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In this paper, we find the irreducible quadrangulations of the torus. As a conse-
quence, any two quadrangulations of the torus with the same number of vertices
that are either both bipartite or both non-bipartite (except for some complete
bipartite graphs) can be transformed into one another, up to homeomorphism,
using a sequence of diagonal slides and diagonal rotations. We also determine the
minor minimal 2-representative graphs on the torus. � 1996 Academic Press, Inc.

1. Introduction

A quadrangulation G of a closed surface F 2 is a simple graph embedded
in F 2 whose faces are all quadrangles. For quadrangulations, two transfor-
mations have been defined in [3], which are the diagonal slide and the
diagonal rotation around a vertex of degree 2 as shown in Fig. 1. If the
graph obtained by a diagonal slide is not a simple graph, then we don't
carry out it. Two quadrangulations G and G$ of F 2 are said to be equivalent
to each other (under diagonal slides and diagonal rotations) and denoted
by GrG$ if they are transformed into each other by a sequence of diagonal
slides and diagonal rotations, up to homeomorphism. Observe that both of
the transformations preserve the bipartiteness of quadrangulations. Thus, a
bipartite quadrangulation and a non-bipartite quadrangulation are never
equivalent to each other under diagonal slides and diagonal rotations. In
[3], the author has shown the following theorem:

Theorem 1 (A. Nakamoto [3]). For any closed surface F 2, there exists
a positive integer N(F 2) such that if G1 and G2 are two bipartite quad-
rangulations of F 2 with |V(G1)=|V(G2)|�N(F 2), then G1 rG2 .

Let G be a quadrangulation of a closed surface F 2 and f a face of G with its
boundary cycle abcd. The face contraction of f at [b, d] is to identify b and
d along the diagonal bd of f and to eliminate f as shown in Fig. 2. However,
if b and d are joined by an edge or if both b and d are adjacent with a com-
mon vertex v{a, c, then a face contraction of f at [b, d] yields a loop or
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Fig. 1. The diagonal slide and the diagonal rotation.

multiple edges. If a face contraction destroys the simpleness of G, then we
do not apply this deformation. Note that this deformation also preserves
the bipartiteness of quadrangulations. If we can apply a face contraction of
f at [b, d], then f is said to be contractible at [b, d]. There are two ways
to contract a face since each face has two diagonal pairs of vertices. Also,
if G is obtained from a quadrangulation T by a sequence of face contrac-
tions, then G is said to be contractible to T. A quadrangulation G of F 2 is
said to be irreducible if G is contractible to no other quadrangulation. It is
clear that an irreducible quadrangulation has no contractible face and that
any quadrangulation can be contractible to an irreducible one.

It has been shown in [4] that for a closed surface F 2 other than the sphere,
an irreducible quadrangulation of F 2 has at most 186(2&/(F 2))&64 vertices,
where /(F 2) denotes the Euler characteristic of F 2. This implies that for
any closed surface, there exist only finitely many irreducible quadrangula-
tions, up to homeomorphism. The finiteness of the number of irreducible
ones on each closed surface played an essential role to establish Theorem 1.
By our algorithm used in [3], if all the irreducible bipartite quadrangulations
of F 2 are listed, then the value of N(F 2) in Theorem 1 can be determined,
as shown in Section 3.

We denote the sphere, the projective plane, the torus and the Klein bottle
by S2, P2, T 2 and K2, respectively. In [5], irreducible quadrangulations of
S2 and P2 have been determined. The unique irreducible quadrangulation
of S 2 is C4 , which is a cycle of length 4. By this result, it has been shown

Fig. 2. Face contraction.
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that any two quadrangulations of S2 with the same number of vertices are
equivalent to each other under diagonal slides and diagonal rotations. On
P2, there exist precisely two irreducible quadrangulations Q1

P and Q2
P

shown in Fig. 3, which are K3, 4 and K4 , respectively. (In Fig. 3, to obtain
the projective plane, identify each antipodal pair of vertices and edges of
the octagon and hexagon.) By this result, it has been shown that any two
quadrangulations of P2 with the same number of vertices are equivalent to
each other under diagonal slides and diagonal rotations if and only if both
or neither of them are bipartite.

We could show that any two non-bipartite quadrangulations on P2 with
the same number of vetices are equivalent to each other. However,
Theorem 1 cannot be extended to non-bipartite quadrangulations in
general since there exists a pair of inequivalent non-bipartite quadrangula-
tions of the Klein bottle with the same and arbitrarily large number of
vertices [3].

