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Abstract

In this paper, the competitor–competitor–mutualist three-species Lotka–Volterra model is discussed. Firstly, by Schauder fixed
point theory, the coexistence state of the strongly coupled system is given. Applying the method of upper and lower solutions
and its associated monotone iterations, the true solutions are constructed. Our results show that this system possesses at least one
coexistence state if cross-diffusions and cross-reactions are weak. Secondly, the existence and asymptotic behavior of T-periodic
solutions for the periodic reaction–diffusion system under homogeneous Dirichlet boundary conditions are investigated. Sufficient
conditions which guarantee the existence of T-periodic solution are also obtained.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the strongly coupled elliptic system with Dirichlet boundary condition:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�[(d1 + α11u1 + α12u2)u1] = u1(a1 − b11u1 − b12u2), x ∈ Ω,

−�[(d2 + α21u1 + α22u2 + α23
β+u3

)u2] = u2(a2 − b21u1 − b22u2 + b23u3), x ∈ Ω,

−�[(d3 + α32
γ+u2

+ α33u3)u3] = u3(a3 + b32u2 − b33u3), x ∈ Ω,

ui(x) = 0, i = 1,2,3, x ∈ ∂Ω,

(1.1)

where � is the Laplacian operator, Ω is a bounded domain in RN with a smooth boundary ∂Ω and di, β, γ , ai, bij ,

i, j = 1,2,3 are positive constants except for αij which may be nonnegative constants. The system represents a model
which involves interacting and migrating in the same habitat Ω among a competitor, a competitor–mutualist and
a mutualist. Here ui, i = 1,2,3 denotes the density of competitor, competitor–mutualist and mutualist, respectively.
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The boundary condition means that the habitat Ω is surrounded by a hostile environment. The diffusion terms can be
written as

div
{
(d1 + 2α11u1 + α12u2)∇u1 + α12u1∇u2

}
,

div

{
α21u2∇u1 +

(
d2 + α21u1 + 2α22u2 + α23

β + u3

)
∇u2 + −α23u2

(β + u3)2
∇u3

}
,

div

{ −α32u3

(γ + u2)2
∇u2 +

(
d3 + α32

γ + u2
+ 2α33u3

)
∇u3

}
.

The terms

d1 + 2α11u1 + α12u2, d2 + α21u1 + 2α22u2 + α23

β + u3
, d3 + α32

γ + u2
+ 2α33u3

represent the “self-diffusion” and the terms

α12u1, α21u2,
−α23u2

(β + u3)2
,

−α32u3

(γ + u2)2

represent the “cross-diffusion.” Here α12u1 > 0 and α21u2 > 0 imply that the flux of u1 and u2 in x-direction are
directed toward decreasing population of u2 and u1 respectively, i.e. the two competitors avoid each other. While
−α23u2
(β+u3)

2 < 0 and −α32u3
(γ+u2)

2 < 0 imply that the flux of u2 and u3 in x-direction are directed toward increasing population
of u3 and u2 respectively, i.e. the two mutualists chase each other. The above model means that, in addition to the
dispersive force, the diffusion also depends on population pressure from other species. Here a solution (u1, u2, u3) to
system (1.1) is said to be positive if ui(x) > 0, i = 1,2,3 for all x ∈ Ω , the existence of a positive solution (u1, u2, u3)

to system (1.1) is also called a coexistence. We are mainly concerned with the coexistence states of system (1.1).
In the case when αij = 0 for i, j = 1,2,3, the above system is the classic competitor–competitor–mutualist model,

while if αij �= 0 for some i or j the system becomes a strongly coupled elliptic system. The strongly coupled systems
of elliptic equations have been extensively studied by many mathematicians [1–8]. In an attempt to investigate the
spatial segregation under self- and cross-population pressure, Shigesada et al. [1] proposed the strongly coupled ellip-
tic system describing two species Lotka–Volterra competition model. For the Dirichlet boundary value problem of the
system, positive solutions are found when birth rates lie in certain range, or when cross-diffusion are sufficiently large
by [2]. For the homogeneous Neumann boundary value problem of the system, the effects of diffusion, self-diffusion
and cross-diffusion were investigated by Lou and Ni [3]. Applying the bifurcation theory and Lyapunov–Schmidt
procedure, the multiple coexistence states for a prey–predator system with cross-diffusion was proved by Kuto and
Yamada [4].

Recently, the method of construction of solutions for a general class of strongly coupled elliptic systems was
developed by Pao [8] and was based on upper and lower solutions and its associated monotone iterations.

