
Biochimica et Biophysica Acta 1817 (2012) 247–257

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r.com/ locate /bbab io

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Review

Strategies for psbA gene expression in cyanobacteria, green algae and higher plants:
From transcription to PSII repair☆

Paula Mulo ⁎, Isamu Sakurai, Eva-Mari Aro
Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
Abbreviations: OEC, oxygen evolving complex; PEP,
ase; PS, photosystem
☆ This article is part of a Special Issue entitled Photos
⁎ Corresponding author. Tel.: +358 2 3337915; fax:

E-mail addresses: pmulo@utu.fi (P. Mulo), isasak@ut
(E.-M. Aro).

0005-2728/$ – see front matter © 2011 Elsevier B.V. Al
doi:10.1016/j.bbabio.2011.04.011
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 11 January 2011
Received in revised form 6 April 2011
Accepted 7 April 2011
Available online 2 May 2011

Keywords:
Chloroplast
Cyanobacteria
D1 protein
psbA gene
Transcription
Translation
The Photosystem (PS) II of cyanobacteria, green algae and higher plants is prone to light-induced inactivation,
the D1 protein being the primary target of such damage. As a consequence, the D1 protein, encoded by the
psbA gene, is degraded and re-synthesized in a multistep process called PSII repair cycle. In cyanobacteria, a
small gene family codes for the various, functionally distinct D1 isoforms. In these organisms, the regulation of
the psbA gene expression occurs mainly at the level of transcription, but the expression is fine-tuned by
regulation of translation elongation. In plants and green algae, the D1 protein is encoded by a single psbA gene
located in the chloroplast genome. In chloroplasts of Chlamydomonas reinhardtii the psbA gene expression is
strongly regulated bymRNA processing, and particularly at the level of translation initiation. In chloroplasts of
higher plants, translation elongation is the prevalent mechanism for regulation of the psbA gene expression.
The pre-existing pool of psbA transcripts forms translation initiation complexes in plant chloroplasts even in
darkness, while the D1 synthesis can be completed only in the light. Replacement of damaged D1 protein
requires also the assistance by a number of auxiliary proteins, which are encoded by the nuclear genome in
green algae and higher plants. Nevertheless, many of these chaperones are conserved between prokaryotes
and eukaryotes. Here, we describe the specific features and fundamental differences of the psbA gene
expression and the regeneration of the PSII reaction center protein D1 in cyanobacteria, green algae and
higher plants. This article is part of a Special Issue entitled Photosystem II.
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1. Introduction

Higher plants, algae and cyanobacteria all perform oxygenic
photosynthesis, and the basic structure of their photosynthetic
machinery is highly conserved. The Photosystem (PS) II is composed
of the core proteins, D1 and D2, which bind all the redox-active
components involved in electron transfer of PSII. In addition to the D1
and D2 proteins, PSII contains the inner chlorophyll-binding antenna
proteins CP43 and CP47, and the Cyt b559 proteins PsbE and PsbF.
Moreover, several low molecular mass proteins are required for
proper function and assembly of the PSII dimer. Although the ultimate
function of the oxygen evolving complex (OEC) of PSII is very similar
in the eukaryotic organisms and the prokaryotic cyanobacteria, the
detailed characteristics of the individual OEC proteins differ between
these organisms [1,2]. Another difference in PSII between the
eukaryotic and prokaryotic organisms concerns the light harvesting
machinery. In higher plants, light is harvested by the membrane
embedded light harvesting complex, whereas in cyanobacteria light
energy is captured by the soluble phycobilisome antenna. Naturally
also the compartmentalization of the cell differs dramatically between
these organisms. In higher plants and algae photosynthesis takes
place in chloroplasts. Although the key proteins of photosynthesis
(e.g., D1 and D2) are encoded by the chloroplast genome, the vast
majority of the chloroplast proteins are encoded by the nuclear
genome, translated on the cytosolic ribosomes and translocated to
the chloroplast. In cyanobacteria, no such elaborate signalling and
trafficking of the proteins between the distinct organelles are needed,
although more and more evidence is accumulating about the early
steps of PSII biogenesis apparently taking place at the plasma
membrane, which necessitates extensive membrane transfer processes
[3–6]. Another distinct difference is the structural organization of the
thylakoid membrane. In chloroplasts of higher plants, the thylakoid
membrane is laterally segregated into distinct granal stacks connected
by the stroma lamellae, in green algae such heterogeneity is less strict
while in cyanobacteria the thylakoid membrane is peripherally
organized in distinct layers around the cells.

