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The Pacific Ocean is surrounded by subduction zone systems leading to a decreasing surface area as well
as sub-surface mantle domain. In contrast, the Atlantic realm is characterized by passive margins and
growing in size. To maintain global mass balance, the Caribbean and the Scotia Sea have been proposed
as Pacific-to-Atlantic transfer channels for sub-lithospheric shallow mantle. We concentrate on the
Caribbean here and test this idea by calculating the present-day regional dynamic topography in search
of a gradual decrease from west to east that mirrors the pressure gradient due to the shrinkage of the
Pacific. To calculate the dynamic topography, we isostatically correct the observed topography for sedi-
ments and crustal thickness variations, and compare the result with those predicted by lithospheric cool-
ing models. The required age-grid was derived from our recently published reconstruction model. Our
results confirm previous geochemical and shear-wave splitting studies and suggest some lateral astheno-
sphere flow away from the Galapagos hotspot. However, they also indicate that this flow is blocked in the
Central Caribbean. This observation suggests that rather than through large scale Pacific-to-Atlantic shal-
low mantle flow, the global mass balance is maintained through some other process, possibly related to
the deep mantle underneath Africa.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The conception of a relatively mobile, mostly laterally flowing
asthenosphere between 100 and 400 km depth, on which tectonic
plates glide easily, has been accepted for a long time [1]. Several
lines of evidence are consistent with this view and comprise
isostatic considerations of mountain belts (see [2] for a review),
geoid and postglacial rebound studies [3,4], seismic surveys [5,6]
as well as mineralogical investigations [7]. Also, numerical mantle
convection models [8] and analytical fluid dynamic calculations [9]
can be made consistent with a relatively weak upper mantle. In
fact, it has been proposed that an asthenosphere is essential in
sustaining plate tectonics on Earth [10].

This understanding of the asthenosphere has great conse-
quences for the general perception of mantle exchange processes
between the Pacific, Atlantic and Indian Ocean mantle domains,
which differ from each other in their isotope and trace element
chemistry [e.g. 11]. While the Pacific is shrinking, because
subduction of Pacific lithosphere in the marginal subduction zones
occurs faster than the creation of new lithosphere along the Pacific
mid-ocean ridges, the Atlantic and Indian Oceans are growing as
more lithosphere is being created than subducted. This poses the
question where the underlying mantle reservoirs of the Indian
and Atlantic Oceans are fed from, and where the material under-
neath the shrinking Pacific goes to.

To this end, Walter Alvarez [12] suggested a concept of astheno-
sphere exchange between the three mantle domains as a mecha-
nism to achieve global mass balance. He viewed the Caribbean,
for which a slab gap in the Costa Rica/Panama region has been
suggested [13] (Fig. 1), and the Scotia Seas as gateways for
Pacific-to-Atlantic asthenosphere flux. The Australian-Antarctic
discordance was suggested for asthenosphere transfer between
the Pacific and Indian Ocean mantle domains.

Alvarez [12] viewed these outlets as necessary, because direct
lateral asthenospheric mantle flow from the closing Pacific into
the opening Atlantic/Indian mantle domains is thought to be
blocked by sinking slabs and deep continental roots, known as
the tectosphere and reaching down to approximately 200 km
depth [14], everywhere else along the Pacific Plate margin. The
flow is supposedly triggered by the shrinkage of the Pacific realm,
which is envisaged to cause a pressure gradient driving the
asthenosphere through these proposed outlets.
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Fig. 1. (Main) Overview of the Caribbean Sea with superimposed long-wavelength
free-air gravity anomalies (low-pass filtered to 5�) from Tapley et al. [18] shown in
areas with age-grid coverage (topography shown in other areas). (Insert) Regional
age-grid from Nerlich et al. [16], ranging in the Caribbean realm from 105 to
144 Ma. (Both) The white outline shows the region of the Caribbean large igneous
plateau [19]. Asthenosphere flow paths according to Alvarez [12] are dotted in
purple. The age of rock samples [20,21] drilled from basement in the region is
indicated by dots (Ar/Ar dated) and triangles (dated by inclusions or overlying
strata). Insert on the top left hand side shows sample age ranges. Abbreviations are
as follows: Galapagos hotspot (GH), Maracaibo Block (Ma), Panama (Pa), Costa Rica
(Co), Chortis Block (Ch), Yucatan Block (Yu), Jamaica (Ja), Cuba (Cu), Hispaniola
(His), Puerto Rico (Pu), Gulf of Mexico (GOM), Cayman Trough (CT), Aves Ridge (AR),
Beata Ridge (BR), and Magdalena Fan (MF). Note, all figures but Figs. 4 and 7 are
presented using 4DPlates software [22]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Sediment distribution in the Caribbean realm based on CRUST1.0 [23].
Abbreviations are as in Fig. 1.

