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Abstract

We consider the model giving rise to Witten’s superconducting cosmic strings at finite fermion chemical potential and tem-
perature. We demonstrate how various symmetries of the Hamiltonian can be used to exactly compute the fermion electric
current in the string background. We show that the current along the string is not sensitive to the profiles of the string fields, and
at fixed chemical potential and temperature depends only on the string winding number, the total gauge flux through the vortex
and, possibly, the fermion mass at infinity.

0 2005 Elsevier B.V. Open access under CC BY license

1. Introduction

Ever since Witten’s pioneering papéi, it has been known that cosmic strings can posses fermion zero modes
concentrated in the string core. One remarkable feature of this system, is that an application of a constant electric
field in the string direction induces an electric current along the string carried by the zero modes. This current
will grow linearly with time, while the electric field is turned on and will persist even after the field is turned off.
The string, thus, becomes superconducting. It must be noted, however, that the behaviour of the system is known
precisely only for induced currents smaller than a certain critical current—once the current exceeds this critical
value, the energies of the zero modes become larger than the fermion mass at/nfanity it becomes possible
for the charge carriers to move off the string, quenching the superconductivity. The question of build up of charge
and current on the superconducting string in an external electric field has been analyzed extendiv6ly in

In this Letter, we investigate a very different mechanism for inducing a current on the string. Namely, we
compute the current on a superconducting string in the presence of a non-zero fermion chemical potertial
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temperaturd’. Itis a rather trivial exercise to calculate the curréraiong the string for <m, T <« m, when then

the low energy dynamics of the fermion—string system are governed by an effectivé)-dimensional theory

of zero modes moving along the string. In this case it is straightforward to show that the current for each fermion
species is/ = %, wheree is the fermion charge andis the winding number of the string. However, we make a
much stronger statement: it is possible to calculate exactly the total electric current in the string direaign for
value of the fermion chemical potentjaland temperatur®. We shall show that the result is topological in nature,

and is independent of the particular profiles of the background string fields. The result will depend crucially on
whether the string is local (as considered by Witten) or global (as, for instance, in the case of axion strings). In
particular, if the string is local, the naive prediction fbof the effective(1 + 1)-dimensional theory, remains valid

for any value ofu, 7.

The appearance of quantum numbers (particularly of fermion number) on topological defects is a very well-
developed subject with known computational methfds such as trace identities and adiabatic expansion. At
zero chemical potential, the fermion charge induced on defects is usually a topological quantity and, frequently,
can be evaluated exactly. However, at arbitrary finite chemical potential, the fermion charge induced is generally
not topological[8], and difficult to compute exactly. In view of this, our result is particularly interesting, since
we show that quantum numbers such as total current can remain topological and exactly calculable at arbitrary
fermion chemical potential. Mathematically, our analysis can be easily generalized to a large class of Hamiltonians
involving fermions ind + 1 dimensions in the background ofdadimensional defect, which is uniform in the
(d + 1)st direction.

As far as we know, the problem of computation of electric current on a superconducting string in the background
of an arbitrary fermion chemical potential and temperature has not been considered before, although some of the
techniques we use have been previously discussed in conjunction to index ti{@pfenstring zero modes, and
charge induced on the string by an electric figld]. Although the present problem could be of some interest in
application to cosmology, this Letter was largely motivated by related problems in dense quark matter. It is well
known that quark matter at large baryon chemical potential, which might be realized in the cores of neutron stars,
breaks certain symmetries of QCO], and may supports several kinds of strirj@4]. Recently, the method
of fictitious axial anomalies has been ug&@] to derive the following effective action for the interaction of an
electromagnetic fieldi,, with an axial string in dense quark matter:

eaflant Qq i
S= = | A;dl". 1
2% q/l (1)

Here the line integral is along the string, the indebuns over all species of quarks, and the fractiayyg denotes

the flavor content of the condensate that supports the axial string. This implies that the axial string in dense QCD
carries an electric current of = e“ﬁ?‘r—“”% for each quark species. We wish to understand this phenomenological
result microscopically. The method for computation of current on strings at finite chemical potential developed in
[12] is sensitive only to the pattern of symmetry breaking and, thus, would yield in application to the present model
the same result] = % As we see below, in some cases this result remains correct for athile in other cases

it receives corrections of order 1.