The PSII of all organisms is prone to light-induced oxidative
damage due to the highly oxidative chemistry of water splitting [7,8].
The D1 protein is the primary target of the damage, and it is sacrificed
in order to avoid complete inactivation and disassembly of PSII.
Therefore, under normal photosynthetic growth conditions the D1
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protein, encoded by the psbA gene, is constantly degraded and re-
synthesized in the multistep process called PSII repair cycle [9–11].
Although the D1 protein in higher plants and green algae is encoded in
the chloroplast genome, the repair process requires assistance by a
multitude of nuclear encoded proteins and therefore the regulation of
these two genetic systems must be well coordinated. Thylakoid
heterogeneity in chloroplasts provides further complexity to the
repair process. Here, we describe the specific features and funda-
mental differences of the psbA gene expression in cyanobacteria and
chloroplasts of green algae and higher plants, which have adopted
distinct differences in the regeneration of the PSII reaction center
protein D1. In the chloroplasts of higher plants and green algae the
prevalent mechanism for the regulation of psbA gene expression, as
well as many other chloroplast genes, seems to be the control of
translation, whereas the main regulatory step in cyanobacteria is
transcription (Fig. 1). Specific for plants, on the other hand, is the
regulation of psbA gene expression by D1 protein phosphorylation.
Cyanobacteria

Transcription

Translation

Photosystem II

Thylakoid

Ribosome

Ribosome
Transcription

T l i

Plants, Green algae

Nucleus
Chloroplast DNA

cpDNA

Photosystem II

Translation

Thylakoid

Fig. 1. General scheme depicting the major regulatory steps of psbA gene regulation in
cyanobacteria and chloroplasts of green algae and higher plants. In cyanobacteria, a
single genome consisting of a number of circular DNA molecules encode all the
structural and regulatory proteins that constitute the cyanobacterial cell. Photosyn-
thetic pigment–protein complexes are embedded in the concentrically layered
thylakoid membranes. Transcription is the main regulatory step in the control of
cyanobacterial gene expression, depicted as a thick red arrow, and only few proteins are
so far known to regulate the activity of transcription. The photosynthetic machinery of
green algae and higher plants is encoded by both the nuclear and chloroplast (cp)
genomes. The production of photosynthetic proteins is strictly co-regulated in both
compartments in order to guarantee optimal assembly and function of the chloroplasts.
The main regulatory step in chloroplast gene expression is the translation of proteins
from a stable, pre-existing pool of transcripts (depicted as thick red arrows). The
stability of mRNA and efficiency of translation are regulated via binding of various
nuclear-encoded proteins to the 5′ and 3′ UTRs of the genes. Major regulatory steps in
each organism are indicated by the thickness of the arrows.
2. psbA gene expression in cyanobacteria

In all cyanobacteria studied so far, a small gene family with two to
sixmembers codes for the D1 protein [12]. Inmany cyanobacteria, one
of the D1 isoforms dominates under standard growth conditions,
while upon shift of the cells to adverse conditions another, stress-
induced isoform of the D1 protein is expressed (for a review, see [12]).
The functional properties of the different isoforms are known to differ
from each other, for example in respect to light tolerance [13–18].
Two cyanobacterial species, Synechococcus 7942 and Synechocystis sp.
PCC 6803, are the most popular cyanobacterial model organisms for
studies of PSII function and assembly. The psbA gene expression in
these species possesses a very different mechanistic principle. In
Synechococcus 7942, the D1:1 protein is encoded by the psbAI gene,
and the stress-induced D1:2 by the psbAII and psbAIII genes [14,17,19–
22], while for a long period of time only one type of D1 (D1m) protein,
encoded by the psbA2 and psbA3 genes, was detected in Synechocystis
sp. [12,23]. However, it has been recently shown that actually two
forms of D1 protein exist also in Synechocystis sp., as the “silent” psbA1
gene has been proven to be induced under microaerobic condi-
tions [24,25]. Recent studies using other cyanobacterial species, such
as Thermosynechococcus elongatus [18,26–28], Gloeobacter violaceus
[29], Anabaena 7120 and Synechococcus WH 7803 [30] have provided
evidence that the principle dogma of cyanobacterial psbA gene
expression (one “standard” D1 isoform expressed under normal
conditions and a functionally different stress-induced form dominat-
ing upon adverse conditions) is valid also in other species.

