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Abstract-The problem of building a linear stationary model for a process given by evenly 
spaced discrete or continuous observations is considered. Criteria are proposed for the 
existence of such a model governed by a vector difference or differential equation. Various 
model representations in discrete and continuous forms are studied and numerical methods 
for their identification are developed. This gives the order and dynamics of a model in the 
canonical form. To include processes in noisy environment, a moving average of obser- 
vations is introduced into deterministic identification algorithms. Different integral forms 
of the moving average of continuous observations are proposed for identification of models 
governed by a system of linear stationary differential equations. Discussion of some 
experimental and computational results is presented. 

1. INTRODUCTION 

The problem of model building in the form of systems of linear stationary differential 

equations is ubiquitous in many areas of science. In engineering it arises in systems analysis. 
In biology it is found under the general heading of compartment analysis. It is found in many 
areas of economics (production models, etc.) and it plays the key role in the study of 
socioeconomic processes. 

The usual line of research is as follows. Given a sequence of observed data, one assumes 
a linear stationary model 

dx 
- = A(P)& dt 

x(&J = x,(p), t 2 to 

Y(t)=h(p)x, XER~, HER' 

(1) 

(2) 

with undetermined parameters (pl, . . . ,pk) =p to be found by fitting the vector function 
x(t,p)~ R" to observed data y,, . . . , y,; yi = y(t,). For doing that the least-squares method 
is frequently used. Some authors, instead of taking a differential model (l), consider algebraic 
models in the form of polynomials [l] or some exponential functions like x = at ‘ecr, where 
a, 6, c are constants to be determined [2]. Obviously, a differential model (1) represents far 
broader class of functions which includes all finite combinations of sine, cosine, and 
exponential functions with polynomial coefficients. Thereby, indirect measurements assumed 
by (2) and dependence on a vector-parameter p = (p,, . . . ,pJ in (1,2) add to the diversity 
of functions represented in the class of dynamic models (1,2), this giving also a new and richer 
sense to mathematical modelling in terms of dynamic models. 
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If the model is not known a priori (as it is known, e.g., in mechanics), then its order and 
structure depend on the experience of a researcher and the model is meant successful, if 
iterations converge to a unique vector-parameter p* robustly under variations of the initial 
guess po. In many cases this technique serves well. However, it is easy to verify that such 
robust convergence is not sufficient for a model to be adequate. 

In complex cases it is important to be able, prior to building a model, to check whether 
or not a model exists and, if it does, to determine the model and time intervals on which it 
exists. This paper offers necessary and sufficient conditions which must be satisfied, if a linear 
stationary model exists. The conditions are easily computable and are based solely on the 
observed data. An algorithm is developed to accomplish the computations which deliver the 
order and canonical form of a model and the intervals of time on which this model exists. 
It may well happen to be a model with variable structure (including variable order) as is 
common for complex biological and economic systems. 

This research was inspired by the investigation of Jennrich and Bright [3] and its discussion 
by Wiggins [4], so the results are applied to the same case study of a catenary model 
concerning the distribution of sulfate in the body of a baboon named Brunhilda. The 
observed data are given as measurements of radioactivity in blood samples taken from 
Brunhilda at specified times after an initial bolus injection containing radioactive sulfate. The 
results of [3,4] were further discussed in [5]. For discussion of structural identifiability see 
also [&12]. 

2. DISCRETE OBSERVATIONS 

We start with an exact sample-data representation of the system (1), (2): 

x,, + 1 = Fx,, F = exp(A At) = ktO F 

y,=hx,, x,eRm, y,,eR’, n =O,l,... (4) 

where x, = x(t,), y, = y(t,), t, = t, + nAt, AZ = const; y, are given observations. The values 
of A, h, x0, hence, F and x, are not known. However, F = cons& if A = const and At = const. 

Discrete system (3, 4) yields exact values x(t), y(t) of the system (1), (2) at times 
t, = t, + n At. If one takes the first two terms of the series (3), then the system (3) with the 
matrix F* = Z + AtA (I = unit matrix) gives a discrete approximation to the system (1). The 
values of its state vector x,* do not coincide with x(t) at times t, but tend to x(t) as At +O. 
So, if only discrete observations are available, the discrete model (3, 4) gives a complete and 
exact description of the behavior of the system (1) in regard to the information contained 
in the available discrete observations. 