2. Currentson strings
2.1. Themodel
Consider the following model of a Dirac fermiah coupled to a string:

1+y5 1—y5
*
> +¢ > v.

£=¢iy“(au e, - %qu’)w —hlﬁ<¢ @



M.A. Metlitski / Physics Letters B 612 (2005) 137-146 139

Here A, and R, are gauge fields angl is a complex scalar field. The model has the following classical gauge
symmetries:

UQ): ¢ — ey, Ay — Ay + 30, b — ¢, ©)
Ul): v — eiqe(x)VS/zw, R, — R, +9,6, ¢ — eiqg(")qb. 4)

This model is exactly equivalent to Witten’s model of superconducting cosmic strings with a particular choice of
gauge chargesBy convention, we associate the vector fidld with electromagnetism. We note that the above
model suffers from gauge anomalies, which can be removed, for example, by adding another flertitire

model with the opposit& chargej = —g and the electric chargé such tha$? = ¢2. The Lagrangian for thg
fermion is then:

R ; R 5 _ .5
ﬁ=x/?iy“<8u—iéAu+%RMy5>v?—h&(aﬁ”zy Tt )1/?. 5)
Notice thatys now couples ta* rather thanp.

We could also consider the situation when thel) symmetry is global, such that the gauge figlg is absent,
the Lagrangiar(2) is by itself anomaly free, and the addition of tiefield is unnecessary. In our calculations, we
will recover this case by taking = 0.

We assume that the (1) symmetry is spontaneously broken, théield acquires a non-zero expectation value
and strings of the field are possible. We wish to consider the fermiprin the background of an infinitely long
static string uniform in the direction. The string is characterized by a non-zero winding numlarthe scalar
field:

/ dle ¢*3,¢
n= ,
2ri |¢|?

where the integral is over a contour in the plane at infinity, and the absolute value of the scalar fig|dends to
some constantg asr — oo in thexy plane.

If the U (1) symmetry is local, then in most models (such as the Abelian Higgs model), the condition that the
string energy is finite, implies thd?, ¢ = (3, —igR,)¢ — O fast enough as— oo in thexy plane. This in turn
implies the quantization of the string flux:

(6)

@ = i/(12x €’ Ryp =n. )
47
From here oru, b =1, 2 andR,,, is the usual field strength tensor. It must be noted that the conditjas not
present in the case of global strings, so we will throughout our calculations keep tlde éitbitrary and at the end
set® = n for local strings andd = 0O for global strings.
Our objective is to calculate the expectation value of the electromagnetic fermion current in the string direction,

J3 =e/d2x (lﬁy?’w) (8)
at finite fermion chemical potential and temperaturd. Note that if theU (1) symmetry is local, there is an

additional contribution to the electromagnetic current fromyhtermions. This, however, can be obtained from
the result for the) fermions by setting — ¢, ¢ — ¢ = —q, ¢ — ¢*, which translates int®d - —®, n — —n.

1 We could have easily considered the completely general version of Witten's model, however, to simplify the algebra slightly we concentrate
on the above choice of gauge charges, which maked thield couple to the vector current and tRg field couple to the axial current.
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2.2. The spectrum

Let us start by analyzing the spectrum of our fermions in the string background. The one-particle Hamiltonian
is:

9)

1+4y° 1—y°
A )
2 2

H= —iai<8,~ —ieA; — %R5V5> +hyo<¢

wherea’ = y%y% andi = 1, 2, 3. For a static background string uniform in the third directiép= 0, R3 = 0, and
hence,

H=—idza®+ H', (10)
5

o i L1+ 1—y°
HY = —ia (aa—gRay5)+hy°<¢ 2y + ¢ 2” ) (11)

Since all the fields are assumed uniform in the third direction, we can cheidses = kv and work at fixed.2
In eachk sector,