2.1. Regulation of psbA gene expression in cyanobacteria at the level of
transcription

Regulation of the psbA gene expression has been investigated for
decades, and considerable amount of knowledge about the details in
transcriptional regulation has emerged. Yet, the ultimate mechanisms
behind the transcriptional regulation remain poorly characterized.
Under normal growth conditions (ca. 50 μmol photons m−2 s−1) the
Synechocystis psbA2 gene produces ca. 90% of the psbA transcripts,
while the psbA3 gene produces only 3–10% [23,31]. Intense illumina-
tion, as well as exposure of the cells to UVB radiation, increases the
transcription of psbA2, but especially that of the psbA3 gene, which is
followed by enhanced translation of the psbA transcripts [32–35]. An
increase in D1 synthesis rate is required to balance the light intensity-
dependent damage and degradation of the D1 protein, and actually
not only the light intensity but also the rate of D1 synthesis regulates
the psbA gene transcription in Synechocystis 6803 [36–40]. In
Synechococcus 7942, a majority (N80%) of the total psbA transcript
pool originates from psbAI under low light conditions (125 μmol
photons m−2s−1) [41,42]. Shift of the cells to intense illumination
(750 μmol photons m−2s−1) results in a decrease of psbAI transcrip-
tion, while the transcription of psbAII and psbAIII increases [41–44].
Transcriptional changes are directly reflected at translational level,
and the interchange of the D1:1 form by D1:2 is required for proper
acclimation of cells to changing environmental cues [13,15,20–22,45].

All the psbA genes expressed under standard or high light
conditions produce transcripts of 1.2 kb with the 5′ ends comprising
49 to 88 bases upstream from the coding region [19,23], while the
transcription start site of the psbA1 gene in Synechocystis sp. PCC 6803
has not been characterized yet. In Synechocystis 6803 and Synecho-
coccus 7942, the conserved−35 and−10 elements are present in the
upstream regions of the psbA2/psbAII and psbA3/psbAIII genes,
respectively [23,44]. The promoter regions of psbA1 and psbAI genes
differ from those of other psbA genes and contain atypical fingerprints
[19]. Although the principal sigma factor (Group 1) has been shown to
recognize the hexameric −35 and −10 regions located in the
promoter region of the psbA genes [46–48], the light responsive
expression requires also the presence of SigB, SigD and SigE [49–52].
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In addition to the promoter of the psbA gene, the tertiary structure of
DNA (AT tracts) in the upstream region of the psbA genes [53,54] as
well as the regulatory elements upstream from the promoter [44] and
within the transcribed region is known to enhance gene expression
and mediate responses to light.

In Synechococcus 7942 various regulatory proteins bind to the
upstream region of the psbAI gene [55,56]. Gel mobility shift
experiments have demonstrated binding of a de novo synthesized
protein factor, essential for the transcriptional activation, to the 5′ end
of the psbAI coding region [57], while at least one of the regulatory
factors is known to be shared with psbAI and psbAII [56]. The PsfR
protein is one of the few identified regulatory factors, as the
overexpression of psfR has been shown to enhance the expression of
psbAI without an effect on psbAII and psbAIII. However, knocking out
of the psfR gene does not stall the expression of the psbAI gene, and
therefore it has been suggested that PsfR does not bind directly to the
psbAI promoter but might regulate gene expression via protein–
protein interactions. Additionally, the degradation products of the
D1:1 protein have been shown to bind the upstream region of the
psbAI gene, implying that the turn-over rate of the D1 protein might
have an impact on its own synthesis [58]. The CmpR protein, which is
involved in cyanobacterial carbon concentration mechanisms [59],
binds to the enhancer elements of the psbAII and psbAIII genes and
regulates the psbA gene expression via an uncharacterized mecha-
nism. Moreover, the AT-rich region between the −10 basal promoter
and the Shine-Dalgarno sequence of the psbAII gene functions as a
negative element, which might serve as a binding site for regulatory
factors and/or ribosomes controlling the accumulation of psbAII
transcripts [60].

In Synechocystis sp. PCC 6803, much less is known about the trans-
acting factors regulating the psbA gene expression, and no proteins
enhancing the expression of the psbA genes have been characterized.
In contrast, it has been shown that putative repressor proteins bind to
the upstream region of the psbA2 and psbA3 genes in darkness, which
is in line with the fact that light is required for the accumulation of
psbA transcripts [61,62]. Although transcription of the psbA genes
seems to require de novo synthesized protein factors [63], the
transcription of the psbA genes during the recovery process after
photoinhibitory treatment of Synechocystis 6714 is not prevented by
inhibition of translation [33].

A great number of studies have implicated that the redox state of
Synechococcus cells regulates the psbA gene expression,while there is no
such consensus yet concerning the redox-regulation of Synechocystis
6803 psbA gene expression. In Synechococcus 7942, conditions
resulting in accumulation of thiol reductants, such as direct addition
of thiol reductant DTT to cell culture [64], or exposure of cells to high
light intensity [15,65], UVB radiation [16], anoxia [66] or shift of the
cells to low temperature [65] induce the expression of the psbAII and
psbAIII genes. Addition of an electron transfer inhibitor DCMU or
DBMIB, in contrast, does not cause any changes in psbA gene
expression upon low light conditions, but both inhibitors dramatically
reduce the expression of the psbAII and psbAIII geneswhen added upon
a high-light shift. These results have been taken as an indication that
the thiol redox state, and not the redox state of the plastoquinone pool,
regulates the psbA gene expression in Synechococcus 7942 [64]. Besides
redox regulation, also other factors may control the psbA gene
expression in cyanobacteria. In Synechococcus 7942, the expression
of the psbA genes has been suggested to be controlled via a blue light
photoreceptor [67–69], possibly by the function of NblS, which is a
putative histidine kinase [70].