Fig. 3. Crustal thickness variations according to CRUST1.0 [23]. Abbreviations are as
in Fig. 1.
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We have tested Alvarez’s [12] hypothesis for the Scotia Sea
already [15], and focus in this paper on the Caribbean Sea
(Fig. 1). We follow the conceptual view of Nerlich et al. [15] and
calculate the present-day dynamic topography assuming that it is
indicative of asthenospheric mantle flow. If the asthenosphere
flows from the Pacific mantle domain around the northern tip of
South America into the Atlantic realm, we expect a gradual
decrease in dynamic topography from the Pacific realm throughout
the Caribbean Sea.
2. Geological setting

A detailed outline of the Caribbean plate tectonic history may
be found in our previous paper [16]. Here, only a brief overview
of some of the region’s features is given: At present day the north-
ern plate boundary is characterised by transtension while the
southern plate boundary by a complicated transpressional regime
[17]. Subduction zones along the western Central American margin
and Lesser Antilles arc form the plate boundaries on the western
and eastern ends of the region (Fig. 1). In addition, there is a slab
gap west of Panama and Costa Rica [13]. The relatively few sample
points from Caribbean basement (Fig. 1) indicate that it was
formed between �94 and 80 Ma ago.

Positive free-air gravity anomalies of up to 30 mGal are
observed in the northwest of the Caribbean Plateau as well as
above the Beata Ridge, while negative anomalies of up to 45
mGal are found at the western and eastern edges of the region
(Fig. 1). Relatively thin sediment cover (<2 km) is present in the
northeastern part of the region around the Beata Ridge (Fig. 2),
whereas the Magdalena Fan (MF, Fig. 2) has up to 6 km of sediment
cover. The thickest crustal (>20 km) regions are the western sec-
tion of the Plateau as well as to the northwest of the Magdalena
Fan (Fig. 3). The Magdalena Fan itself and the easternmost part
of the Plateau have a lower crustal thickness of up to 12 km. The
remaining parts of the Plateau are between 15 and 18 km thick,
i.e. more than twice as thick as typical oceanic crust.
3. Residual (dynamic) topography deconvolution methodology

Dynamic topography refers to the mantle component of the
observed topography, which is due to transient viscous stresses
caused by mantle up- or downwellings resulting from density vari-
ations within Earth’s mantle [24]. For oceanic regions an estimate
can be derived in three steps: (1) The observed bathymetry is cor-
rected for sediments and crustal thickness variations, assuming
local isostacy; (2) Based on standard cooling models [25–27] an
expected basement depth can be derived, for which a precise litho-
spheric age distribution is essential; (3) The difference between the
expected basement depth from step (2) and the isostatically cor-
rected observed basement depth from step (1) is the ‘dynamic’
component of the convecting mantle [28].

For step (1), we made use of the recently released 1 � 1-degree
global crustal and sediment thickness model CRUST1.0 of Laske
et al. [23], see Figs. 2 and 3. The model is divided into three sedi-
ment and three crystalline crustal layers and contains density dis-
tributions for each one of them. The isostatic correction for
sediments (Sc) is calculated by:
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Sc ¼
qs � qw

qa � qw

� �
� St ð1Þ

qs, qw, and qa refer to the densities of the sediments, water
(1019 kg/m3), and asthenosphere (3200 kg/m3). St is the total sedi-
ment thickness at each respective grid point. The sediment correc-
tion was calculated for the sediment layers separately and
subtracted from the sediment loaded, observed bathymetry [29].
We excluded bathymetry that was shallower than the mean water
depth minus two times the standard deviation (for the
Pacific/Atlantic, we used 4 times the standard deviation in order
to reflect the greater variation due to the greater polygon sizes),
to avoid the inclusion of continental crust.

The isostatic correction (Cc) for the crystalline crust is given by:

Cc ¼
qa � qc

qa � qw

� �
� ðCt � CavgÞ ð2Þ

qc and Ct indicate the density of the crust and the crustal thickness
at each grid point. Cavg refers to the average crustal thickness of
oceanic crust, which is approximately 7.1 km [30]. We calculated
a weighted mean average density for all grid points (density range:
2870–2960 kg/m3| mean value: 2950 kg/m3) of the three crustal
layers. This mean density was used in Eq. (2) to derive the isostatic
crustal correction for each of the three crystalline crustal layers,
which were added to the sediment corrected bathymetry.