2.1 Necessary conditions 

Some results discussed in these two subsections have been obtained by Lee [13]. We drop 
certain assumptions not justified by the available information. It is also expedient to present 
a simplified direct derivation which gives convenient expressions for computation and 
immediately leads to the continuous case. 

Assume that for some finite m there exists a linear stationary system (3) with the output 

Y, (4). 
The observations y, are the only values that are known. We assume the constancy of m, 

F, h and ask what condition this constancy induces on the observations y,. 
The answer comes from one fundamental result of the theory of linear spaces: given a 
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vector h’ E R” and a constant m x m matrix (linear operator) F’, (’ = transpose) there is a 
unique cyclic subspace of dimension r I m invariant with respect to the operator F’ and this 
subspace {M} G R” is generated by the first r linearly independent vectors of the chain h’, 

F’.h’,..., that is 

{M} = {h’, F’h’, . . , F”-‘h’} c R”, Y I m, F’(M) E {M}. (5) 

The relations (5) can be formulated in the form that, whatever constant values of m, h, 
F, there is some r I m such that the first r vectors in the chain h’, F’h’, F’2h’, . . . are linearly 
independent and all others depend on those first in the chain. For example, the (r + I)-th 
vector is given by the expression: 

F”h’=a,h’+a,F’h’+~~~+a,F”-Lh’, r Irn (6) 

where the coefficients ai (i = 1, . . , r) are uniquely determined by h and F. 

as 

y,+,_l = hx,+,_, = hFx,+,_, = hF’-‘x, 

Y s+r=hx,+,= hFx, + r _ , = hF’x,. 

If we transpose the equalities (7) and write the linear combination with coefficients from 
(6), we come to the equation: 

Now, let us fix arbitrary x, (s 2 0) as initial state and write r + 1 successive observations, 
follows from (3,4): 

Y, = hx, 

Y S+, = hx,,, = hFx, 
. . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . 

(7) 

A.v = -ys+r +a,y,+a2y,+,+~..+a,y.~+,-l 

=xj(-F”h’+a,h’+a,F’h’+...+a,F’-‘h/)=0, (s=O,l,...),whateverx, (8) 

Conclusion 1. If the observations y,, y,, . . . , y,, . . are produced by a linear stationary 
system (1,2) or (3,4) (which makes no difference in regard to the observations), then, 
whatever x0, h, A, At, F in (1,2) or (3,4), there is a number r, m 2 r 2 1, such that the 
observations satisfy a linear r-th order difference equation 

Y s+r =alys+a2ys+I+...+a,ys+,-I, s=o,1,2,... (9) 

Remark. If r = m in (5) for some particular h, F, then the system (3,4) is called completely 
observable [14]. The origin of this term is that in this case, given the first m observations and 
known matrices in (7), one can compute the (unknown) state x, from (7): x, = M”-‘)Y, where 
M is the matrix with columns from (5) and Y is the left hand vector in (7). 

The coefficients a,, . . . , a, in (9) depend on the (unknown) matrices h, F (see (6)). In most 
cases, however, they can be determined directly from the observations using (9). Writing (9) 
for s = 0, 1, . . , r - 1, one gets the linear system: 
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I 
Yr 

Yr+l 

Yr+2 

. . . 

Y2,- I 

Yo Yl Y2 . ..Yr-l 

Yl Yz Y3 . . .Y, I 1 = Y2 Y, Y4 . ..Yr+l . 

. . . . . . . . . . . . . . . . . . . 

Y,cl Y, Y,+1 . ..Y2r-2 

‘a, 

a2 

a3 

. . 

a, 

= co, .4 (10) 

The matrix C,, (s = 0 in (10)) can prove to be singular or not. 
If the system (3,4) is completely observable and the initial state x0 generates all the modes 

of the system (in other words, x0 does not belong to any of the root subspaces of the operator 
F), then the matrix C,(r = m) is nonsingular. This is the result of Lee [13], which needs the 
correction that the time increment At must be appropriately chosen (see the sequel). Even 
in this case, however, x0, h, F are not known in advance to make this conclusion. This is a 
major setback of the theory presented earlier [5]: all the information must be drawn from the 
observations. 