For the related parabolic systems, reader can see [9–12] and references therein.
We will also consider the competitior–competitior–mutualist model with time delays and diffusions under Neu-

mann boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t

− d1(x, t)�u1 = u1[a1(x, t) − b11(x, t)u1(x, t) − b12(x, t)u2(x, t − τ2)],
in Ω × (0,∞),

∂u2
∂t

− d2(x, t)�u2 = u2[a2(x, t) − b21(x, t)u1(x, t − τ1) − b22(x, t)u2(x, t) + b23(x, t)u3(x, t − τ3)],
in Ω × (0,∞),

∂u3
∂t

− d3(x, t)�u3 = u3[a3(x, t) + b32(x, t)u2(x, t − τ2) − b33(x, t)u3],
in Ω × (0,∞),

∂u1
∂η

= ∂u2
∂η

= ∂u3
∂η

= 0, on ∂Ω × (0,∞),

(1.2)

with the periodic condition

ui(x, t) = ui(x, t + T ), i = 1,2,3, (x, t) ∈ Ω × [−τi,0], (1.3)

and under the initial condition
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ui(x, t) = ηi(x, t), i = 1,2,3, (x, t) ∈ Ω × [−τi,0], (1.4)

where di ≡ di(x, t), ai ≡ ai(x, t), bij ≡ bij (x, t), (i = 1,2,3) are smooth positive T-periodic functions on Ω×(0,∞).
Ω is a bounded domain in RN with boundary ∂Ω , η denotes the outward normal derivative on ∂Ω . It is assumed
that the boundary ∂Ω is of a class C1+α and ηi ∈ Cα/2,α(D

(i)
0 ) and satisfies the compatibility condition, where

D
(i)
0 = Ω ×[−τi,0], i = 1,2,3. We are interested in the existence of the T-periodic solution as well as the asymptotic

behavior of (1.2), (1.4) in relation to the maximal and minimal T-periodic solution of systems (1.2), (1.3).
Periodic solutions of parabolic boundary value problems have been investigated by many researchers, and various

methods have been proposed for the existence and qualitative properties of the solution. The logistic delay differential
equation as a model of single-species population growth has been considered in [13,14]. Nonlinear periodic diffusion
equations arise naturally in population models [15] where the birth and death rates, rates of diffusion, rates of inter-
actions and environmental carrying capacities are periodic on seasonal scale. The existence and global stability of a
T-periodic solution of periodic boundary-value problem of the logistic model has been studied by Hess [16]. A cou-
pled system of parabolic equations with time delays has been investigated by the method of upper and lower solutions
in [17,18]. The monotone iterative scheme associated with this method leads to various computation algorithms for
numerical solutions of the periodic boundary problem [19]. The stability and attractivity analysis which are for quasi-
monotone nondecreasing and mixed quasimonotone reaction functions by the monotone iteration scheme were given
in [20,21].

The paper is organized as follows: based on the idea introduced by Pao [8], we try to obtain sufficient conditions
which guarantee the coexistence state of system (1.1) in Section 2, and the true solutions of (1.1) are constructed in
the same section. In Section 3, we get the sufficient conditions for the existence of T-periodic solutions of systems
(1.2), (1.3), the stability and attractivity of the maximal and minimal T-periodic solutions, a global attractor of the
system relative to a sector are established provided that −λ1(a1) � b12M2, −λ2(a2) > b21M1 and −λ3(a3) > 0.

2. Coexistence

We will give a sufficient condition for that system (1.1) has a positive solution by constructing a coupled upper and
lower solutions as in [8]. We first give an equivalent form of the problem (1.1):⎧⎪⎪⎨

⎪⎪⎩

−�[D1(u1, u2)] = f1(u1, u2), x ∈ Ω,

−�[D2(u1, u2, u3)] = f2(u1, u2, u3), x ∈ Ω,

−�[D3(u2, u3)] = f3(u2, u3), x ∈ Ω,

u1(x) = u2(x) = u3(x) = 0, x ∈ ∂Ω,

(2.1)

where

D1(u1, u2) = (d1 + α11u1 + α12u2)u1,

f1(u1, u2) = u1(a1 − b11u1 − b12u2),

D2(u1, u2, u3) =
(

d2 + α21u1 + α22u2 + α23

β + u3

)
u2,

f2(u1, u2, u3) = u2(a2 − b21u1 − b22u2 + b23u3),

D3(u2, u3) =
(

d3 + α32

γ + u2
+ α33u3

)
u3,

f3(u2, u3) = u3(a3 + b32u2 − b33u3).

Define

w1 = D1(u1, u2), w2 = D2(u1, u2, u3), w3 = D3(u2, u3).

A direct calculation shows that the Jacobian J of the transformation w1,w2,w3 is given by

J = ∂(w1,w2,w3) � d1d2d3 > 0 for (u1, u2, u3) � (0,0,0).

∂(u1, u2, u3)
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Then the inverse u1 = g1(w1,w2,w3), u2 = g2(w1,w2,w3), u3 = g3(w1,w2,w3) exists whenever (u1, u2, u3) �
(0,0,0). Hence the corresponding equivalent of (2.1) becomes⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�w1 + k1w1 = F1(u1, u2), x ∈ Ω,

−�w2 + k2w2 = F2(u1, u2, u3), x ∈ Ω,

−�w3 + k3w3 = F3(u2, u3), x ∈ Ω,

ui = gi(w1,w2,w3), i = 1,2,3, x ∈ Ω,

wi(x) = 0, i = 1,2,3, x ∈ ∂Ω,

(2.2)

where Fi(u1, u2, u3) = kiDi(u1, u2, u3) + fi(u1, u2, u3), i = 1,2,3.
Now we consider the monotonicity of Fi with respect to uj and also the monotonicity of gi with respect to wj for

i, j = 1,2,3. First it is easy to see that

∂u1

∂w1
> 0,

∂u1

∂w2
� 0,

∂u1

∂w3
� 0,

∂u2

∂w1
� 0,

∂u2

∂w2
> 0,

∂u2

∂w3
� 0,

∂u3

∂w1
� 0,

∂u3

∂w2
� 0,

∂u3

∂w3
> 0

from direct calculations. This shows that u1 = g1(w1,w2,w3) is nondecreasing in w1 and nonincreasing in w2, w3
and u2 = g2(w1,w2,w3) is nondecreasing in w2, w3 and nonincreasing in w1, while u3 = g3(w1,w2,w3) is nonde-
creasing in w2, w3 and nonincreasing in w1 for all (w1,w2,w3) � (0,0,0).