For the calculation of a theoretical basement depth, the age dis-
tribution is usually derived from magnetic isochron interpreta-
tions. However, the thickened crust of the Caribbean Plateau
prohibits the direct measurement of magnetic anomalies, such that
we derived an age-grid (Fig. 1, insert) from our own plate recon-
struction model [16]. The model fits the reconstructed position of
the Caribbean Plateau with the paleo-position of the Galapagos
hotspot at the main phase of plateau formation between �94
and 88 Ma [20,21], indicating that the Plateau was built as a conse-
quence of the Galapagos plume head surface arrival, consistent
with geochemical studies [31–33].

The dynamic topography (DT) is finally given by the following
formula:

DT ¼ dage � ðdþ St � Sc þ CcÞ; ð3Þ

for which depths are positive downwards and dage is the predicted
depth. The terms in the brackets in (3) represent the observed
bathymetry (d), the sediment thickness (St) and the two isostatic
corrections from Eqs. (1) and (2).

4. Uncertainty determination

Because of the uncertainty and relatively sparse resolution of
the sedimentary thickness data from CRUST1.0 with respect to
the bathymetric data, we applied two approaches to evaluate the
uncertainty of our approach. The first approach consists of a series
of quasi-Monte Carlo simulations [34] in which we approximate
the uncertainty of the dynamic topography by considering the
parameters in Eqs. 1 and 2 as probabilistic rather than
Table 1
Stochastic parameters used in the quasi-Monte Carlo simulation. N(l, r) is a normal
distribution with mean l and standard deviation r, while U(a,b) is a uniform
distribution with upper and lower values a and b, respectively.

Parameter Symbol Stochastic representation Units

Sediment density qs Ps � N (2200,200) kg/m3

Crustal density qc Pc � N (2950,200) kg/m3

Asthenospheric density qa Pa � U (3100,3300) kg/m3

Sediment thickness zs Zs � N (zs, 500) m
Crustal thickness zc Zc � N (zc, 500) m
deterministic or discrete values. Table 1 presents the various
stochastic parameters that we used in the calculation.

The sediment and crustal density distributions in Table 1 were
derived from the weighted mean and standard deviation of the
three CRUST1.0 sediment and crustal layers in the domain (out-
lined in white in Fig. 1), respectively. To represent the uncertainty
in the asthenospheric density, we used a uniform distribution cen-
tred on 3200 kg/m3 [30]. Finally, we added 500 m of
normally-distributed or white noise to the crustal and sedimentary
thickness data from CRUST1.0.

For each of the distributions in Table 1, N samples were drawn
using the Halton Sampling technique [35] using a Halton sequence
based on prime number 2 in the interval (0, 1), dropping the first 2
numbers in the sequence. The N results of Eqs. (1) and (2) were
then calculated using these sampled values as parameters to calcu-
late the dynamic topography according to Eq. (3). The N resulting
dynamic topography results were then used to calculate the sam-
ple mean and standard deviation at each point for the domain.

To determine convergence of the quasi-Monte Carlo method,
the mean was calculated analytically – equivalent to using the
mean of the parameters in place of the parameters in Eqs. (1)–
(3). The normalised RMS error between the estimated mean from
the quasi-Monte Carlo method and the analytical mean is shown
in Fig. 4 as a function of N. Linear convergence in the log–log plot
is achieved up to N = 10,000, while convergence is achieved at
about N = 100,000 after which no significant improvement in the
error is achieved with increasing N. The normalised RMS error is
smaller than 0.06, corresponding to about 15 m in dynamic topog-
raphy. The calculated variance of the dynamic topography, based
on N = 107, is presented in Section 5.

The second method to constrain the uncertainty was to vary the
lithospheric cooling model used to determine the theoretical ocean
depth, since lithospheric cooling models differ from each other for
the oldest ocean floor (between 100 and 150 million years old). We
calculated the dynamic topography using three different models.
The half-space cooling model (Hs) [25] is uniformly based on the
function: basement depth = 2600 + 345 � p(age). The GDH1 [26]
and PSM [27] plate models deviate from the continuous
‘‘square-root of age’’ assumption in that these models assume neg-
ative exponential functions for ages greater than 20 Ma and 70 Ma,
respectively.
5. Results

The standard deviation of the dynamic topography from the
quasi-Monte Carlo approach is presented in Fig. 5. The regions
adjacent to Costa Rica show high standard deviation in the
dynamic topography because of the uncertainty in the sediment
and crustal densities impacting the combined larger correction
for higher mean sediment and crustal thicknesses. While the mean
standard deviation is 675 m, the mode, which is less sensitive to
the outliers mentioned above, is 489 m and more representative
of the standard deviation of dynamic topography in the
Magdalena Fan and Beata Ridge (MF and BR, Fig. 6).

