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The application of computer algebra for classification of integrable non-linear evolution 
equations is discussed. Algorithms for testing conditions of formal integrability, to calculate 
the Lie-B/icklund symmetries and conservation law densities are developed and implemented 
on the basis of the computer algebra system PL/1-mRMhC. 

1. Introduction 

In recent years a good deal of attention has been paid to the classification of integrable 
non-linear evolution equations 

u, = F ( u ,  u l ,  . . ., u , ) ,  

d~u (1) 
u ~ u ( x ,  t), ut =- d x  ~. 

Different criteria of integrability are used for the classification of equations (1): the 
existence of non-trivial symmetries (Fokas, 1980; Fujimoto & Watanabe, 1983), 
conservation laws (Abellanas & Galindo, 1983), prolongation structures (Leo et al., 1983). 
In this paper we shall describe a classification method based on the concept of formal 
integrability (Ibragimov & Shabat, 1980b). The latter is one of the strict formulations of 
the concept of L - A  pair (Lax, 1968). Formal integrability puts strict limitations on the 
form of the right-hand side of (1) and allows us to find all the evolution equations 
possessing a non-trivial Lie-B~icklund algebra and infinite series of non-trivial 
conservation laws. Among them there are equations interesting from the physical point of 
view because they have soliton solutions, e.g. the KdV equations. 

Recently the problem of classification of formally integrable evolution equations has 
been solved for the third order equations of the form u t = u a +f(u, ul, u2) (Svinolupov & 
Sokolov, 1982). The classification of higher order equations demands tedious 
computations. To carry them out automatically we developed the program FORMINT based 
on the computer algebra system PL/1--FORMAC (Bahr, 1973). The program allows one to 
check the conditions of formal integrability for F, to obtain the equivalent equations to 
those on the F function, to find the non-trivial elements of the Lie-B[icklund algebra 
(symmetries), and to compute the conservation law densities. 

In  the second section of this paper the basic concepts and results of the theory of 
formally integrable systems are given. In the third section the structure of the algorithms 
solving the above problems are briefly described. In the final section examples of using the 
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program are given, some concrete equations, of particular interest in mathemat ica l  
physics, are treated, and the computational experience in the FORMAC as well  as the 
REDUCE-2 environment is discussed. 

at = at(u. ul . . . . .  u,,), 

satisfying the operator relation 

2. Mathematical Background 

Equation (1)is called formally integrable if there is a formal series 

1 
L =  ~ a~D t 

i =  - -  oO  

d 
D =- D-1D = DD - i  

dx '  
= 1 ,  

(2) 

L , -  [F. ,  L] = 0, (3) 
where 

,=o~ufD, Lt =. --~, C , -~ ~ ~ ( D'e ) ~u ~. 

A conservation law density for the equation (1) is a function P(u, u i , . . . ,  u,) such that  

d 
d-t P e ImD. (4) 

The notation ~ ImD means that left-hand side expression is a gradient (i.e. total derivat ive 
with respect to x). If P ~ lmD then the conservation law is called trivial. 

The Lie-B~icklund algebra for (1) is the set of functions H(u, u l , . . . ,  u,,) such t h a t  

H , F - - F , H  = 0. (5) 

The algebra is called non-trivial if it contains elements (symmetries) different f rom ut 
and F. 

The following theorems establish the connections between the concepts in t roduced  
above. 

THEOREM 1. I f  equation (1) has an infinite Lie-Biicklund algebra, then it is formal ly  
integrable (Ibragimov & Shabat, 1980b). 

THEOREM 2. I f  equation (1) has an infinite sequence of  non-trivial conservation laws, then it 
is formally in tegrable (Svinolupov & Sokolov, 1982). 

THEOREM 3. The formal integrability of  (1) is equivalent to the property that there is an 
infinite sequence of  conservation laws of  the following type (Ibragimov & Shabat, 1980b) 

where 

and 

d 
-~ R~ e ImD, i = - 1, O, 1, 2, 3 . . . . .  (6) 

R_ i = Res (L- 1), Ro = Res (L- 1Lt), 

Rm = Res (Lm), m = 1, 2, 3 . . . . .  

Res (~. aiD') ~ a - l .  

(7) 
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3. Algorithms 

Theorem 3 allows one to solve the classification problem for formally integrable 
evolution equations of order n up to transformations of the form u(x,  t) = q~(o(x, t)). Our 
algorithmic solution is then: 

(1) Derivation of all the F, for which the first conditions (6) hold (e.g. 
i -- - 1, 0, 1, 2, 3, 4; primary classification). 

(2) Checking the higher conditions (6) for the equations derived. 
(3) Testing the equations obtained for the property of having non-trivial symmetries. 
(4) Derivation of the B/icklund transformations that connect different equations of the 

list obtained (using the well-known techniques of Svinolupov et al. (1983)). 