Hy = ka® + H* (12)

and the operatoH; now acts solely in the transverse plane. At this point, we make our choice of thenatrices
to be:

. 3
3_(1 0 a_ 0 io? o (0 1 5 (O 0
T (0 _1> , “= (—ida o)’ ~\1 o)’ "“\o -o3) (13)

The operato/ - then takes the form:

. (0 D
H _(DT o) (14)

where

(15)

1 3 1— 3
D =0,0%+ %Rae“bob +h< J;G ¢+ ¢>*>-
Let us discuss the properties of the operaior. Since|¢| — ¢g asr — oo, the continuum spectrum g -
starts at eigenvalugs| = m = |h|$o. H may also have bound states. Weigtbe the smallest positive eigenvalue
of H+. By dimensional reasonss;, ~ m. Now, observe,

{o® H) =0 (16)

Thus,a® maps a properly normalized eigenstgteof H- with eigenvalue. into a properly normalized eigenstate
of H' with eigenvalue-. Moreover, since:® maps zero modes @+ into zero modes off -, all the zero modes
of H' can be classified by their eigenvalue undér Writing, A(x) = (x(x), v(x)), we note that the zero modes
of H+ with o = 1 satisfyv = 0, DT = 0, while the zero modes df - with «® = —1 satisfyu = 0, Dv = 0. So
letting N, be the number o&® = 1 zero modes, an¥_ the number of® = —1 zero modes, we have,

N = Ny — N_ =dim(ker(D")) — dim(ker(D)) = Index(H ). (17)

2 We take the third direction to be compact of length so that the eigenvaludsare discrete. As usual, we will take— oo at the end of
the calculation.
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Hence,N is the index of an elliptic operator, which is usually a strongly topological quariiithas been first
computed explicitly for a particular background string configuratiofij to be:

N =n. (18)

This result was later generalizgtl9] to arbitrary background string fields.
We now return to the operatdi;. Observe[Hy, H12] = 0. So, we can obtain the spectrum i@f from the
spectrum of{ * in the following way. Let,

HAA(x) = A0 (x). (19)
First, suppose), > 0. Then, the state,
Y (x) = c1A(x) + coo®A(x) (20)

is going to be an eigenstate &j, with eigenvalueE, provided that,

(v 5)(3)==(2) (21)

The eigenvalues of the above equation are,

E =432 4k2 (22)
and the eigenvectors,
1 1 +5gnk) (A2 + k2)3 + )3
(CZ):I:: (2002 + k2)3)3 ( (A2 + kD)2 F )2 ) @9

Thus, each eigenstate &~ with positive eigenvalue, generates one positive energy and one negative energy
eigenstate oH;. However, this correspondence has to be taken with a grain of salt, since most eigenstates of
are continuum states, and the “1 to 2” map discussed above between eigenstatearaf eigenstates df;, need
not preserve the density of states.

The zero modes off - are also simultaneously eigenstatesff These have the dispersion,

E = kas. (24)

So the zero modes @i become chiral fermions moving up or down the string depending on the sign of their
eigenvalue undez®.

2.3. Current—naive approach

We now proceed to the computation of electric current at finit&. This is given by:

J3=e/d2x<1/_/y3w)=e/d2x trix|an(H)|x), (25)
where
_ SgNnE)
ME) = FEsens 11 (26)
is the usual Fermi-Dirac distribution. Summing over each momentum Seaia obtain®
1 1
J3= er ; / d2x tr(x|a3n(Hy)|x) = er ;Tr(a?’n(Hk))- 27)

3 Here tr denotes matrix trace and Tr denotes a general operator trace.
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Using the correspondence between spectré;ofind H--, we mayschematically write the operator trac7) as:

1
P=ezd > (Veledlye)n(E)

k  E(Hy)
1
=€zZ( > ksl asn(Esu )+ > <A|a3|x>n(E(A,k>)>. (28)
k “A(HLH)>0,s=+ A(HL)=0

Here E(Hy) denote eigenstates @, A(H+) denote eigenstates &+, and ¥i.k.+ denote eigenstates @y
generated by an eigenstgte of H-, with energiesE+ (x, k) = ++/A2 4+ k2. Again, we stress that the above
representation would have been absolutely correct if all the states contributing to the operator trace were discreet,
and normalizable (for instance,f= 0 andu < m). In our case, this is not generally so, but we choose for now to
ignore this problem, in order to illustrate the general idea behind the computation. We will later return to take the
continuum states into consideration more carefully.