In this paper, we shall determine all the irreducible quadrangulations of
the torus. Moreover, by this result, we shall show Theorem 3.

Theorem 2. There are exactly eight irreducible quadrangulations of the
torus, up to homeomorphism.

They are shown in Fig. 4, in which each rectangle represents the torus
by identifying both pairs of opposite sides. The quadrangulations
Q1

T , ..., Q5
T are bipartite while Q6

T , Q7
T , Q8

T are non-bipartite.

Theorem 3. Any two quadrangulatons of the torus with the same number
of vertices, except for complete bipartite graphs, are equivalent to each other
under diagonal slides and diagonal rotations if and only if both or neither of
them are bipartite.

Fig. 3. Irreducible quadrangulations of the projective plane.
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Fig. 4. Irreducible quadrangulations of the torus.

A closed curve l on a closed surface F 2 is said to be trivial if l bounds
a 2-cell on F 2. A graph G embedded in a closed surface F 2 is said to be
n-representative if every non-trivial closed curve on F 2 which does not
intersect edges of G must contain at least n vertices of G. The contraction
of an edge e of G is to delete e and identify its two endpoints. If G is
obtained from a graph T by a sequence of deletions and contractions of
edges of T, then G is said to be a minor of T. A graph G is said to be minor-
minimal n-representative if G is n-representative and no minor of G is
n-representative.

By the affirmative solution of Wagner's conjecture proved by Robertson
and Seymour [6], it is known that any infinite sequence of graphs includes
a pair of graphs in which one graph is a minor of the other. Also, it is known
that this argument can be replaced with surface minor, which implies that
there exist finitely many minor-minimal n-representative graphs on any
closed surface F 2. In particular, Schrijver [7] has given the number of
equivalence classes of minor-minimal n-representative graphs on the torus
with respect to the Y�2 transformations. More concretely, Vitray [8] has
determined the minor-minimal 2-representative and 3-representative graphs
on the projective plane. In Section 4, we shall list up all the minor-minimal
2-representative graphs on the torus, which are obtained from irreducible
bipartite quadrangulations of the torus determined in Section 2.
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2. Proof of Theorem 2

In this section, we shall determine irreducible quadrangulations of T 2. If
a quadrangulation has a vertex v of degree 2, then a face incident with v
is contractible. Hence an irreducible quadrangulation of a closed surface
other than the sphere has no vertex of degree less than 3.

Proposition 4. The average degree of quadrangulations of the torus is
precisely 4.

By Proposition 4, we can see that an irreducible quadrangulation of the
torus is either 4-regular or one which contains a vertex of degree 3. Thus,
the classification of 4-regular quadrangulations of the torus, mentioned
later, will play an important role for our purpose.

The following lemma is Lemma 3 in [3].

Lemma 5. Let G be a quadrangulation of a closed surface F 2. If there is
a 2-cell region of G which is bounded by a 4-cycle but not a face of G, then
there is a contractible face in this 2-cell.

Lemma 6. Let G be an irreducible quadrangulation of a closed surface F 2

and F a hexagonal 2-cell region of G. Then, inside F, there is either a single
edge or a single vertex of degree 3.

Proof. Let G be an irreducible quadrangulation of F 2. Let F be a
hexagonal region of G bounded by a closed walk v1v2 v3v4 v5 v6 . Here, vi

and vi+3 may coincide. Since F is hexagonal, F contains at least two faces.
Since G is irreducible, each diagonal pair of a face is joined or adjacent
with a common vertex.

We first consider the case that F contains a face f such that
�f & �F$[vi&1 , vi , vi+1]. Suppose that f is bounded by a cycle v1 v2v3 x,
where x # V(G) is in F. Notice that a 2-cell region bounded by an odd cycle
is never quadrangulated. Since f is not contractible at [x, v2], x coincides
with v4 or v6 , or there is an edge xv5 . If x=v4 or x=v6 , then F contains
one edge, by Lemma 5. If x is joined with v5 , then F contains a vertex of
degree 3.