The calculated dynamic topography signal based on the GDH1
lithospheric cooling model is shown in Fig. 6. The figure also
includes the locations of profiles visualizing the amplitude of
dynamic topography (Fig. 7) based on the three tested cooling mod-
els. All profiles have their origin at the Galapagos hotspot (GH) and
continue eastward through the proposed slab window and into var-
ious directions within the Caribbean realm. The diagrams visualize
the discrepancy of dynamic topography predictions between the
different lithospheric cooling models: While the predictions in
terms of the dynamic topography amplitude for young seafloor
(<60 Ma) such as for the region west of Central America in the



Fig. 4. Log–log plot of the normalised RMS error between the analytical mean and the estimated mean derived from the Nth quasi-Monte Carlo iteration. The error is
normalised relative to N = 10 for which the RMS error is 267 m.

Fig. 5. Standard deviation of the dynamic topography derived from the quasi-
Monte Carlo simulations, with N = 107. The mode deviation is 489 m, the median is
612 m and the mean is 675 m.

Fig. 6. Present-day bathymetry (gray-scale) with superimposed dynamic topogra-
phy based on the GDH1 lithospheric cooling model [26]. Note, because dynamic
topography is a long-wavelength feature, the results presented here were low-pass
filtered (cut-off wavelength: 5�, i.e. �550 km). The central part of the Caribbean
Plateau (location is indicated by a yellow square) shows a regional dynamic
topography low. The northern part of the region and the Beata Ridge are
characterized by positive, the western and eastern ends of the region by negative
dynamic topography. Locations of profiles A-D (Fig. 7) originating at GH are
illustrated by dotted lines. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Pacific are very similar, they differ substantially in dynamic topog-
raphy amplitude in the Caribbean realm, where the ocean floor is
presumed to be very old (>100 Ma). However, despite these abso-
lute amplitude differences the patterns are very similar and thus
useful to infer mantle flow. Based on the GDH1 model, the calcu-
lated minimum/maximum dynamic topography signals of the out-
lined Caribbean Plateau are �560 /+760 m (half-space model:
�183/+1390 m; PSM model: �450/+920 m). The largest positive
signal is observed around the Beata Ridge and southeast of
Jamaica. The largest negative signal is located north of the
Magdalena Fan (GDH1: ��750 m). Additionally, two dynamic
topography lows are located at the western and eastern ends of
the Caribbean Plateau. The Galapagos hotspot in the Pacific realm
is characterized by positive dynamic topography of �500 m
(according to all cooling models), leading to a relative difference
between the dynamic topography low north of the Magdalena
Fan and the hotspot of �1250 m (Fig. 7, based on GDH1). Finally,
a local maximum is observed just to the east of Panama (Fig. 7).



Fig. 7. Dynamic topography based on three different lithospheric cooling models along the profiles shown in Fig. 6: (1) GDH1 [26] in black, (2) PSM [27] in red, and (3) Hs [25]
in blue. The three models lead to similar patterns but differ in the predicted dynamic topography amplitude. The yellow rectangle corresponds to the position of the central
dynamic topography low in the Caribbean Sea (see Fig. 6). Note the decrease in dynamic topography from west to east away from the Galapagos hotspot towards the central
part of the Caribbean. Note also the dynamic topography increase in all directions past this Central Caribbean dynamic topography low. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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6. Discussion

Regional geochemical variations along the Central American Arc
have been known for a long time and been linked to different man-
tle sources [36,37]: While rocks from Nicaragua and Guatemala are
associated with a slab-metasomatized, mid-ocean ridge basalt
(MORB)-source mantle, rocks from Costa Rica and Panama, which
are little affected by subduction metasomatism, indicate an
ocean-island basalt (OIB)-type enriched mantle origin.
Additionally, a striking similarity of the rocks found in Costa Rica
and Panama with those from the Galapagos Islands has been
noticed [13,38]. Shallow mantle flow away from the Galapagos
hotspot through a seismically quiet zone related to a slab gap
between the subducting Cocos and Nazca plates into the
Caribbean realm was suggested by these authors as a mechanism
to explain the geochemical variations along the Central American
Arc. Alternatively, it was argued that variations in the incoming
plate’s geometry as well as in the composition and fluid content
could be responsible for the chemical differences [39].