For the moment suppos&,=0, 0< u < myp. Thenn(E) = 6(E)0(u — E). Hence, only states generated by
zero modes contribute to the sum(ZB), as all the other states have energiBs= VA2 + k2 > |A| > myp > .
The zero modes are eigenstatesrdfand thus, satisfyZ = o3k and (1|e®|1) = «3. Thus,

epuN eun

—-— = 29
27 27’ (29)

J3= e1 Z(N O — k)0 (k) — N_O(u+ k)0 (—k)) = eN/ ﬁe(k)e(u —k) =
L p + - 2
where we have used the fact that indéxs equal to the winding number of the vortex
Now, let us relax our assumption and work at arbitrdryu. We first need to evaluate the matrix element
(Wak.slad|¥sks) (in what follows we suppress the indicesk, s). Using Eq.(20) and («®)? = 1, we see
(WloBly) = (leal?+ 2l (AeB1) + (cfea+che1). Recallinge®|)) = [—1), we obtain(yr|e3[y) = cjca+cher =
% where we have used E3). Hence,

1 k
J3— et Z( > o k)n(Ex(k, k) + Nyn(k) — N_n(—k)>. (30)

k SaHL)>0, 5=+

Now, observe thak (1, k) = E;(1, —k) for » > 0. Hence, the first sum in the brackets in E2)is odd ink, and,
thus, the contribution tg3 from non-zero modes aff - cancels out exactly, leading to:

13=6N%Zk:n(k) =en/ %n(k) =enng(u, T). (31)

Hereno(u, T) is the number density of a free massless chiral fermion in 1 dimension, at finite chemical potential
n and temperaturé. Itis a peculiar fact thato(u, T) is temperature independent and equglsso that,

Je= g (32)
2

2.4. Current—corrections from polarized continuum

Although, the resul{32) is very attractive, it is actually generaligcorrect. We know that this result is exact
for T =0, u < m, whenJ?® receives contributions only from normalizable eigenstate&;0fWe will now show,
that the presence of long range vortex fields polarizes the continuum eigenstagsré way, which might
significantly modify the resul32) for & > m.

Let us return to the trad@7). We can rewrite this expression in terms of spectral current density as:

J2 =/dEn(E)j3(E), (33)
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1
P3E) = eT ZTr(aSS(Hk — E)). (34)

We use the following representation of the delta functiqn) = - I|m€_>0+(x+le -

3 _ i 1 1
i3E) Ilme ZTr( (Hk+z+ Hk+z‘>>’ (35)

) to rewrite,

wherezt = —F +ie, 77 = —E — ie. From here on, the limi¢ — 07 is implied. Simplifying(35),
. H _ + H _ —
S )— ie Tr<a3< o Mo 2))
2 Hk —(zh) Hk —(z7)
k 3 Hl _ -+ k 3 Hl I
__ZiTr<°‘3< f2+ 2 - 2 32+ 2 - 2)) (36)
L 2 HL2+k%—(zT) H+kc—(z7)
where we have usel? = H-2 + k2. The terms in(36), which are odd irk cancel out, and we obtain,
1 ie H+ -7+ Ht -z~
.3 3
By=-3"21r - : 37
JT(E) LXk:Zn (05 (HJ‘2+k2—(Z+)2 Hl2+k2—(z)2>> (37)

Now, {a3, H1} = 0. Hence, for any functiory, Tr(e®HL f(H+2)) = —Tr(H* f(H'?)a®) = — Tr(e®H* x
f(HY%) =0, and,

i3(E) = Ezi—eTr ol — - < (38)
J T L - 27 HJ-Z—i—kZ—(Z"')Z HJ-Z—G—/(Z—(Z_)Z )
We now introduce the functiog,
M? M? M?
M) =Tr[e®*———— ) =Tr ——— )| - T" —— ). 39
§(7) (d H“+M2) (DDT+M2) (DTD+M2> (39)
This function is very well knowii7,9] as it satisfies,
=Index(H*) = lim g(M?). 40
(H™) = lIm g(M°) (40)