Next, we suppose that F does not contain a face f such that �f & �F$

[vi&1 , vi , vi+1], and focus on the face h in F containing an edge v1v2 . Suppose
that h is bounded by v1v2 xy, where x, y # V(G) are in F. Since h is not con-
tractible at [x, v1], x coincides with v3 or v5 , or is adjacent with v4 or v6 . We
may suppose that x{v3 , by the assumption on F. If x=v5 , then a face
v2v3 v4v5 occurs, by Lemma 5. And if x is adjacent with v4 or v6 , then, by
Lemma 5, we obtain a face v2v3v4x or v6 v1v2x, respectively. Thus, in any
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case, F contains a face f such that �f & �F$[vv&1 , vi , vi+1]. Therefore, F
contains one edge or a vertex of degree 3. K

Let H denote a complete bipartite graph K3, 4 with partite sets
[x, a, b, c] and [1, 2, 3] embedded in a closed surface so that a1x3, b2x1
and c3x2 bound faces, respectively. Let R denote the hexagonal 2-cell
region of H which is the union of a1x3, b2x1 and c3x2. (See Fig. 5 (1).)

Lemma 7. Let G be an irreducible bipartite quadrangulation of a closed
surface other than the sphere. If G contains a vertex of degree 3, then G
contains H as a subgraph.

Proof. Let G be an irreducible bipartite quadrangulation of a closed
surface F 2 and x a vertex of G of degree 3. The union of three faces incident
with x form a hexagonal 2-cell region R. Let a, 1, b, 2, c and 3 be vertices
of G lying along �R in this order. Suppose that x is adjacent with 1, 2 and
3. Notice that the seven vertices are all distinct. Otherwise, an odd cycle or
multiple edges arise, a contradiction. Since the face x3a1 is not contractible
at [a, x], there is an edge a2 outside R. Similarly there are edges b3 and
c1 unless F 2 is the sphere. (That is, if F 2 is the sphere, then the vertices b
and 3 are separated by the cycle a1x2. Since the cycle a1x2 must bound a
2-cell on the sphere, b and 3 cannot be joined by an edge. Similarly, by the
cycle a3x2, two vertices c and 1 cannot be joined by an edge. Actually, the

Fig. 5. H embedded in T 2.
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complete bipartite graph K3, 4 is not embeddable in the sphere.) Thus, G
contains H as a subgraph. K

Lemma 8. There exist pecisely two irreducible quadrangulations of the
torus with a vertex of degree 3 up to homeomorphism, which are Q3

T and Q4
T

in Figure 4.

Proof. Let G be an irreducible bipartite quadrangulation of T 2 with a
vertex of degree 3. Suppose that G is 2-colored. By Lemma 7, G must con-
tain H as a subgraph. Cut open the torus in which H is embedded along
the following two simple closed curves crossing at x. One is along x2a, the
other is along x3b. Since two closed curves on T 2 crossing at a single point
must be meridian and longitude on the torus up to homeomorphism, we
can obtain the rectangle from the torus as shown in Fig. 5 (2), up to sym-
metry. We can re-draw Fig. 5 (2) symmetrically, and obtain Fig. 5 (3).

We have only to quadrangulate the two hexagonal regions b3c1a2 and
c2a3b1 in Fig. 5 (3). By Lemma 6, we do put vertices y and z of degree 3
into b3c1a2 and c2a3b1 respectively, since a multiple edge arises if we add
an edge. There are two ways to add y and z, up to symmetry and coloring;

v All of x, y and z have the same color. A complete bipartite graph
K3, 6 is obtained. Denote this quadrangulation by Q3

T .

v One of x, y and z has a different color from the other two. Denote
this quadrangulation by Q4

T .

Thus, there exist two irreducible bipartite quadrangulations of the torus
containing a vertex of degree 3.

Now we consider the case that G is non-bipartite. Let x be a vertex of
degree 3 of G and R$ the union of faces incident with x bounded by a
closed walk v1v2 v3v4v5v6 . Here, we suppose that x is adjacent with v1 , v3

and v5 . Since G is irreducible, vi and vi+3 coincide or are joined by an edge.
There are three diagonal pairs of vertices [v1 , v4], [v2 , v5] and [v3 , v6] in
R$. If all of vi 's are distinct, then G must be bipartite by the above argu-
ment. And if at least two diagonal pairs coincide, say v1=v4 and v2=v5 ,
then pasting the edge v1v2 with v4v5 in R$ yields a Mo� bius band and breaks
the orientability of the torus, a contradiction. Thus, we consider the case
when only one diagonal pair coincides, say v1=v4 . Similarly to the bipar-
tite case, we cut open the torus along the following two closed curves
crossing at x. One is along xv2v5 and the other is along xv3v6 . The
obtained rectangle is nothing but the one obtained from Fig. 5 (2) by
contracting the edge 1c. This rectangle has a 2-cell region bounded by an
odd cycle. Since a 2-cell region bounded by an odd cycle can never be
quadrangulated, this is a contradiction. Therefore, an irreducible
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non-bipartite quadrangulation of the torus does not contain a vertex of
degree 3. K