The psbA gene expression in Synechocystis sp. is not under the
control of the thiol redox state of the cell (unpublished results from
our laboratory). Instead, lots of contrasting data concerning the
involvement of the intersystem redox status in the regulation of psbA
gene expression in Synechocystis have been published during the past
10 years. Several studies have suggested that the reduction of QA,
plastoquinone pool, or the Cyt b6f complex has an impact on
accumulation of psbA transcripts [40,71–73]. RppA, which acts as a
response regulator of a two-component system, is a putative
candidate to mediate the changes in the redox poise to the expression
of photosynthetic genes, including psbA [40]. However, other studies
implicate that the redox state of the electron transfer chain is an
unlikely candidate to carry information for regulation of psbA
expression, since the action spectrum of psbA transcription resembles
rather the action spectrum of photoinhibition than that of PSII activity
or photosynthesis [74]. The major determinants of the cyanobacterial
psbA gene expression are presented schematically in Fig. 2a.

2.2. Post-transcriptional regulation of the psbA gene expression in
cyanobacteria

As typical for the transcripts in most prokaryotes, the half-life of
the psbA2 and psbA3 mRNA in Synechocystis 6803 is rather short:
under illumination the half-life is around 10–20 min, and indepen-
dent of both the light intensity and the rate of PSII electron transfer
[32,33,37,71,72,75]. It is also important to note that although the
translation of the psbAmessages ceases in darkness, the stability of the
psbA transcripts increases remarkably [23,32,62,76]. The stabilization
is not dependent on light per se, but rather on the cessation of
photosynthetic electron transfer [32,35,62,72]. Other factors, such as
polyamines, have been suggested to affect the stability of psbA
transcripts as well [76]. In Synechococcus 7942, the untranslated
leader regions of the psbA genes as well as parts of the coding region
determine the stability of the psbA mRNA [42,77]. Especially the
region encoding the first membrane span of the D1 protein is of
utmost importance for psbA mRNA turnover, probably due to the fact
that pausing ribosomes protect the mRNAs from degradation [77].
psbAI and psbAIII transcripts are destabilized upon exposure of
Synechococcus cells to high light intensity (T1/2=10–12 min),
whereas the psbAII transcripts are long-lived and apparently
not subject to post-transcriptional regulation [42]. Neither do
Synechococcus psbA transcripts show any dark-stabilization, which is
in contrast to Synechocystis sp. PCC 6803. In both species, however, the
psbA messages are stabilized upon prolonged photoinhibitory
treatment [13,33], but the changes in the transcript amounts under
these extreme conditions are not followed by corresponding changes
in translation [13].

It has been shown that the existing psbA messages in Synecho-
coccus 7942 are always associated with ribosomes [78]. This suggests
that the membrane targeting of nascent D1 protein ribosome
complexes might be an important determinant for D1 protein
synthesis, while apparently the initiation of translation is not strictly
regulated [78]. Elongation of translation is an important regulatory
step also in Synechocystis 6803. The psbA transcripts are attached to
ribosomes even in the dark, and the translation of the D1 protein
continues up to a distinct pausing site. The newly formed ribosome-
nascent D1 chain complexes are targeted to the thylakoid membrane
only upon illumination, and therefore the synthesis of the D1 protein
can be completed only in light [79]. This indicates that in line with
Synechococcus, also in Synechocystis 6803 the translational elongation
is an important regulatory step in expression of the psbA genes [79].
Moreover, singlet oxygen generated during photosynthetic light
reactions has been shown to arrest the translational elongation
process of the D1 protein, while the lack of chlorophyll affects the
initiation of psbA translation [80].

3. psbA gene expression in eukaryotes

The chloroplasts of higher plants and green algae contain a single
psbA gene, which produces a very stable pool of transcripts.
Translation of a number of chloroplast transcripts, including psbA, is
induced by light, and it is nowadays evident that in contrast to
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cyanobacteria, the mRNA processing, and especially the control at the
level of translation are the major steps in the regulatory network of
the psbA gene expression in chloroplasts. The unifying concept might
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be that in all investigated species the D1 protein is made available
according to the needs of the cell, yet using a variety of strategies
depending on the genetic and physiological context of the system.
Nevertheless, distinct differences have been reported in psbA gene
expression in chloroplasts of green algae and higher plants, which are
described and discussed below.