More generallyg(M?) is related to the spectral asymmetry(E), of the HamiltonianH, [7], and hence to its
n-invariant as,

i (E) = %k(G(kz ~ D) = G2 ()?). (41)

=2 [ dE oy (E), (42)
/

6@ =52, (43)

Here,g(z) is understood as the analytic continuatiorgdfom 9, to C. From Eq.(38), we can expresg>(E) in
terms ofG as,

1 —i 1 E
SE =7 ij 2—’;(Z*G(k2 ~( ")) -6 - ()Y =7 ;e;w@)' (44)
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Following the technique of trace identities described in deta[l7t8], one can explicitly calculatg(M?) to be:

2
P07
Hence, the indexv = IimMzﬁog(Mz) =n, in agreement with previous calculatigds9,13] Continuingg to the
complex plane, we obtain,

g(MZ):n—(n— (45)

1
74+ m?
Hence, generically; has a pole at = 0, and a pole at = —m?, i.e., at the continuum threshold. Notice, however,

that the pole at = m? disappears whem= @.
We can now substitute the res(d6) into (41) and take the limit — 0 to calculate the spectral asymmetry,

G@i)= g —(n—®) (46)

ok (E) = kSgnE) (n8(E? — k%) — (n — ®)8(E? — k? — m?)) (47)

which yields thep-invariant,

Mk =nsgnk) — (n — @) (48)

k
VkZ+m?
We note that Eq(48)is in agreement with previous calculation of thénvariant[4].
Returning to the evaluation of current, we substitute the ré4ujtinto Eq.(44)to obtain,

j3(E)=%Zg<n(8(E—k)+8(E+k))—(n—Q))(B(E— k2+m2)+8(E+\/k2+m2))) (49)
k

and the total current in the string directi(38) becomes,
-
J3 = e/ Zn—k<nn(k) ! 5 (n(VK2+m?) + n(—Vk? —i—mz))). (50)

This can be conveniently rewritten as,

n—o

J3=e<nno(u, T)— nm (i, T)>, (51)

whereng(, T) = % is the familiar number density of one-dimensional chiral massless fermions, and,

o (11, T) = / (VT mE) (Vi m2)) (52)

is the number density of one-dimensional 2-component (Dirac) fermions ofmmass

Several comments are in order here. First of all, we see fron{Hg.that the naive resul{31) is generally
modified by a contribution from modes located at the continuum threshold. Observe, thatfythe current/3
vanishes for all temperatures. At non-zero chemical potential, two cases are of particular interest. The first case is
that of a local string, satisfying the finite energy conditién) — 0 faster than 1r, which implies® = n. In this
case, the contribution from continuum modes vanishes, and we recover our initia83ulthich is due solely
to the zero modes,

JEILL (53)
2w
This “coincidence” can be explained as followsf — 0 fast enough, the fields in the problem are, essentially,

short range, and hence we can easily put the system in a box, making the spectrum discrete, so that the argumer
in Section2.3is correct.
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Let us briefly discuss what happens when we add the second fegintorthe problem. Recall, we used this
fermion to cancel gauge anomalies of our model. As noted in Se2tibrthe contribution ofjr to J3 can be
obtained by takingg — ¢, u — i, n > —n, ® — —&. In particular, the continuum modes at threshold again

cancel out, and/3 = —%>. In particular, if the chemical potentials gf and s fermions are the same, we can

n
JT

obtain a non-vanishing total electromagnetic current along the string, by feétiag-e, so that,

eun
ISy = ——. 54
EM= (54)

The second practically interesting case is that of a global string. This case can be recovered by takihg
Then,

JP=en (no(u, T)— %nm(u, T)>. (55)