We shall consider the universal covering space of the torus. The universal
covering space of the torus is homeomorphic to the x�y plane in R2. Let
G� be the union of horizontal and vertical lines through integral points in
R2 so that

V(G� )=[(x, y) # R2 | x, y # Z].

The graph G� is a 4-regular infinite one and quadrangulates R2. We call G�
the universal 4-regular quadrangulation. Let 1( p, q, r) denote the collection
of all transformations

\x
y+� \x

y++: \ 0
p++; \ r

&q+ (:, ; # Z)

over R2, for non-negative integers p, q and r with pr{0 and q�0. Clearly,
1( p, q, r) is a group with respect to the composition of transformations.
Since pr{0, the group 1( p, q, r) freely acts on R2 and any element of
1( p, q, r) leaves G� invariant. (See Fig. 6.) The orbit space R2�1( p, q, r) of
the group action is homeomorphic to the torus and the projection
G� �1( p, q, r) of G� is a 4-regular quadragulation of the torus. Then we define
the 4-regular graph G� �1( p, q, r) on the torus R2�1( p, q, r) as the standard
form T( p, q, r) of 4-regular quadrangulations of the torus.

Fig. 6. G� with 1( p, q, r).
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To describe T( p, q, r) more concretely, consider the fundamental domain
of the group action

[(x, y) # R2: 0�x�r, 0�y�p].

First, identifying the upper and lower sides of the rectangle, we obtain an
annulus, which is called a ( p, r)-annulus. Second glue the two boundaries
of the ( p, r)-annulus so that the point (0, y) coincides with the point (r, y$)
(0�y, y$�p) if y&y$#q (mod p). By this procedure, we obtain the torus
R2�1( p, q, r) and the quadrangulation T( p, q, r).

Let G be a 4-regular quadrangulation of T 2 and v a vertex of G. Suppose
that v is adjacent with v1 , v2 , v3 and v4 in this cyclic order. A path P in G
is said to be locally straight at v if P passes through v from vi to vi+2.
A cycle C in G is called geodesic if C is locally straight at each vertex of C.
The following fact was the key to determine the standard form of 4-regular
quadrangulations of the torus in [1].

Lemma 9. Let G be a 4-regular quadrangulation of the torus. For any
edge e of G, there exists the unique geodesic cycle in G containing e.

Theorem 10 (A. Altshuler [1]). A 4-regular quadrangulation of the
torus can be represented as a standard form T( p, q, r) with three integers p, q
and r with p, r>0 and q�0.

By Theorem 10, if we fix a geodesic cycle C in T( p, q, r), suppose that
C is a boundary cycle of the ( p, r)-annulus, then we can take r parallel
geodesic cycles with C in T( p, q, r), which form a spanning subgraph of
T( p, q, r). We call it a geodesic 2-factor of T( p, q, r). With respect to
T� ( p, q, r)/R2, the geodesic 2-factor of T( p, q, r) with C corresponds to the
set of straight lines x=: (: # Z) in R2. We call the set of straight lines in
R2 which corresponds to a geodesic 2 factor an universal geodesic 2-factor.

For a geodesic cycle of a 4-regular quadrangulation of T 2, the
fundamental domain can be uniquely determined and also the standard
form T( p, q, r) is determined. So, if we take another geodesic 2-factor of
T( p, q, r), that is, we take the set of horizontal lines in T� ( p, q, r)/R2 as
the universal geodesic 2-factor, then the fundamental domain and the
standard form also change.

Let G1 and G2 be two graphs embedded in closed surfaces F2
1 and F2

2 ,
respectively. Tow graphs G1 and G2 are said to be homeomorphic to each
other if there is a homeomorphism h: F2

1 � F2
2 with h(G1)=G2 which

induces an isomorphism from G1 to G2 .