Secondly if we choose ki = bii

αii
, i = 1,2,3. Then

∂F1

∂u1
= b11

α11
d1 + a1 +

(
b11

α11
α12 − b12

)
u2,

∂F1

∂u2
=

(
b11

α11
α12 − b12

)
u2,

∂F1

∂u3
= 0;

∂F2

∂u2
= b22

α22
d2 + a2 +

(
b22

α22
α21 − b21

)
u1 + b22α23

(β + u3)α22
+ b23u3,

∂F2

∂u1
=

(
b22

α22
α21 − b21

)
u2,

∂F2

∂u3
=

[
b23 − b22α23

α22(β + u3)2

]
u2;

∂F3

∂u3
= b33

α33
d3 + a3 + b33α32

α33(γ + u2)
+ b32u2,

∂F3

∂u2
=

[
b32 − b33α32

α33(γ + u2)2

]
u3,

∂F3

∂u1
= 0.

Assume that

b11

α11
<

b12

α12
,

b22

α22
<

b21

α21
,

b22

α22
<

b23β
2

α23
,

b33

α33
<

b32γ
2

α32
, (2.3)

Obviously, we can get ∂F1
∂u2

� 0, ∂F2
∂u1

� 0, ∂F2
∂u3

� 0, ∂F3
∂u2

� 0, ∂F3
∂u3

� 0 for every (u1, u2, u3) � (0,0,0). Furthermore,
choose

M1 = b22d2 + a2α22

b21α22 − b22α21
, M2 = b11d1 + a1α11

b12α11 − b11α12
,

we can obtain that ∂F1
∂u1

� 0, ∂F2
∂u2

� 0 when (u1, u2, u3) ∈ [0,M1] × [0,M2] × [0,∞). Therefore, when (u1, u2, u3) ∈
[0,M1] × [0,M2] × [0,∞), the function F1 is nonincreasing in u2 and nondecreasing in u1; F2 is nonincreasing in
u1 and nondecreasing in u2, u3; F3 is nondecreasing in u2, u3.

Next we give the definition of coupled upper and lower solutions of (2.2) as the following:

Definition 2.1. A pair of 6-vector functions (ũ, w̃) = (ũ1, ũ2, ũ3, w̃1, w̃2, w̃3), (û, ŵ) = (û1, û2, û3, ŵ1, ŵ2, ŵ3) in
C2(Ω) ∩ C(Ω) are called coupled upper and lower solutions of (2.2), if ũ1 � M1, ũ2 � M2, (ũ, w̃) � (û, ŵ) and if
their components satisfy the relation
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�w̃1 + k1w̃1 � F1(ũ1, û2), −�ŵ1 + k1ŵ1 � F1(û1, ũ2), x ∈ Ω,

−�w̃2 + k2w̃2 � F2(û1, ũ2, ũ3), −�ŵ2 + k2ŵ2 � F2(ũ1, û2, û3), x ∈ Ω,

−�w̃3 + k3w̃3 � F3(ũ2, ũ3), −�ŵ3 + k3ŵ3 � F3(û2, û3), x ∈ Ω,

ũ1 � g1(w̃1, ŵ2, ŵ3), û1 � g1(ŵ1, w̃2, w̃3), x ∈ Ω,

ũ2 � g2(ŵ1, w̃2, w̃3), û2 � g2(w̃1, ŵ2, ŵ3), x ∈ Ω,

ũ3 � g3(ŵ1, w̃2, w̃3), û3 � g3(w̃1, ŵ2, ŵ3), x ∈ Ω,

w̃i(x) � 0 � ŵi(x), i = 1,2,3, x ∈ ∂Ω.

(2.4)

We set

S = {
u ∈ Cα(Ω); û � u � ũ

}; S∗ = {
w ∈ Cα(Ω); ŵ � w � w̃

}
where u = (u1, u2, u3), w = (w1,w2,w3), ũ = (ũ1, ũ2, ũ3), û = (û1, û2, û3) and w̃ = (w̃1, w̃2, w̃3), ŵ = (ŵ1, ŵ2, ŵ3).