We now give more details for (1)-(4). 

3.1 TESTING THE CONDITIONS OF FORMAL INTEGRABILITY 

To test conditions (6) for the given equation (1) it is necessary primarily to express the 
densities Ri in terms of the given functions F(u, u l  . . . . .  u,,). It can be easily shown that 

where 
R_ 1 = (L,)- t/,, Ro = F,_ d L ,  (8) 

OF 
Fi -= au~ 

derived from the following recurrence relations on the and the densities R., can be 
coefficients of the series L m = ~'i"=-o~ at Dl 

am = (F,,) m/', m = 1, 2, 3 . . . .  , 
(9) (F.) ,# , F (l+n)._____7 d ] 

ai = D - i / ( F , ) -  G,,+i-ll,,=o+ ~-  an+i- lJ, i = m -  1, m - 2 ,  m - 3 , .  

where C,,+i-~ are the coefficients of b "+i-~ in the commutator [L  m, F.] ,  an+i-1 =- 0 if 
i >  m - n +  1, and the integration constants in (9) are zeros. The recurrence relations (9) 
may be obtained from (3), which is valid not only for L but also for L m. 

Then one has to check that S = dR~/dt e hnD.  The corresponding algorithm based on 
the linear dependence of the gradient S(u, ul . . . . .  Uk) on the highest derivative uk is given 
below. 

dRi' (10) 
(1) S: = d t '  

(2) k: = highest order of derivatives Uk occurring in S; 

(3) if 02S/Ou 2 ~ 0 then STOP (check of the linearity condition); 

S: = S - D  f--O~u~'dUk-1 (reducing the order of S); (4) 

(5) if S ¢ 0 then go to (2) else sToP. 

If the S expressions contain parameters or undetermined functions, then algorithm (10) 
does not stop at step 3 but continues after setting the terms in S non-linearly depending 
on Uk equal to zero and obtaining the corresponding equations for the parameters and/or 
the undetermined functions. 
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3.2 PRIMARY CLASSIFICATION 

The primary classification of the evolution equations (1) is done according to the 
scheme described in 3.1 where the form of F(u,u~ . . . . .  u,,) is completely or partially 
unknown. One can obtain differential equations on F according to (8), (9), (10). The 
solution of these equations gives the possible forms of F. The most tedious part of the 
computation (derivation of the equations on F)  can be carried out totally automatically 
by FORMINT (see example 3, section 4). The solution of these equations may sometimes 
only be possible by routines from computer algebra systems, depending on the form of 
equations. (For example, if only unknown numerical parameters occur in F, then the 
equations are algebraic and may be solved b y  the routines described in Buchberger 
(1985)./ 

The evolution equations with the functions F obtained by the above procedures for 
small indices i (e.g. i = - 1, 0 . . . . .  4, see (6)) are then checked using the same procedure for 
higher indices i. As a result, part of the evolution equations is rejected. 

3.3 SYMMETRIES 

The algorithm for finding the symmetry H(u, u ,  . . . . .  Urn) of the given order m for a given 
equation (1) is based on the following relations (Ibragimov & Shabat, 1980b) 

OH 
Ou t = a t ,  i = 2 ,  3 . . . . .  m, (11) 

where a s are the coefficients of the series L m. One can find H(u, ul . . . . .  urn) up to addition of 
an arbitrary function h(u, Ul) by expressing a~ through F according to (9), checking the 
compatibility conditions for the system (11) 

Oa t 3aj = O, i # j (12) 
Ou r Out 

and, in case (12) holds, by integration of (11). After that one must substitute the result into 
(5), obtain equations on h, and solve them. In the important special case, when 
F = u n + f ( u ,  ut . . . . .  u,,_2), equations (11) are valid for i = 0 , 1 , 2  . . . . .  m and H can be 
obtained by simple integration of (11). 

The algorithm described is completely implemented in FORMINT except solving the 
equations on h(u, ul). Note that, according to  theorem 1, the non-trivial symmetry 
property of the evolution equation considered is a strong argument for its formal 
integrability since there is no example of an evolution equation with non-trivial but finite 
Lie-B/icklund algebra. 

3.4 B*CKLUND TRANSFORMATIONS 

A B/icklund transformation from the evolution equation 

v, = G(v ,  v l  . . . . .  v . )  

to equation (1) is a transformation 

v = ¢ ( u ,  u l , . . . ,Un , ) ,  m>~ l 
for which the relation 

¢ , F  = G(¢, D e  . . . . .  Dn¢) 

(13) 

(14) 

(15) 
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holds. The algorithm for constructing Bficklund transformations is based on the following 
fact (Svinolupov et al., 1983): let Rz(u, ul . . . . .  uk), rz(v, vi . . . .  , vl), 1 i> 1 be conservation law 
densities for the equations (1), (13) respectively and let them be non-linear functions of uk 
and oz. (One can easily represent them in such a way by adding suitable gradients.) In the 
case of a transformation (14) the following relations hold 

m = k - 1  

rz(qS, Ddp . . . .  , Dlc~)-Rz(u,  Ul,. . . ,  Uk) ~ ImD.  