Proposition 11. Let T( p, q, r) and T( p$, q$, r$) denote two 4-regular
quadrangulations of the torus. T( p, q, r) and T( p$, q$, r$) are homeomorphic
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to each other if and only if either of (0) and (I ) holds, where (a, b) denotes
the greatest common devisor of two integers a and b.

p$=p. p$=pr�( p, q),

(0) { q$#\q (mod p$), (I ) { q$#\;r (mod p$), &;q#( p, q) (mod p),

r$=r. r$=( p, q).

Remark that in each equation, ( p$, q$, r$) can uniquely be determined by
( p, q, r) under the restriction 0�q$�p$�2.

Proof. Let T( p, q, r) and T( p$, q$, r$) be two 4-regular quadrangulations
of the torus. Suppose that T� ( p, q, r) and T� ( p$, q$, r$) are the universal
4-regular quadrangulations of T( p, q, r) and T( p$, q$, r$), respectively.

First, suppose that 0�q�p. Then, it is easy to see that if p$=p,
q$=p&q, r$=r, then T( p$, q$, r$) is the mirror image of T( p, q, r). This
translation from T( p, q, r) to T( p$, q$, r$) corresponds to a linear transfor-
mation f: R2 � R2 such that f (x, y)=(x, &y) or f (x, y)=(&x, y) in the
universal 4-regular quadrangulation. Second, if p$=p, q$=q+:p, r$=r,
then T( p, q, r) and T( p$, q$, r$) are homeomorphic to each other, that is, an
:-fold twist along the boundary of the ( p, r)-annulus in T( p, q, r) yields
T( p$, q$, r$). Also, the universal 4-regular quadrangulation is invariant
under this translation. Thus, by the above argument, we can see that if
p$=p, q$#\q (mod p$), r$=r, then T( p, q, r) and T( p$, q$, r$) are
homeomorphic to each other. The translation (0) does not change an
universal geodesic 2-factor of T� ( p, q, r).

Now, we shall consider a translation which changes an universal
geodesic 2-factor in T� ( p, q, r). So, we shall take a geodesic cycle C of
T( p, q, r) containing the edge between (0, 0) and (1, 0) in R2. This is
possible, by Lemma 9. By the definition of 1( p, q, r), the point (0,0) is
carried on the point (;r, :p&;q) by 1( p, q, r), where :, ; # Z. If such a
point lies on the x-axis, then the integral equation :p&;q=0 holds and
the minimum positive ; is equal to pr�( p, q). Thus, the path on the x-axis
connecting (0, 0) and ( pr�( p, q), 0) is nothing but the required geodesic
cycle of T( p, q, r), and we have p$=pr�( p, q). Also, since T( p, q, r) and
T( p$, q$, r$) have the same number of vertices, we have pr=p$r$ and hence
r$=( p, q).

We have determined the fundamental domain of T( p$, q$, r$) of T� ( p, q, r)
to be

[(x, y) # R2: 0�x�pr�( p, q), 0�y�( p, q)].

So, in order to determine q$, it suffices to see where (0, 0) is carried on the
segment between (0, ( p, q)) and ( pr�( p, q), ( p, q)). Since (0, 0) is carried on
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(;r, :p&;q), we have :p&;q=( p, q) and hence &;q#( p, q) (mod p).
Thus, we obtain q$#;r (mod p$) for ; satisfying &;q#( p, q) (mod p).
Talking the translation (0) into consideration, we obtain (I).

Since there are only two different universal geodesic 2-factors in an
universal 4-regular quadrangulation, we need the only two translations (0)
and (I). Therefore, the lemma follows K.

Lemma 12. There exist precisely six irreducible 4-regular quadrangula-
tions of the torus up to homeomorphism, which are Q1

T , Q2
T , Q5

T , ..., Q8
T in

Fig. 4.

Proof. Let G be an irreducible 4-regular quadrangulation of T 2. By
Theorem 10, we suppose that G can be represented as T( p, q, r) with three
integers p, q and r. Figure 7 shows a local structure of G. The face bounded
by fgkj is supposed to be F. Since G is irreducible, F is not contractible at
both diagonal pairs of F. We focus on the diagonal pair [ f, k]. Since F
is not contractible at [ f, k], f and k are either adjacent with a common
vertex v({g, j) or joined by an edge, and hence we have one of the fol-
lowing cases: In case that f and k are adjacent with a common vertex, (1)
e=l. (2) b=o. (3) b=l. (4) e=o. In case that f and k are joined by an
edge, (5) f=l. (6) f=o. (7) k=b. (8) k=e.