For definiteness, we choose

ũ1 = g1(w̃1, ŵ2, ŵ3), ũ2 = g2(ŵ1, w̃2, w̃3), ũ3 = g3(ŵ1, w̃2, w̃3),

û1 = g1(ŵ1, w̃2, w̃3), û2 = g2(w̃1, ŵ2, ŵ3), û3 = g3(w̃1, ŵ2, ŵ3),

which is equivalent to

w̃1 = D1(ũ1, û2), w̃2 = D2(û1, ũ2, ũ3), w̃3 = D3(ũ2, ũ3),

ŵ1 = D1(û1, ũ2), ŵ2 = D2(ũ1, û2, û3), ŵ3 = D3(û2, û3).

Then the requirements of (ũ1, ũ2, ũ3), (û1, û2, û3) in (2.4) are satisfied and those of (w̃1, w̃2, w̃3), (ŵ1, ŵ2, ŵ3) are
reduced to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�[D1(ũ1, û2)] + k1D1(ũ1, û2) � F1(ũ1, û2), x ∈ Ω,

−�[D2(û1, ũ2, ũ3)] + k2D2(û1, ũ2, ũ3) � F2(û1, ũ2, ũ3), x ∈ Ω,

−�[D3(ũ2, ũ3)] + k3D3(ũ2, ũ3) � F3(ũ2, ũ3), x ∈ Ω,

−�[D1(û1, ũ2)] + k1D1(û1, ũ2) � F1(û1, ũ2), x ∈ Ω,

−�[D2(ũ1, û2, û3)] + k2D2(ũ1, û2, û3) � F2(ũ1, û2, û3), x ∈ Ω,

−�[D3(û2, û3)] + k3D3(û2, û3) � F3(û2, û3), x ∈ Ω,

ũi(x) � 0 � ûi (x), i = 1,2,3, x ∈ ∂Ω.

(2.5)

We call the pair (ũ1, ũ2, ũ3), (û1, û2, û3) satisfying (2.5) and ũ1 � M1, ũ2 � M2, (ũ1, ũ2, ũ3) � (û1, û2, û3) are
coupled upper and lower solutions of (1.1).

Now we seek a pair of coupled upper and lower solutions of (1.1) in the form

(ũ1, ũ2, ũ3) = (M1, M2, M3), (û1, û2, û3) = (δ1φ, δ2φ, δ3φ)

where Mi and δi (i = 1,2,3) are some positive constants with δi sufficiently small, and φ ≡ φ(x) is the (normalized)
positive eigenfunction corresponding to λ0, where λ0 is the smallest eigenvalue of the Laplacian (−�) under Dirichlet
boundary condition. Indeed (M1,M2,M3), (δ1φ, δ2φ, δ3φ) satisfy the inequalities in (2.5) if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�[(d1 + α11M1 + α12δ2φ)M1] � M1(a1 − b11M1 − b12δ2φ),

−�[(d2 + α21δ1φ + α22M2 + α23
β+M3

)M2] � M2(a2 − b21δ1φ − b22M2 + b23M3),

−�[(d3 + α32
γ+M2

+ α33M3)M3] � M3(a3 + b32M2 − b33M3),

−�[(d1 + α11δ1φ + α12M2)δ1φ] � δ1φ(a1 − b11δ1φ − b12M2),

−�[(d2 + α21M1 + α22δ2φ + α23
β+δ3φ

)δ2φ] � δ2φ(a2 − b21M1 − b22δ2φ + b23δ3φ),

−�[(d3 + α32
γ+δ2φ

+ α33δ3φ)δ3φ] � δ3φ(a3 + b32δ2φ − b33δ3φ).

(2.6)

Since that δi , i = 1,2,3 is sufficiently small and −�φ = λ0φ, the inequalities in (2.6) are equivalent to
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 − b11M1 � 0,

a2 − b22M2 + b23M3 � 0,

a3 + b32M2 − b33M3 � 0,

(d1 + α12M2)λ0 < a1 − b12M2,

(d2 + α23
β

+ α21M1)λ0 < a2 − b21M1,

(d3 + α32
γ

)λ0 < a3.

(2.7)

Assume that

b23b32 < b22b33 (2.8)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1
b11

� M1 <
a2−(d2+ α23

β
)λ0

λ0α21+b21
,

a2b33+a3b23
b22b33−b23b32

� M2 <
a1−λ0d1

λ0α12+b12
,

M3 � b22a3+b32a2
b22b33−b23b32

, (d3 + α32
γ

)λ0 < a3.

(2.9)

Then the requirements in (2.7) are fulfilled and also the inequalities M1 � M1, M2 � M2 hold. In all, assume that

b11

α11
<

b12

α12
,

b22

α22
<

b21

α21
,

b22

α22
<

b23β
2

α23
,

b33

α33
<

b32γ
2

α32
, b23b32 < b22b33,

a1

b11
<

a2 − (d2 + α23
β

)λ0

λ0α21 + b21
,

a2b33 + a3b23

b22b33 − b23b32
<

a1 − λ0d1

λ0α12 + b12
,

(
d3 + α32

γ

)
λ0 < a3, (2.10)

there exist positive constants Mi, δi (i = 1,2,3) and φ such that the pair (ũ1, ũ2, ũ3) = (M1,M2,M3), (û1, û2, û3) =
(δ1φ, δ2φ, δ3φ) are coupled upper and lower solutions of problem (1.1).

Using Theorem 2.1 of [8] yields the following existence result:

Theorem 2.1. The problem (1.1) admits at least one positive solution u = (u1, u2, u3) under the condition (2.10).

