway and its control in microwave 
heated ceramics. Mat. Res. Sot. Symp. Proc. 1992, 269, 257-264 
Jolly, P. G. and Turner, 1. W. Non-linear field solutions of one-di- 
mensional microwave heating. J. Microware Power Electromag. 
Energy 1990, 25, 3-15 
Turner, I. W. and Jolly, P. G. The effect of dielectric properties on 
microwave drying kinetics. J. Microwarje Power Electromag. Energy 
1990, 25, 211-223 
Turner, I. W. and Jolly, P. G. Combined microwave and convective 
drying of a porous material. Drying Technol. 1991, 9. 1209-1269 
DoRego D., Cooper P., Siores E. and Marchant T. R. Two-dimen- 
sional transient heat transfer computations of microwave joining of 
polymers. In FABCON/FABFAIR, Towards a Competitive Edge. 
Conference Proceedings Welding Technology Institute of Australia, 
Wollongong 1993 

Appl. Math. Modelling, 1996, Vol. 20, January 15 