The invariant subspace (M} of (5) F’(M) G {M}, coincides with a certain root subspace 
of the operator F’, if r cm. Denote the bases of the root subspaces of F’ by 

T;, . . , T;, . . , Th; dim T; = ri, i r, = m, and let the first k subspaces coincide with {M}: 
r=l 

(7%. . . , G}={~},{T;+,,..., T:}fl(M}=f$, ir,=r<m. (11) 
i=l 

Consider the transposed inverse of the matrix [T;, . . . , TL, . . . , T:], that is, the matrix 

T* = [T;, . , T;, . . . , T;]‘-” 

= [T;‘, . . . , T;‘, . . . , T;‘] (12) 

which defines the root subspaces for the original operator Fin (3). By construction we have 

the orthogonality 

M’[T;; ,, . . . , T;‘]=O, so h.[T,-: ,,..., T;‘]=O (13) 

where M is a basis in {M}. 
Further, if x0 E T;’ then x, + , = FX,E T;’ and the vectors x, span the entire subspace T;’ 

for n =O, l,.. .,ri- 1. 
Now, consider the representation of an unknown initial state x0: 

x0 = T-’ I Pl+” .+T~'pk+T[:,pk+,+... + T;‘P,; dim pi = ri. (14) 

If for x0 actually realized, it appeared that p1 = 0, . . . ,pk = 0, then X~E { T;l 1, . . . , T;‘}, 
hence, it does not affect the observations which by virtue of (13) are all zero: y, = 0, 
n=O,l,..., and vice versa. 

In non-trivial cases some of the pi (k 2 i 2 1) are nonzero, which implies nonzero output. 
Suppose p, # 0, p2 # 0, . . . ,pI # 0 (t I k). Then, if the time increment At is appropriately 
chosen (see the sequel), the rank of the matrix C, in (10) equals r, + r, + . . . + r1 I r (= r, 
if t = k) and remains constant for s = 0, 1,2, . . . . We come to the following proposition. 

Conclusion 2. If the observations y,, y,, . . , y,, . . . , with At appropriately chosen, are 
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produced by a linear stationary system (1,2) or (3,4), then the minor arrays C, 

(S,?z =o, 1,. . ) of the infinite matrix 

[ 

Yo Yl Y2 . . . Yn . .. 

Yl Y2 Y3 ‘.. Yn+, ..’ 1 (15) . . . . . . . . . . . . . . . . . . . . . . . . . 
have the maximum rank w = r, + r2 + . . + r, in the sense that all C, with n I w have the 

rank n and all C, with n 2 w have the rank w irrespective of s which indicates the start y, 
of the minor array C,. So the rank of C, remains constant and not greater than 
w =r, +.. .+rr, where r ,,..., r, are the dimensions of the root subspaces affected by the 

initial vector x0. Since the maximum rank of C,,, is w , there are only w linearly independent 
observations in the chain (7), thus, the number r (8,9) must be replaced by the number w, 
w 5 r I m, and exactly w coefficients can be determined from the system (10). 

2.2. Suficiency 

To infer the existence of a linear stationary model (3,4) from the available information, 
we assume a property which, if it exists, is easily computable given a series of observations 

YO,Y,,‘.~~Y,~.... Two convenient procedures mathematically equivalent but different in 
computation are considered. 

2.2.1 Horizontal sweep method. Take the first nonzero observation, say y,, and make a 
forward sweep to check the condition: 

Usually this condition does not hold and it appears just at the first computation for D,,. 

Then take the first k rows in the matrix (15) and make successive forward sweeps for 

k = 2,3,. . to find the least k* for which the following conditions are satisfied: 

D,,=Y,+,Y,TF,-Y:=% s=l,Z... (16) 

DIP = C, + l,k’ - c,.c,-2 I,klCsk’ = 0 (s=1,2,3,...) (17) 

Again, the fact that conditions (17) do not hold appears in the first computation; 
singularity of the matrix C,, that is iC,l = 0, obtained before arrival at certain k* for which 
(17) are all satisfied means that for that current k < k* conditions (17) do not hold. 