3.1. Highlights of psbA gene expression in Chlamydomonas reinhardtii

Chlamydomonas reinhardtii (hereafter referred as Chlamydomonas)
is a suitable model organism for photosynthesis research, since this
unicellular eukaryotic green alga contains only a single giant chloro-
plast. Routine transformation methods have been developed for
Chlamydomonas, and it can survive on acetate-containing media even
if the photosynthetic machinery has been inactivated due to mutations.
Indeed, an impressive amount of knowledge has accumulated concern-
ing the regulation of psbA gene expression in the chloroplasts of
Chlamydomonas.

The psbA gene of Chlamydomonas is located within the inverted
repeat region of the chloroplast genome, and therefore it is present in
two identical copies [81]. Although in Chlamydomonas transcription
of the psbA gene increases slightly upon illumination, it is apparently
not under strict control, and instead it has been reported that the psbA
gene is constitutively expressed [82]. The psbA mRNA exists in two
forms in the chloroplasts of Chlamydomonas: a larger form with a 5′
UTR of 91 nucleotides and the predominant shorter formwith a leader
of 36 nucleotides [81,83,84]. The larger form has been hypothesized to
be a precursor of the shorter mRNA via 5′ processing [85]. Whether
the several stem–loop structures predicted to be formed in the 5′ UTR
of the psbA mRNA are involved in the processing remains to be
resolved [81]. The 3′ UTR of psbA mRNA contains an inverted repeat
sequence, which is able to fold into a stem–loop structure. Although
the loop resembles bacterial transcription terminators, it has been
shown both in vitro and in vivo that these elements rather function as
3′ end processing signals than terminators [86]. The psbA gene is
interrupted by four Group I introns [81], and three of these introns
have been shown to self-splice under non-physiological conditions in
Fig. 2.Major regulatory steps of the psbA gene expression in prokaryotes and eukaryotic
chloroplasts. (A) Regulation of psbA gene expression in cyanobacteria occurs mainly at
the level of transcription. Changes in environmental conditions (e.g., light quality and
quantity) affect the redox state of the cell and the rate of electron transfer, which
regulate the binding of various trans-acting regulatory factors (R denotes for repressors,
and A for activators) to the promoter region of the psbA gene. In addition to the binding
of repressors and activators, which determine the transcriptional activity of the psbA
gene, also the D1 degradation fragments may act as transcriptional regulators. Also
stability of the psbA mRNA as well as translational regulation (not shown in the figure)
controls the psbA gene expression in cyanobacteria. (B) The main regulatory steps in
psbA gene expression in Chlamydomonas reinhardtii are the mRNA processing and
initiation of translation. Efficiency of splicing is determined by nuclear encoded splicing
factors regulated by light and the rate of electron transfer. The stem–loop structures in
the 5′ and 3′ termini of the psbA mRNA are probably involved in the processing of the
transcript, which results in formation of two distinct psbA transcripts. Light quality and
quantity cause changes in phosphorylation and the redox state of several RNA binding
proteins (63, 60, 55, 47 and 38 kDa proteins and Tba1, see 3.1 for details), which in turn
regulate the efficiency of translation initiation. The psbA gene is currently thought to be
constantly transcribed, and so far no distinct transcription factors have been identified.
(C) Regulation of the psbA gene expression in higher plants. Although there is generally
no strict limitation of D1 synthesis at transcriptional level, the transcription of the psbA
gene is nevertheless affected by rapid changes in the quality and quantity of light
affecting the redox state of chloroplasts and the phosphorylation status of the plastid
encoded RNA polymerase (PEP). Transcription activity is determined by the function of
PEP and various transcription factors (39, 56, 63 and 85 kDa). As psbA gene is an
intronless chloroplast gene, control of splicing does not play a role in regulation of psbA
gene expression in the chloroplasts of higher plants. In the light, psbAmRNA translation
initiation complexes are formed but the synthesis of D1 protein is mainly regulated at
the level of translation elongation. A few regulatory proteins (HCF173, 47, 43, 38 and
37 kDa) identified this far bind to the 5′ UTR and the 3′ end of the psbA transcript and
control the psbA gene expression via mechanisms that still remain largely unchar-
acterized (see 3.2.2 for details). The different shapes of the regulatory proteins reflect
the variety of (unrelated) proteins involved in the regulation of psbA gene expression.
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vitro [87]. In planta, the splicing of psbA mRNA in Chlamydomonas is
dependent on light and photosynthetic electron transfer: unspliced
transcripts accumulate in darkness, while efficient splicing of each
intron occurs within the first hour of light exposure (Fig. 2b).
Moreover, inhibition of electron transfer with DCMU or DBMIB results
in cessation of splicing, while depletion of ATP does not have any
effect [88]. The specific light-dependent splicing of the psbA transcript
implies that apparently one or more psbA specific, light-activated
splicing factors might be present in Chlamydomonas chloroplasts, and
indeed nuclear loci with distinct effects on splicing have been
identified [89].