Claim 1. If b=o or if e=l, then G is represented as T( p, 3, 1) for
some p.

Proof. We regard Fig. 7 as a part of the universal covering of G. In case
of b=o, by Lemma 9, we can take the straight line through b, f, j, n as a
geodesic cycle of G, which is denoted by C. In this case, all the vertical lines
form the universal goedesic 2-factor of G. Then, since b=o, the straight
line through c, g, k, o has to be identified with C so that b and o coincide
when we construct the torus from the universal 4-regular quadrangulation.

Fig. 7. The local structure of G.
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Thus, G can be represented as T( p, 3, 1) for some positive integer p. In case
of e=l, by taking each horizontal line as a geodesic cycle, we obtain the
same argument as above. Therefore, the claim follows. K

We omit the proof of the following claims since their proof is very similar
to that of Claim 1.

Claim 2. If b=l or if e=o, then G is represented as T( p, 2, 2) for
some p.

Claim 3. If either of f=l, f=o, k=b and k=e holds, then G is
represented as T( p, 2, 1) for some p.

Now, we shall determine p in each case, depending on the structure of
another diagonal pair [g, j] of F. We demonstrate only case of T( p, 3, 1)
to avoid the repetitions of the similar process. We label vertices of
T( p, 3, 1) as shown in the left of Fig. 8. And we place it on R2 so that the
vertex labeled p coincides with (0,0), and consider the universal covering of
T( p, 3, 1) as shown in the right of Fig. 8, which is denoted by T� ( p, 3, 1).
Note that the local situation of T( p, 3, 1) is lifted to T� ( p, 3, 1) and that
each face of T� ( p, 3, 1) bounded by 4 vertices whose coodinates are (i, j),
(i+1, j), (i+1, j+1) and (i, j+1) on R2 is not contractible at [(i, j+1),
(i+1, j)].

Fig. 8. T( p, 3, 1) and T� ( p, 3, 1).
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We claim that the two cases b=o and e=l are essentially same, up to
direction of the universal geodesic 2-factor. So, it suffices to consider case
of b=o. Since F is not contractible at [g, j], we have one of the following
cases: (i) c=n. (ii) i=h. (iii) c=i or h=n. (iv) g=i or h=j. (v) c=j or
g=n. Only in case (ii), it might happen that b=o=i=h, and hence we
treat this case as the case (vi). However, such a phenomena does not
happen in other cases.

(i) b=o and c=n means that G contains a Mo� bius Band or G con-
tains multiple edges. This is contrary to the orientability of the torus or the
simpleness of G.

(ii) i=h induces the identification of two points whose coordinates
are (i, j) and (i+3, j+1) on T� ( p, q, r)/R2. By this, the vertex labeled p is
identified with the one labeled 10, and hence we obtain that p=10.

(iii) Both of c=i and h=n induce the identification of (i, j) and
(i+2, j+2) on T� ( p, q, r)/R2. By this, we obtain that p=8, similarly to
the case (ii).

(iv) Both g=i and h=j induce the identification of (i, j) and
(i+2, j+1) on T� ( p, q, r)/R2. Similarly to the case (ii), we obtain that
p=7.

(v) Both c=j and g=n induce the identification of (i, j) and
(i+1, j+2) on T� ( p, q, r)/R2. By this, we obtain that p=5 similarly to
the case (ii).

(vi) b=o=i=h induce the identification of (i, j) and (i+1, j+2) on
T� ( p, q, r)/R2. However, this case has been considered in the case (v).

Therefore, by the above procedure, we obtain T(10, 3, 1), T(8, 3, 1),
T(7, 3, 1) and T(5, 3, 1) from T( p, 3, 1). By the similar process, we obtain
T(4, 2, 2) from T( p, 2, 2), and we obtain T(5, 2, 1), T(6, 2, 1) and T(7, 2, 1)
from T( p, 2, 1). We can see that T(7, 3, 1) and T(7, 2, 1) are homeomorphic
and that T(5, 3, 1) and T(5, 2, 1) are homeomorphic, by Lemma 11. Thus,
we can obtain Table I.