Remark 2.1. It is easy to see that if λ0d1 � a1 or λ0d2 � a2 or λ0d3 � a3, then problem (1.1) has no positive solution,
see [2]. Our result shows that if λ0d1 < a1, λ0d2 < a2 and λ0d3 < a3, then problem (1.1) has at least one coexistence
state provided that cross-diffusions α12, α21, α23, α32 and cross-reactions b12, b21, b23, b32 are sufficiently small.

In what follows, we will construct the true solutions of (1.1) based on monotone iterative schemes. Under the
condition (2.10), we know that (M1,M2,M3), (δ1φ, δ2φ, δ3φ) are coupled upper and lower solutions of problem (1.1).
Now we use (u

(0)
1 , u

(0)
2 , u

(0)
3 ) = (M1,M2,M3), (u

(0)
1 , u

(0)
2 , u

(0)
3 ) = (δ1φ, δ2φ, δ3φ) as an initial iteration in the iteration

process⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�w
(m)
1 + k1w

(m)
1 = F1(u

(m−1)
1 , u

(m−1)
2 ), x ∈ Ω,

−�w
(m)
2 + k2w

(m)
2 = F2(u

(m−1)
1 , u

(m−1)
2 , u

(m−1)
3 ), x ∈ Ω,

−�w
(m)
3 + k3w

(m)
3 = F3(u

(m−1)
2 , u

(m−1)
3 ), x ∈ Ω,

−�w
(m)
1 + k1w

(m)
1 = F1(u

(m−1)
1 , u

(m−1)
2 ), x ∈ Ω,

−�w
(m)
2 + k2w

(m)
2 == F2(u

(m−1)
1 , u

(m−1)
2 , u

(m−1)
3 ), x ∈ Ω,

−�w
(m)
3 + k3w

(m)
3 = F3(u

(m−1)
2 , u

(m−1)
3 ), x ∈ Ω,

u
(m)
1 = g1(w

(m)
1 ,w

(m)
2 ,w

(m)
3 ), u

(m)
1 = g1(w

(m)
1 ,w

(m)
2 ,w

(m)
3 ), x ∈ Ω,

u
(m)
2 = g2(w

(m)
1 ,w

(m)
2 ,w

(m)
3 ), u

(m)
2 = g1(w

(m)
1 ,w

(m)
2 ,w

(m)
3 ), x ∈ Ω,

u
(m)
3 = g3(w

(m)
1 ,w

(m)
2 ,w

(m)
3 ), u

(m)
3 = g3(w

(m)
1 ,w

(m)
2 ,w

(m)
3 ), x ∈ Ω,

w
(m)

(x) = w
(m)

(x) = 0, i = 1,2,3, x ∈ ∂Ω,

(2.11)
i i
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where m = 1,2, . . .. Using the Lemma 3.1 of [8], we know that the sequences {(u(m),w(m))}, {(u(m), w(m)))} governed
by (2.11) are well defined and possess the monotone property

(û, ŵ) �
(
u(m−1),w(m−1)

)
�

(
u(m),w(m)

)
�

(
u(m),w(m)

)
�

(
u(m−1),w(m−1)

)
� (ũ, w̃),

for every m = 1,2, . . . .
Therefore the pointwise limits

lim
m→∞

(
u(m),w(m)

) = (u,w), lim
m→∞

(
u(m),w(m)

) = (u,w)

exist and satisfy the relation

(û, ŵ) �
(
u(m),w(m)

)
� (u,w) � (u,w) �

(
u(m),w(m)

)
� (ũ, w̃)

for every m = 1,2, . . . .

From the last four equations in the iteration process (2.11), we obtain

u
(m)
1 = g1

(
w

(m)
1 ,w

(m)
2 ,w

(m)
3

)
, u

(m)
1 = g1

(
w

(m)
1 ,w

(m)
2 ,w

(m)
3

)
,

u
(m)
2 = g2

(
w

(m)
1 ,w

(m)
2 ,w

(m)
3

)
, u

(m)
2 = g2

(
w

(m)
1 ,w

(m)
2 ,w

(m)
3

)
,

u
(m)
3 = g3

(
w

(m)
1 ,w

(m)
2 ,w

(m)
3

)
, u

(m)
3 = g3

(
w

(m)
1 ,w

(m)
2 ,w

(m)
3

)
,

which is equivalent to

⎧⎪⎪⎨
⎪⎪⎩

w
(m)
1 = D1(u

(m)
1 , u

(m)
2 ), w

(m)
1 = D1(u

(m)
1 , u

(m)
2 ),

w
(m)
2 = D2(u

(m)
1 , u

(m)
2 , u

(m)
3 ), w

(m)
2 = D2(u

(m)
1 , u

(m)
2 , u

(m)
3 ),

w
(m)
3 = D3(u

(m)
2 , u

(m)
3 ), w

(m)
3 = D3(u

(m)
2 , u

(m)
3 ).