In addition tomRNA processing, the light-induced accumulation of
the D1 protein in Chlamydomonas is regulated at the level of
translation initiation [90–92]. A complex of four major and several
minor nuclear encoded proteins bind to the to stem–loop structure
within the 5′ UTR of the psbA mRNA thereby activating the synthesis
of the D1 protein [93] (Fig. 2b). These proteins include a chloroplast
poly(A) binding protein cPAB1 (RB47) [94,95], a protein disulfide
isomerase cPDI (RB60) [96,97], an RNA binding protein RB38 [98,99],
and the RB55 protein [98,100]. Binding of these proteins to the psbA
mRNA is dependent on light and protein phosphorylation [93]. In
darkness, the cPDI (RB60) protein is phosphorylated via an ADP-
dependent kinase, which in turn results in a release of the protein
complex from the 5′ UTR of the psbA mRNA, and cessation of
translation [93]. In the light, cPDI reduces the cPAB1 protein, which
results in tight binding of cPAB1 to the A-rich sequences of the 5′ UTR
of psbA mRNA, and in the initiation of translation [96,101]. The Tba1
(translational affector of psbA) protein, a putative stromal oxido-
reductase, enables cPAB1 to bind psbA mRNA and the subsequent
loading on ribosome, implying that Tba1 functions as another redox
regulator of cPAB1 [102].

In turn, the RB38 protein interacts with the uridine-rich regions
within the 5′ UTR of psbA mRNA [99]. Recently, it was shown that the
accumulation of the rb38 and rb60 transcripts is regulated by red light
(although the red light receptor has not been identified in Chlamy-
domonas yet) and calmodulin [103], while the expression of the rb47
is rather regulated at translational level by an unknown chloroplast
signal [98,103]. Moreover, the RBP63 protein (RNA binding protein of
63 kDa) has been shown to bind to the 5′ UTR of the psbA transcript
via an element located between the nucleotides −36 and +1. Also a
tract of seven consecutive A-residues located 14–8 nucleotides
upstream of the start codon has an impact on binding [104]. Other
determinants, such as secondary structures might further facilitate
recognition. It is worth noting that alongwith the psbA transcripts, the
RBP63 protein is associated with the thylakoids [104–106].

Yet another level of psbA gene regulation was demonstrated by the
study showing that in the absence of assembly partners (control by
epistasy of synthesis), the de novo D1 synthesis is hindered [107,108].
This was shown to be due to translational autoregulationmediated by
the psbA promoter together with the 60 first nucleotides downstream
of the initiation codon [92].

3.2. Regulation of psbA gene expression in higher plant chloroplasts

Various plant species, both dicots and monocots (i.e., spinach,
mustard, tobacco, barley), have been used as model organisms in
studies of regulation of the psbA gene expression. Although some
differences have been reported between dicots and monocots, or
between different species, we describe below the current knowledge
concerning the psbA gene expression in general in the chloroplasts of
all studied higher plants. Several lines of evidence indicate that as in
cyanobacteria and chloroplasts of Chlamydomonas, the expression of
the psbA gene in all higher plant chloroplasts is regulated via a
complex network including transcriptional control, regulation of
mRNA stability, and in particular the control at the level of translation
(Fig. 2c).
The single psbA gene found in higher plants is located in a large
single copy region of the chloroplast genome, and it does not contain
introns. The promoter of the psbA gene has been analyzed in detail. It
consists of a−10 and−35 region interspersed by a single TATA-box-
like element, and the transcription is initiated in a single defined site
[109–112]. In mustard, however, the trnK gene is read-through into
the psbA coding region resulting in two psbA transcripts with different
5′ leader regions [113,114]. The psbA gene is predominantly
transcribed by the plastid encoded RNA polymerase (PEP) [115–
117], and the transcription activity is affected by the developmental
stage of the plant [111,112,118]. Although the transcription of also the
plant psbA gene is somewhat induced by light [119–121], high
amounts of psbAmRNA are present in all green tissues of higher plants
even in darkness due to a strong promoter [122] and a very stable RNA
[123]. The D1 protein, however, is synthesized only in response to
light [124–129].