(16) 

(17) 

One can find the order m of transformation (14) (or the non-existence of a transformation 
for a given m) by computing several densities Rz, rz by (8), (9) and by obtaining equations 
applying algorithm (10) to the left-hand side of (17). Thereby it is natural to use the 
simplest Rz, h. 

It should be mentioned (see Ibragimov & Shabat (1980a)) that the formal integrability 
of the evolution equation derived from a finite number of conditions (6) is proved by the 
existence of a B/icklund transformation of these equations to the known formally 
integrable equations, e.g. the K d V  equation or its higher analogues. For those equations 
non-transformable to already known equations, the strict proof of their formal 
integrability presents a theoretically open problem. 

4. Computational Examples and Experience 

For a given concrete input expression F and a number i subroutine CONOS of FORMINT 
will produce R, according to (7) and check whether (6) is satisfied, i.e. whether R i is a 
conservation law density. 

For a given concrete input expression F and a number j subroutine SYMMTR will 
produce the symmetry of order j satisfying (5). 

For an input expression )7 with parameters and/or undetermined functions and a 
number i of conservation law density Rz subroutine INTX yields the equations for the 
parameters and/or the undetermined functions following from step (3) in algorithm (10). 

As a concrete example, for input 

CONDS yielded 
F:  = t t s + t t . u  i 

R _ I ~ I  ~ 

R 0 = R 1  =R2=0,  
R 3 = 3/5u, 
R4 = Rs = R6 = 0, 
R 7 = (21/50)u 2, 
R s = 0, 
R 9 = (9/25). u~. 

For' R9, CONDS automatically detects that it does not satisfy (6), i.e. R 9 is not a 
conservation law density in contradiction to the hypothesis expressed in Abellanas & 
Galindo (1983). 
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As another example, for the famous Calogero-Degasperis-Fokas equation (Fokas, 
1980; Calogero & Degasperis, 1981) as an input 

SYMMETR yielded 
F: = u a - (1/8)u~ + (ae" + be-")u 1 

H5 = us + (5/3)abul + (lO/3)au2 ul e" + (5/3)au 3 e" 

+ (5/8)u 3 e u - (10/3)bu2 tq e-" + (5/3)bua e -  u 

+ (5/8)bu~ e-  w_ (5/8)u3 u~ + (5/6)aZul e z" + (5/6)bZul e-  2 .  

- ( 5 / 8 ) u  2 u l + ( 3 / 1 2 8 ) @  

Finally, for the input 

F :  = F(u, u .  uz, u3) 
and 

R_ 1: = (f3)- 1/3, F3 _ OF/Ou3 

according to (8) 1NTX gives the ordinary differential equation 

9F3333(F3)  2 - -  45F3 F a n  F333 --I- 40(F33)  3 = 0. 

The solution of this equation can be found in Kamke (1969) 

F 3 = (pu~ + qu 3 +r) -a12, 

where p, q, r are arbitrary functions of u, u 1, u 2. 
The algorithm package described in this paper was implemented, first, in REDUCE--2 

(Zharkov & Shvachka, 1983) and, then, also in PL/I-FORMAC (Gerdt et al., 1985). The 
implementation in REDUCE was easier because REDUCE possesses a comfortable integration 
package, whereas FORMAC does not have integration facilities at all. However, the REDUCE 
implementation was too slow and took too much memory space. More importantly, the 
seventh order symmetry of some equations of fifth order took approximately 1 hour CPU 
time and 1 Mb memory in the REDUCE implementation and only 3 minutes and 0.3 Mb in 
the FORMAC implementation (both implementation on the ES 1060 computer at the JINR 
with an instruction time of approximately 1 gsec). Therefore implementing our  own 
integration subroutine in FORMAC was worthwhile for a limited class of integrands that 
includes, for example, expressions of the form 

f ~ (a~z + bi) ~' dz, 
i 

where a ,  b~, c~ are constants. 
Readers interested in the details of the programs are referred to Gerdt  et al. (1985). 

Also, it is possible to obtain a tape with the program from CPC Program Library, 
Queen's University of Belfast, N. Ireland. 

PROGRAM SUMMARY 

Title of program: FORMINT. 
Computer: IBM 360/370. 
Operating system: OS. 
Programming language used: PL/1-FORMAC. 
High speed storage required: depends on the problem, minimum 160 000 bytes. 
No. of bits in a word: 32. 
No. of lines in combined program and test deck: 344. 
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