(2.12)

By the relation in (2.12), let m → ∞ and using the standard regularity argument for elliptic boundary problems show
that (u1, u2, u3) and (u1, u2, u3) satisfy the equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�[D1(u1, u2)] + k1D1(u1, u2) = F1(u1, u2), x ∈ Ω,

−�[D2(u1, u2, u3)] + k2D2(u1, u2, u3) = F2(u1, u2, u3), x ∈ Ω,

−�[D3(u2, u3)] + k3D3(u2, u3) = F3(u2, u3), x ∈ Ω,

−�[D1(u1, u2)] + k1D1(u1, u2) = F1(u1, u2), x ∈ Ω,

−�[D2(u1, u2, u3)] + k2D2(u1, u2, u3) = F2(u1, u2, u3), x ∈ Ω,

−�[D3(u2, u3)] + k3D3(u2, u3) = F3(u2, u3), x ∈ Ω,

ui(x) = ui(x) = 0, i = 1,2,3, x ∈ ∂Ω.

(2.13)

By virtue of the monotonicity of the functions Fi(u1, u2, u3) and Di(u1, u2, u3) i = 1,2,3, the functions Fi,Di

possess the following property

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(u1, u2) = f1(u1, u2) + k1D1(u1, u2), x ∈ Ω,

F2(u1, u2, u3) = f2(u1, u2, u3) + k2D2(u1, u2, u3), x ∈ Ω,

F3(u2, u3) = f3(u2, u3) + k3D3(u2, u3), x ∈ Ω,

F1(u1, u2) = f1(u1, u2) + k1D1(u1, u2), x ∈ Ω,

F2(u1, u2, u3) = f2(u1, u2, u3) + k2D2(u1, u2, u3), x ∈ Ω,

F3(u2, u3) = f3(u2, u3) + k3D3(u2, u3), x ∈ Ω.

(2.14)
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Therefore⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�[D1(u1, u2)] = f1(u1, u2), x ∈ Ω,

−�[D2(u1, u2, u3)] = f2(u1, u2, u3), x ∈ Ω,

−�[D3(u2, u3)] = f3(u2, u3), x ∈ Ω,

−�[D1(u1, u2)] = f1(u1, u2), x ∈ Ω,

−�[D2(u1, u2, u3)] = f2(u1, u2, u3), x ∈ Ω,

−�[D3(u2, u3)] = f3(u2, u3), x ∈ Ω,

ui(x) = ui(x) = 0, i = 1,2,3, x ∈ ∂Ω.

(2.15)

Then (u1, u2, u3) and (u1, u2, u3) are true solutions of (1.1).
If u1 = u1 or u2 = u2 or u3 = u3, then (u1, u2, u3) = (u1, u2, u3) (≡ (u∗

1, u
∗
2, u

∗
3)) and (u∗

1, u
∗
2, u

∗
3) is the unique

solution of (1.1). To see this, let us consider the case u1 = u1 ≡ u∗
1. By a subtraction of the first equation from the

fourth equation in (2.15) and

D1(u1, u2) − D1(u1, u2) = −α12u
∗
1(u2 − u2),

we obtain

�
[
α12u

∗
1(u2 − u2)

] = −u∗
1b12(u2 − u2), in Ω.

In view of u∗
1 > 0, α12 > 0, b12 > 0, and u2 − u2 = 0 on ∂Ω , the above equation yields u2 = u2. We can take use

of the similar method to obtain u3 = u3. This shows that (u1, u2, u3) = (u1, u2, u3). Then (u∗
1, u

∗
2, u

∗
3) is the unique

solution.
To summarize the above conclusions we have the following theorem:

Theorem 2.2. Under the condition (2.10), the sequences {u(m)
1 , u

(m)
2 , u

(m)
3 }, {u(m)

1 , u
(m)
2 , u

(m)
3 } obtained from (2.11)

with (u
(0)
1 , u

(0)
2 , u

(0)
3 ) = (M1,M2,M3), (u

(0)
1 , u

(0)
2 , u

(0)
3 ) = (δ1φ, δ2φ, δ3φ) and k1 = b11

α11
, k2 = b22

α22
, k3 = b33

α33
, converge

monotonically to some limits (u1, u2, u3), (u1, u2, u3) and (u1, u2, u3), (u1, u2, u3) are true solutions of (1.1); if
either u1 = u1 or u2 = u2 or u3 = u3, then (u1, u2, u3) = (u1, u2, u3)(≡ (u∗

1, u
∗
2, u

∗
3)) and (u∗

1, u
∗
2, u

∗
3) is the unique

solution of problem (1.1) in S .

3. Existence of periodic solution

In this section, we study the periodic solution of the problem (1.2), (1.3) and we first consider the periodic eigen-
value problem⎧⎨

⎩
∂φ/∂t − Lφ − aφ = λφ, (x, t) ∈ Ω × (0,∞),

Bφ = 0, (x, t) ∈ ∂Ω × (0,∞),

φ(x,0) = φ(x,T ), x ∈ Ω,

(3.1)

where

L =
n∑

j,k=1

ajk(x, t)
∂2

∂xj ∂xk

+
n∑

j=1

bj (x, t)
∂

∂xj

,

B = α(x, t)
∂

∂ν
+ β(x, t).