3.2.1. Transcriptional regulation in plants
Intersystem redox poise has been shown to regulate the

transcriptional activity of various photosynthetic genes. Upon
conditions of reduced plastoquinone pool, the transcription of genes
encoding the PSI subunits is enhanced, while upregulation of the psbA
gene expression occurs under conditions leading to an oxidized
plastoquinone pool [130–132]. It has been proposed that the redox
signals originating from the photosynthetic machinery embedded in
the thylakoid membrane might be transferred to the gene expression
level via a phosphorylation cascade [133]. Phosphorelay might be
transduced via the chloroplast sensor kinase, which has been shown
to regulate the expression of the psaA gene [134], or via phosphor-
ylation of PEP and various transcription factors [135–138], reviewed
in [139]. Recently, Steiner et al. [140] showed that a set of four
proteins (39, 63, 56 and 85 kDa) are specifically bound to the
promoter region of the psbA gene, and that various other trans-acting
factors are shared with psbA and psaA genes. The DNA binding
proteins are apparently regulated by a synergistic action of phos-
phorylation and thiol redox signalling, which collectively form a
complex regulatory network [140,141].

3.2.2. Translational regulation is the most prominent step in the
regulation of higher plant psbA gene expression

Translation of the D1 protein takes place in membrane-bound
polysomes [121,127], and the D1 protein is co-translationally inserted
into the thylakoid membrane via the cpSecY translocation channel
[142–146], reviewed in [147]. The accumulation of the D1 protein is
tissue-specific and light-dependent, and moreover, affected by the
developmental stage of the plant [123,125,127,129,148,149]. The
accumulation is partly controlled via the untranslated region of the
psbAmRNA at the level of translational initiation [129,150,151], and is
known to be dependent on several cis-elements, including RBS1, RBS2
and an AU-box (UAAAUAAA) [152].

RBS1 and RBS2 have been suggested to act as a bipartite Shine-
Dalgarno sequence for ribosome binding, and the AU-box located
between RBS1 and RBS2 probably binds various trans-acting factors
[152]. One of these factors is HCF173 (high chlorophyll fluorescent;
At1g16720), which is a chloroplast-targeted, nuclear-encoded pro-
tein, that belongs to a superfamily of the short-chain dehydrogenases/
reductases [153]. HCF173 is needed for the efficient translation of the
psbA mRNA, and it probably acts during the initiation of translation
[153]. Moreover, it may directly or undirectly affect also the stability
of the psbA mRNA. Eibl et al. [151] have further described a stretch of
17 terminal nucleotides in the 5′ UTR of the psbA mRNA that
influences translation efficiency. Also, 43 kDa and 48 kDa proteins
binding to the 5′ UTR, “the central protein binding element” (−49 to
−9), of the psbA mRNA, have been identified [154–156]. The 43 kDa
protein is a chloroplast homologue of the Escherichia coli ribosomal
protein S1 [156], and it binds specifically to the U-rich region of the
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spinach 5′ UTR of the psbAmRNA, while it remains to be seenwhether
the 47 kDa protein might be an ortholog of the cPAB1 protein in
Chlamydomonas [94,154,157].

In addition to proteins that bind to the 5′ UTR of the psbA mRNA,
also proteins interacting with the 3′ UTR have been described. Two
RNA binding proteins of 37 and 38 kDa have been shown to bind
specifically to the 30 nucleotide region of the psbAmRNA immediately
downstream from the translation termination codon, possibly as a
heterodimer [155]. It has been suggested that the 37/38 kDa proteins
might protect the psbA mRNA from nuclease attack, or they might
modulate translational activity [155]. The ultimate function of these
proteins, however, remains to be elucidated. The 5′ and 3′ UTRs may
additionally interact with each other, e.g.,via binding of regulatory
proteins resembling nuclear poly(A) binding proteins [151], such as
Chlamydomonas RB47 [94,95], thereby ensuring the maximal level of
translation.

Although the abundant psbA transcripts are associated with the
polysomes even in darkness [127], the D1 protein starts to accumulate
only upon illumination [127,158,159], which indicates that in addition
to translation initiation, also elongation of translation is strictly
regulated in the chloroplasts of higher plants. During translational
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elongation, the ribosomes pause at several distinct sites along the
psbA mRNA, which probably allows binding of chlorophyll and
stabilization of the D1 protein [128,159,160]. Moreover, successful
and efficient elongation of the D1 protein translation requires
maintenance of transthylakoid proton gradient [144,161] as well as
intact electron flow through the electron transfer chain [144,162].
Similarly to Chlamydomonas, control by epistasy of synthesis [163]
seems to be valid in the chloroplasts of higher plants, and the
interaction of the D1 nascent chain with the D2 protein is needed for
successful cotranslational insertion of the D1 protein into the
thylakoid membrane [142,144,164,165].