Though Q1
T and Q2

T are K4, 4 as graphs, they have the different standard
forms and hence they are not homeomorphic. So, we treat them separately
in this paper. Here, unifying the eight irreducible quadrangulations of T 2

obtained as above into the same appearance by homeomorphism, we
obtain Fig. 4. K

Proof of Theorem 2. By Lemmas 8 and 12, we can see that the theorem
follows. K
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TABLE I

Irreducible 4-Regular Quadrangulations of T 2

Standard form Notation Graph

T(4, 2, 2) Q1
T K4, 4

T(8, 3, 1) Q2
T K4, 4

T(10, 3, 1) Q5
T K5, 5&1-factor

T(5, 2,1) Q6
T K5

T(6, 2, 1) Q7
T K6&1-factor

T(7, 2, 1) Q8
T K7&hamilton cycle

3. Proof of Theorem 3

By the obtained complete list of irreducible quadrangulations of the
torus, we shall prove Theorem 3. The following two lemmas have been
shown in [3].

Lemma 13. Any vertex of degree 2 of a quadrangulation of F 2 can be
moved into any face of G by a sequence of diagonal slides.

Here, 1n denotes a quadrilateral region which contains n vertices of
degree 2 as shown in Fig. 9. Let T be a quadrangulation of a closed surface
F 2 and T+1n a quadrangulation of F 2 obtained from T by adding 1n to
a face of T. The quadrangulation T+1n represents various quadrangula-
tions depending on our choice of a face to add 1n . However, by Lemma
13, T+1n denotes an unique quadrangulation, up to equivalence.

Lemma 14. Let G and T be two quadrangulations of a closed surface. If
T is obtained from G by a sequence of face contractions, then GrT+1m

with m=|V(G)|&|V(T)|.

Fig. 9. 1n .
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Lemma 15. Let G1 and G2 be two quadrangulations of a closed surface
and m a non-negative integer. If G1 rG2 , then G1+1m rG2+1m .

Proof. It is easy to see that the lemma follows since a vertex of degree
2 can be moved into any face by diagonal slides, by Lemma 13. K

Theorem 16. Any two bipartite quadrangulations G1 and G2 of the torus
are equivalent to each other under diagonal slides and diagonal rotations if
|V(G1)|=|V(G2)|�N(T2)=10. Here, N(T 2)=10 is sharp.

Proof. Let G1 and G2 be two bipartite quadrangulations of the torus
with |V(G1)|=|V(G2)|=m�10. Any bipartite quadrangulation of T 2 is
contractible to one of Q1

T , ..., Q5
T by Theorem 2. By Lemma 14, each of G1

and G2 is equivalent to one of Q1
T+1m&8 , Q2

T+1m&8 , Q3
T+1m&9 ,

Q4
T+1m&9 and Q5

T+1m&10 .
So, in order to show that G1 rG2 , we shall prove that

Q1
T+1m&8 rQ2

T+1m&8 rQ3
T+1m&9 rQ4

T+1m&9 rQ5
T+1m&10 .

Since we can move a vertex of degree 2 freely, by Lemma 13, and since
m�10, we have

Q1
T+12+1m&10 rQ2

T+12+1m&10 rQ3
T+11+1m&10

rQ4
T+11+1m&10 rQ5

T+1m&10 .

Thus, by Lemma 15, it suffices to show that Q1
T+12 rQ2

T+12 r

Q3
T+11 rQ4

T+11 rQ5
T . We shall demonstrate only Q1

T+12 rQ5
T by

Fig. 10. Similarly, others can be shown easily via Q5
T . Therefore, the

theorem follows.

Fig. 10. Q1
T+12 rQ5

T .
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If m<10, the theorem does not follow. Since Q3
T is a complete bipartite

graph, we can not move any edge of it and hence it is not equivalent to any
other one. Thus, Q3

T and Q1
T+11 are a pair of inequivalent quadrangula-

tions with m=9. Thus, N(T 2)=10 is sharp. K

By this theorem, the value of N(T 2) in Theorem 1 has been determined to
be 10. In the above proof, if we exclude complete bipartite graphs Q1

T , Q2
T and

Q3
T , we can also show the equivalence of any two bipartite quadrangulations

of T 2 with the same number of vertices, without restricting the lower bound
of the number of vertices.

Theorem 17. Any two bipartite quadrangulations of the torus with the
same number of vertices, except for complete bipartite graphs, are equivalent
to each other under diagonal slides and diagonal rotations.