It follows from [16] that for any T-periodic function a ≡ a(x, t) the principle eigenvalue of (3.1) denoted by λ(a), is
real and its corresponding eigenfunction φ ≡ φ(x, t) may be chosen positive in Ω × (0,∞).

For the convenience, we let D = Ω × [0,∞), D = Ω × [0,∞), Γ = ∂Ω × [0,∞), and for each i = 1,2,3 we set
D

(i)
0 = Ω × [−τi,0], Q(i) = Ω × [−τi,∞), D0 = D

(1)
0 × D

(2)
0 × D

(3)
0 , Q = Q(1) × Q(2) × Q(3).

To show the existence problem we make a transformation by letting w1 = M − u1 for a sufficiently large constant
M > 0. Then the problem (1.2) with (1.3), (1.4) become the following problem:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w1

∂t
− d1(x, t)�w1 = −(M − w1)[a1(x, t) − b11(M − w1) − b12u2(x, t − τ2)],

(x, t) ∈ Ω × (0,∞),

∂u2

∂t
− d2(x, t)�u2 = u2[a2(x, t) − b22u2 − b21(M − w1)(x, t − τ1) + b23u3(x, t − τ3)],

(x, t) ∈ Ω × (0,∞),
∂u3
∂t

− d3(x, t)�u3 = u3[a3(x, t) + b32u2(x, t − τ2) − b33u3], (x, t) ∈ Ω × (0,∞),

∂w1
∂η

= ∂u2
∂η

= ∂u3
∂η

= 0, (x, t) ∈ ∂Ω × (0,∞),

(3.2)

with the periodic condition

w1(x, t) = w1(x, t + T ), ui(x, t) = ui(x, t + T ), i = 2,3, (x, t) ∈ Ω × [−τi,0], (3.3)

and under the initial condition

w1(x, t) = M − η1(x, t), ui(x, t) = ηi(x, t), i = 2,3, (x, t) ∈ Ω × [−τi,0]. (3.4)

Denote the reaction functions of (3.2) by F1, F2, F3. It is easily to see that Fi is quasimonotone nondecreasing in
S ×Sτ where S = Sτ = [0,M]×R+ ×R+. Next we give the definition of ordered upper and lower solutions of (3.2):

Definition 3.1. Let u ∈ S, v ∈ Sτ , a pair of 3-vector functions ũ = (w̃1, ũ2, ũ3), û = (ŵ1, û2, û3) in C2(Ω)∩ C(Ω) are
called ordered upper and lower solutions of (3.2) (3.3), if (w̃1, ũ2, ũ3) � (ŵ1, û2, û3) and if their components satisfy
the relation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w̃1
∂t

− d1�w̃1 � F1(x, t, ũ, ṽ), (x, t) ∈ D,

∂ũ2
∂t

− d2�ũ2 � F2(x, t, ũ, ṽ), (x, t) ∈ D,

∂ũ3
∂t

− d3�ũ3 � F3(x, t, ũ, ṽ), (x, t) ∈ D,

∂ŵ1
∂t

− d1�ŵ1 � F1(x, t, û, v̂), (x, t) ∈ D,

∂û2
∂t

− d2�û2 � F2(x, t, û, v̂), (x, t) ∈ D,

∂û3
∂t

− d2�û3 � F3(x, t, û, v̂), (x, t) ∈ D,

∂w̃1
∂η

� 0 � ∂ŵ1
∂η

,
∂ũi

∂η
� 0 � ∂ûi

∂η
, i = 2,3, (x, t) ∈ Γ,

w̃1(x, t) � w̃1(x, t + T ), ŵ1(x, t) � ŵ1(x, t + T ), (x, t) ∈ D
(1)
0 ,

ũi(x, t) � ũi (x, t + T ), ûi(x, t) � ûi (x, t + T ), i = 2,3, (x, t) ∈ D
(i)
0 ,

(3.5)

where

S ≡ {
u ∈ C(Ω); û � u � ũ, on D

}
, Sτ ≡ {

v ∈ C(Q); v̂ � v � ṽ, on D
}
,

and u = (w1, u2, u3), v = (w1τ1 , u2τ2 , u3τ3), ũ = (w̃1, ũ2, ũ3), û = (ŵ1, û2, û3) and ṽ = (w̃1τ1 , ũ2τ2 , ũ3τ3), v̂ =
(ŵ1τ1 , û2τ2 , û3τ3).

Let λi(ai) and φi(x, t) be the principle eigenvalue and its corresponding positive eigenfunction of problem (3.1)
with L = −di(x, t)�, B = ∂

∂η
and a = ai(x, t) (i = 1,2,3).