4. The PSII repair cycle

During the de novo assembly of the PSII complex all the subunits
are synthesized and assembled into functional dimers, while in the
process of PSII repair primarily the D1 protein is degraded and
resynthesized to replace the damaged D1 copy, the other PSII proteins
possessing significantly slower turnover rate and being mainly
recycled [9–11,164] (Fig. 3). In the PSII repair cycle of plant
chloroplasts, the post-translational phosphorylation of the D1 protein
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plays a crucial role in psbA expression. The phosphorylation of the
damaged D1 protein is required for fluent migration of PSII complexes
from the grana stacks to the nonappressed stroma lamellae, where the
D1 protein is dephosphorylated and subsequently degraded [166–
173]. Only after degradation, the synthesis of the D1 protein can be
completed and the co-translational insertion into the thylakoid
membrane takes place. It is worth noting that although the PSII
repair cycle occurs at the thylakoid membrane, it has been shown that
the de novo D1 synthesis in Chlamydomonas takes place in discrete
stromal regions (T zones) near the pyrenoid [174]. It is unlikely that
the PSII repair, different to the de novo assembly of PSII, involves any
specific compartmentalization or phosphorylation of PSII core pro-
teins in cyanobacteria.

A number of auxiliary proteins are involved in the PSII repair,
many of which are conserved in chloroplasts and cyanobacteria. The
lumenal DegP [169,175,176] reviewed in [177] and [178], and the
stromal FtsH [179–182] proteases (see Zhang et al. this issue) are
responsible for the D1 degradation, and the degradation process is
assisted by the lumenal auxiliary protein TLP18.3 [183]. The D1
proteolysis is followed by a partial disassembly of the PSII complex.
Thereafter, the newly synthesized D1 copy is co-translationally
inserted into the thylakoid membrane [145], and concomitantly
chlorophyll molecules are ligated to the D1 protein [160].

The three proteins shown to have specific impact on D1 synthesis
and co-translational insertion of the newly synthesized copy into the
PSII complex are LPA1 (Chlamydomonas REP27), CYP38, and PAM68
(Synechocystis Sll0933). LPA1 is an integral thylakoid membrane
chaperone required for efficient translation of the psbA transcripts and
insertion of the new D1 copy into PSII [184], while PAM68 affects the
stability andmaturation of the D1 protein [185]. PAM68 interacts with
LPA1 (and other PSII assembly factors) and is associatedwith the early
assembly intermediates of PSII suggesting that PAM68 promotes the
early steps in PSII biogenesis [185]. CYP38, in turn, is a lumenal
immunophilin ensuring the proper folding of D1 protein into PSII
complexes, which thereby facilitates the correct assembly of the
oxygen evolving complex [186–189]. AtHCF136 [190,191] and HSP70
[192–198] are probably also assisting in the psbA mRNA translation,
proper folding of the D1 protein and the assembly of the PSII complex.
Also a number of other auxiliary proteins are involved in distinct steps
of PSII assembly, but they have not shown any direct interaction with
the D1 protein [11,199]. The C-terminal processing of the D1 protein
by the lumenal CtpA protease, aided by the Psb27 homolog LPA19, is a
prerequisite for the formation of functional PSII complexes capable of
oxygen evolution [200–207]. When the assembly of PSII monomers is
completed, the PSII complexes migrate back to the granal stacks (in
chloroplasts), where dimerization and supercomplex formation occur
with the assistance of ALB3 [208–212], Psb29 [197,213,214], and
FKBP20-2 [215]. In addition to various auxiliary proteins required for
the optimal repair of the light-damaged PSII complex, several low
molecular mass PSII subunits are indispensable for the stabilization,
assembly, dimerization and supercomplex formation of PSII
(reviewed in [216]).

5. Conclusions

All organisms performing oxygenic photosynthesis face an
apparent paradox, as light induces damage to the D1 protein of PSII.
The basic structure of PSII is very similar in prokaryotic cyanobacteria
and in chloroplasts of higher plants or green algae, but during the
evolution each group has been furnished with specific strategies to
guarantee efficient synthesis of the D1 protein as a response to ever-
changing environment. A vast number of studies concerning the psbA
gene expression in cyanobacteria have revealed that although the
transcription is themajor regulatory step, also translational regulation
plays a role. Still, however, there is a scarcity of detailed knowledge
concerning the trans-acting factors regulating the psbA gene expres-
sion. In chloroplasts of Chlamydomonas the regulation of psbA gene
expression occurs at the level of mRNA processing and translation,
and the composition and function of the regulatory proteins affecting
the translational efficiency have been relatively well characterized. In
the chloroplasts of higher plants, a constant pool of psbA mRNA
initiation complexes exists, but the synthesis of D1 can be completed
only when a D1-less PSII complex is available to accept the integration
of a new D1 protein. This suggests that translational elongation is the
main determinant of the psbA gene expression in higher plants.
Moreover, phosphorylation of the D1 protein has a major impact on
regulation of the D1 degradation, which in turn is a prerequisite for
efficient D1 synthesis in the chloroplasts of higher plants. Further
research is required and will reveal novel aspects of psbA gene
regulation at the levels of transcription, translation and assembly of
the PSII complexes, which with no doubt is a fascinating phenomenon
with great biological importance.
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