Proof. Let G1 and G2 be two bipartite quadrangulations of T 2 with
|V(G1)|=|V(G2)|=m which are not complete bipartite graphs. If m�10,
this theorem holds, by Theorem 16. Also, in case of m�8, there exists no
biparite quadrangulation of T 2 which is not a complete bipartite graph, by
Theorem 2. So, we shall consider case of m=9. A bipartite quadrangula-
tion of T 2 with 9 vertices which is not a complete bipartite graph is
isomorphic to either of the one contractible to Q1

T , the one contractible to
Q2

T or Q4
T , by Theorem 2. Thus, it suffices to show that Q1

T+11 r

Q2
T+11 rQ4

T . This can be shown similarly to the above procedure shown
in Fig. 10. Therefore, the theorem follows. K

Theorem 18. Any two non-bipartite quadrangulations of the torus with
the same number of vertices are equivalent to each other using only diagonal
slides.

Proof. In non-bipartite quadrangulations, it has been already shown
that a diagonal rotation can be realized by a sequence of diagonal slides
[5]. By Theorem 2 and Lemma 14, any non-bipartite quadrangulation of
T 2 with m�5 vertices is contractible to one of Q6

T , Q7
T and Q8

T and equiv-
alent to one of Q6

T+1m&5 , Q7
T+1m&6 and Q8

T+1m&7. Now we show
Q7

T rQ6
T+11 and Q8

T rQ6
T+12 . Similarly to the above case, they can be

easily shown. Thus, any non-bipartite quadrangulation of T 2 with m ver-
tices can be transformed into Q6

T+1m&5 by diagonal slides, and hence the
theorem follows. K

Proof of Theorem 3. The two transformations, a diagonal slide and a
diagonal rotation, preserve the bipartiteness of quadrangulations. There-
fore, Theorem 3 follows just as a corollary of Theorems 17 and 18. K
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4. The 2-Representative Graphs on the Torus

How do 2-representative graphs have connections with quadrangula-
tions? The following two propositions are the keys and easy to see.

Proposition 19. Let G be a 2-connected graph 2-cell embedded in a
closed surface F 2. Then, G is 2-representative if and only if each face of G
is bounded by a cycle.

Let G be a graph with black vertices 2-cell embedded in a closed surface
F 2. Put a white vertex into each face of G and join it with the black vertices
of G lying along the boundary walk of the face. And delete all edges of G.
The resulting graph is called the radial graph R(G) of G [2]. It is easy to
see that R(G) is bipartite and each face of R(G) is quadrilateral, but R(G)
is not always a quadrangulation. If there is a face whose boundary walk is
not a cycle, then R(G) has multiple edges.

Proposition 20. A graph G is embedded in a closed surface F 2 so that
each face of G is bounded by a cycle if and only if R(G) is a bipartite
quadrangulation of F 2.

Observe that a face contraction at white vertices in R(G) corresponds to
a deletion of an edge in G, and that a face contraction at black vertices in
R(G) corresponds to a contraction of an edge in G. Thus, a face contrac-
tion of R(G) corresponds to one of two operations which produce a minor
of G. Therefore, we can see the following proposition immediately, from
Proposition 19 and 20.

Proposition 21. Let G be a graph embedded in a closed surface F 2 and
R(G) its radial graph. Then, G is minor-minimal 2-representative on F 2 if
and only if R(G) is an irreducible bipartite quadrangulation of F 2.

Proof. See the above comment. K

By Proposition 21, we can translate Theorem 2 to the following theorem
by regarding each Qi

T as a radial graph. Actually, the two minor-minimal
2-representative graphs on the projective plane, determined by Vitray [8],
are obtained from Q1

P in Fig. 3 by regarding it as a radial graph.

Theorem 22. If a graph G embedded in the torus is minor-minimal
2-representative, then G is isomorphic to one of T1 , ..., T7 shown in Fig. 11,
up to homeomorphism.

In Fig. 11, each rectangle represents the torus by identifying each pair of
opposite lines. In particular, T3 and T7 are isomorphic to K3, 3 and K5 as
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Fig. 11. Minor-minimal 2-representative graphs on the torus.

graphs, respectively. (T3 , T4) and (T5 , T6) are dual pairs of graphs. Note
that T3 , T4 , T5 and T6 are transformed into each other by Y�2 transforma-
tions. A Y�2 transformation in a graph G corresponds to the diagonal
rotation around a vertex of degree 3 in R(G). On the other hand, T1 , T2

and T7 are 4-regular, that is, they contain neither a vertex of degree 3 nor
a triangular face.
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