Next we seek a pair of ordered upper and lower solution of problem (3.2), (3.3) in the form (w̃1, ũ2, ũ3) =
(M − δ1φ1, ρ2, ρ3), (ŵ1, û2, û3) = (M − ρ1, δ2φ2, δ3φ3) where ρi, δi are some positive constants with δi sufficiently
small and ρ1 < M , φi ≡ φi(x, t) (i = 1,2,3). Then it is easy to verify that (w̃1, ũ2, ũ3), (ŵ1, û2, û3) satisfy all the
requirement of upper and lower solutions if
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(M−δ1φ1)
∂t

− d1�(M − δ1φ1) � −δ1φ1(a1 − b11δ1φ1 − b12ρ2),

∂ρ2
∂t

− d2�ρ2 � ρ2(a2 − b21(δ1φ1)τ1 − b22ρ2 + b23ρ3),

∂ρ3
∂t

− d3�ρ3 � ρ2(a3 + b32ρ2 − b33ρ3),

∂(M−ρ1)
∂t

− d1�(M − ρ1) � −ρ1(a1 − b11ρ1 − b12(δ2φ2)τ2),

δ2[ ∂φ2
∂t

− d2�φ2] � δ2φ2(a2 − b21ρ1 − b22δ2φ2 + b23(δ3φ3)τ3),

δ3[ ∂φ3
∂t

− d3�φ3] � δ3φ3(a3 + b32(δ2φ2)τ2 − b33δ3φ3).

(3.6)

In view of (3.1) the above inequalities are satisfied by some sufficiently small δ1, δ2 if{
a1 − ρ1b11 � 0, a2 − b22ρ2 + b23ρ3 � 0, a3 + b32ρ2 − b33ρ3 � 0;
λ1(a1) < −b12ρ2, λ2(a2) < −b21ρ1, λ3(a3) < 0.

(3.7)

Assuming that

b23b32 < b22b33 (3.8)

and setting

M1 = max
D

[
a1(x, t)

b11(x, t)

]
, (3.9)

M2 = max
D

[
a3(x, t)b23(x, t) + a2(x, t)b33(x, t)

b22(x, t)b33(x, t) − b23(x, t)b32(x, t)

]
, (3.10)

M3 = max
D

[
a3(x, t)b22(x, t) + a2(x, t)b32(x, t)

b22(x, t)b33(x, t) − b23(x, t)b32(x, t)

]
. (3.11)

Then the requirements in (3.7) are fulfilled by some ρi > Mi (i = 1,2,3) if (3.8) holds and

−λ1(a1) > b12M2, −λ2(a2) > b21M1, −λ3(a3) > 0. (3.12)

From Theorem A of [20] we have that under conditions (3.8), (3.12), the problem (3.2), (3.3) has a maximal T-periodic
solution (w1, u2, u3) and a minimal T-periodic solution (w1, u2, u3) such that

(M − ρ1, δ2φ2, δ3φ3) � (w1, u2, u3) � (w1, u2, u3) � (M − δ1φ1, ρ2, ρ3).

Moreover, by Theorem 3.1 of [20] the solution u = (w1, u2, u3) of the initial boundary problem (3.2), (3.4) possesses
the following convergence:

lim
m→∞ u(x, t + mT ;η) =

{
u(x, t) if û � η � u in D0,

u(x, t) if u � η � ũ in D0
(3.13)

and

u(x, t) � u(x, t + mT ;η) � u(x, t) on D as m → ∞. (3.14)

Now by the transformation u1 = M −w1, the pair (u1, u2, u3) and (u1, u2, u3) where u1 = M −w1, u1 = M −w1
are positive T-periodic solutions of the problem (1.2), (1.3) and satisfy the relation δiφi � ui � ui � ρi on D.

Furthermore for any δiφi � ηi � ρi in D
(i)
0 , i = 1,2,3, the solution of the initial boundary problem (1.2), (1.4) is

given by (u1, u2, u3) = (M − w1, u2, u3) and satisfies the relation δ1φ1 � ui � ρi , i = 1,2,3 on D.
According to (3.13), (3.14) and Theorem 3.1 of [20], the solution of (1.2), (1.4) with the initial condition δiφi �

ηi � ρi in D
(i)
0 , i = 1,2,3 possesses the convergence

lim
m→∞(u1, u2, u3)(x, t + mT ;η) =

{
(u1, u2, u3), if η1 � u1, 0 � ηi � ui, i = 2,3,

(u1, u2, u3), if 0 � η1 � u1, ηi � ui, i = 2,3,
(3.15)

and

(u1, u2, u3) � (u1, u2, u3)(x, t + mT ;η) � (u1, u2, u3) on D as m → ∞. (3.16)

To summarize the above conclusions we have the following theorem.
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Theorem 3.1. Let (u1(x, t;η1), u2(x, t;η2), u3(x, t;η3)) be the solution of (1.2), (1.4) for (η1, η2, η3) with 0 <

ηi � ρi , i = 1,2,3 and let conditions (3.8), (3.12) be satisfied. Then we have

(i) problem (1.2), (1.3) has positive T-periodic solutions (u1, u2, u3), (u1, u2, u3) such that ui � ui , i = 1,2,3 on
D;

(ii) the solution (u1(x, t;η1), u2(x, t;η2), u3(x, t;η3)) of (1.2), (1.4) possesses the convergence properties (3.15)
and (3.16);

(iii) if (u1, u2, u3) = (u1, u2, u3) = (u∗
1, u

∗
2, u

∗
3), then

lim
m→∞

(
u1(x, t + mT ;η1), u2(x, t + mT ;η2), u3(x, t + mT ;η3)

) = (
u∗

1(x, t), u∗
2(x, t), u∗

3(x, t)
)
,

t > 0, x ∈ Ω.
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