In this case, the fielg is long range, and there is a significant modification of the r€3a)t Note thati,, (i, T) is
no longer temperature independent, so for simplicity, we choose to wark=aQ, u > 0. Thenn(E) = 0(E)0 (u —
E) and,

Jszg(u—é(u—m)\/p.z—mz). (56)

Thus, foru < m, the current is governed by our original res{#®), while for u > m, we also get a counterflow
current from the states at continuum threshold. Thid§;.) has a cusp gt = m, and foru > m falls off to 0 as

emn m
A7 p”

3. Conclusion

In this Letter, we have found an exact expression for the electric current on superconducting strings as a function
of fermion chemical potential and temperature. We have analyzed the case of both local and global strings, and our
analysis has not been limited to a low energy theory of zero modes in the string core. Our ability to obtain such
an exact result has been due to a cancellation (or partial cancellation) of contributions of all, but the zero fermion
modes to the current. For local strings, we have seen thalfaalues of 7 and i, the current is due to zero
modes in the string core. On the other hand, for global strings, the current receives contributions both from the zero
modes and from certain states at continuum threshold. The latter contribution tends to cancels out the contribution
from the zero modes as the fermion chemical potential becomes much larger than the fermion Massesults
for u > m, might be particularly interesting in application to currents on axial strings in dense quark fh2ajter
where the gap\ « w.

We would like to note that the study of persistent topological currents and spin currents in conjunction with
problems, such as, for example, quantum hall effed} and spin hall effecfl5], has over the past years become
an active subject of research in condensed matter physics. It would be interesting to investigate the relation of the
phenomenon discussed in this Letter to problems in condensed matter systems. For instance, persistent supercu
rents, are known to appear on vortices in superfitdd—4 and, somewhat similarly to currents considered in this
Letter, are due to chiral anomalifisg].

4 This choice certainly respects the anomaly cancellation condifieac?.



146 M.A. Metlitski / Physics Letters B 612 (2005) 137-146

Acknowledgements

I would like to acknowledge very helpful discussions with A.R. Zhitnitsky, D.T. Son, G.E. Volovik and P.B.
Wiegmann. | would also like to thank the organizers of the program “QCD and Dense Matter: From Lattices to
Stars” at the Institute for Nuclear Theory, Seattle, where this work was initiated. This work was supported in part
by the Natural Sciences and Engineering Research Council of Canada.

References

[1] E. Witten, Nucl. Phys. B 249 (1985) 557.
[2] C.G. Callan, J.A. Harvey, Nucl. Phys. B 250 (1985) 427.
[3] S.G. Naculich, Nucl. Phys. B 296 (1988) 837.
[4] G.W. Semenoff, Phys. Rev. D 37 (1988) 2838.
[5] S. Forte, Phys. Rev. D 38 (1988) 1108.
[6] L.M. Widrow, Phys. Rev. D 38 (1988) 1684.
[7] A.J. Niemi, G.W. Semenoff, Phys. Rep. 135 (1986) 99.
[8] A.J. Niemi, Nucl. Phys. B 251 (1985) 155.
[9] E. Weinberg, Phys. Rev. D 24 (1981) 2669.
[10] K. Rajagopal, F. Wilczek, hep-ph/0011333.
[11] M.M. Forbes, A.R. Zhitnitsky, Phys. Rev. D 65 (2002) 085009, hep-ph/0109173.
[12] D.T. Son, A.R. Zhitnitsky, Phys. Rev. D 70 (2004) 074018, hep-ph/0405216.
[13] R. Jackiw, P. Rossi, Nucl. Phys. B 190 (1981) 681.
[14] R.B. Laughlin, Rev. Mod. Phys. 71 (1999) 863.
[15] S. Murakami, N. Nagaosa, S.C. Zhang, Science 301 (2003) 1348.
[16] M.M. Salomaa, G.E. Volovik, Rev. Mod. Phys. 59 (1987) 533.



	Currents on superconducting strings at finite chemical potential and temperature
	Introduction
	Currents on strings
	The model
	The spectrum
	Current-naive approach
	Current-corrections from polarized continuum

	Conclusion
	Acknowledgements
	References