Support for the mantle flow hypothesis comes from several
shear-wave splitting studies, which measure the lattice preferred
orientation of olivine crystals in the upper mantle [40–44]. These
studies indicated the presence of a regional west-east oriented
asthenosphere flow underneath the Caribbean Sea. Yet, these stud-
ies were mostly limited to the northeastern margin of South
America and the Lesser Antilles arc, rather than Panama and
Costa Rica. The only measurement just north of the proposed slab
gap (Fig. 1) indicated trench parallel flow [42]. Also, it should be
noted that relative flow directions in general cannot be estimated
from shear-wave splitting measurements but merely the
orientation.

Compared to geochemical and shear-wave splitting studies, our
approach offers a broader sense of the regional asthenosphere
flow. The profiles shown in Fig. 7 indicate a decreasing dynamic
topography signal away from the Galapagos hotspot towards the
proposed slab gap and into the Caribbean realm. This observation
indicates shallow mantle inflow from the Pacific into the
Caribbean realm and confirms the above mentioned studies and
Alvarez [12] mantle flow hypothesis. Undulations along the pro-
files are observable; foremost the dynamic topography high east
of Panama stands in contrast to the general trend. However, the
amplitude of this dynamic topography high is strongly
model-dependent and most prominent using the PSM model and
almost negligible according to the GDH1 model (Fig. 7).
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Furthermore, the region east of Panama shows rather high vari-
ance, whereas the low in the Central Caribbean is a relatively
robust feature (Fig. 5). This also applies to the dynamic topography
high around the Galapagos hotspot, where the age-grid is derived
from magnetic isochrons and the seafloor is young, leading to
almost identical predictions of all tested lithospheric cooling
models.

Additionally, it is noticeable that the profiles of Fig. 7 show a
relatively large positive dynamic topography signal in all directions
past the dynamic topography low in the Central Caribbean (Fig. 6).
This suggests that only a tongue of Pacific derived asthenosphere
has reached the Central Caribbean realm, where the flow is
blocked, possibly by the subducting Lesser Antilles slab. If true,
an upward reflection of the flow could perhaps cause the observed
positive dynamic topography signals further to the east and north
of the central dynamic topography low. The negative signal
observed on the eastern edge of the Caribbean Plateau most likely
reflects the sinking slab of the Lesser Antilles subduction zone.
Similarly, the negative signal east of Costa Rica may be related to
the subducting Cocos Plate slab. However, it could also be due to
a regional over prediction of the crustal thickness in the
CRUST1.0 model [23], which is well above 20 km in this area
(Fig. 3).

Finally, it is noteworthy that our dynamic topography ampli-
tudes are all in the commonly accepted range of ±1000 m [24]
(except the maximum positive dynamic topography signal pre-
dicted by the half-space cooling model). A quantitative comparison
of our dynamic topography results (Fig. 6) with the regional
long-wavelength free-air gravity signal (Fig. 1) shows a weak pos-
itive correlation (r = 0.4). This is in broad agreement with the glo-
bal results of Winterbourne et al. [30]. Both of these results suggest
that the derived age distribution and our dynamic topography
results are reasonable.

Despite some potential, most likely Galapagos plume-derived
inflow into the Caribbean realm, the absence of a gradual decreas-
ing dynamic topography signal from west to east throughout the
entire Caribbean region indicates the absence of a continuous flow
into the Atlantic mantle domain. It seems unlikely that the growing
Atlantic mantle reservoir is compensated through shallow mantle
inflow through the Caribbean realm alone. We arrived at the same
conclusion for the Scotia Sea [15], and suggest that the deep man-
tle beneath Africa is a far more likely primary source to supply the
growing Atlantic mantle reservoir. The elevated topography of the
African superswell [45], which is inferred to be due to a deep man-
tle upwelling [46], contrasts with significant negative dynamic
topography of up to �1 km at the conjugate South American mar-
gin in the Argentine Basin [e.g., 30,47,48] as well as with wide
areas northeast off the northern margin of Brazil (Guyana Basin).
These topography lows are possibly related to the subduction of
the former Phoenix and Farallon plates that nowadays reside in
the lower mantle [49]. The remarkable dynamic topography gradi-
ent across the entire South Atlantic is consistent with westward
flow emanating from the African superplume [48,50,51]. It is likely
that this large scale flow has more relevance compared to regional
inflow through the Caribbean or Scotia Sea in the process of estab-
lishing mass balance between the Pacific and Atlantic mantle
reservoirs.
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