Suppose that eventually we arrive at some k = k * for which the conditions (17) hold for 
all the observations or at least for the first n observations within the time interval 

[t,, t, + n = t,Y + nAt] of interest. Then on this interval [ts, t,+,] there exists a linear stationary 
model with the output y,, y,, 1, . . . , y,. 

To prove this result, we rewrite the conditions (17) in the form 

GG, I,k’ = c,-? I,k’csk’ = Qk* = const, (s = 1,2, . . .) (18) 

where by Qk we denote a constant matrix which exists for k = k * when conditions (17) are 
all satisfied. 

By inspection of the structure (15) it becomes clear that the matrix Qk. has the canonical 
form: 
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0 0 . . . 0 a, - 

1 0 . . . 0 a2 

0 1 . . . 0 a3 

Or 
Qks= . . . . . . . . . . . . . . . =_+, 4=;’ II [I II ak8 

0 0 . . . 0 ak._, 
0 0 . . . 1 Uk. 

(19) 

where the elements [a,, . , a,.] = q’ are to be determined. 
Now it is easily seen that conditions (17) satisfied for k = k * imply the recurrence relation 

(see (18)): 

C s+ ,,k* = csk*Qk*, 6 = 0, 1, 2, . . .) (20) 

The first k* - 1 columns of the matrix equation (20) give trivial identities yi = y, 
(i=s+l,s+2,..., s + 2k* - 2) and the last column yields the k*th order difference 
equation 

Y.r+k* = al~,+a2~,+l+~“+ak*~,+&*-,~ (s = 0, 1,2, . .) (21) 

This equation is equivalent to a system of k* first-order difference equations which are 
given by the transpose of the relation (20): 

c s+,,k* = Q;.Gv, (S = 0, 1, 2, . . .> (22) 

Indeed, introducing the k *-vector 

(23) 

one comes to the system equivalent to (22) with the (scalar) output y, = hx, = [1, 0, . . . ,01X, 
evident by construction of the vector 2,. So the recurrence relations (20) and (22) are 
equivalent both to difference equation (21) and to the following system which has the special 
form called canonical: 

X,,+, = Q;&, .fneRk*, Q;. = $J- [ 1 

y,=hZ,, y,eR’, h =[l,O,. ..,O]. (25) 

This system has exactly the general form (3) (4) so sufficiency of conditions (17) for the 
existence of a linear stationary system (24,25) is shown. The relation (20) by virtue of the 
structure (15) holds for any k > k* with the matrix Qk of the same structure (19) and first 
k - k* elements ai all zero: a, = 0, . . , uk_ k* = 0. So, if there exists a k* for which (20) is 
satisfied, then (20) is valid for any k > k* with singular matrix Qk, rank Qk = k - 1, 
containing the same information (the same nontrivial elements a,, . . . , uk,). So all c& 
(s = 1,2, .) are singular for k > k * and the condition (17) may hold only once for k = k *, 
if any. Hence, there is no need for further search, once k* has been found. 

After finding k*, the matrix Qk* can be computed: 

Qp = c,! ’ c,, ,,k’. (26) 
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If one retains in the matrices Qk. and C,Y+,,k. o f (20) only the last columns, one obtains 
the system identical to (10). So a,, . . . , ak* calculated by (26) are equal to those of (9) with 
the note that k* = r = w, since w is the maximum dimension of a nonsingular C, and k* is 

the only dimension for which (17) is satisfied. This completes the following result. 
Conclusion 3. The condition (17) is necessary and sufficient for the existence of a linear 

stationary model (3,4) with the given output y, = y(t,), n = 0, 1, . . . . The model is identified 
in the canonical form (24,25) with the matrix Qk, calculated by (26) and an initial state X0 
given simply as the first k* observations (23). The order k* = w of the model is minimal in 
the sense that no model of order k < k* = w exists and the infinity of stationary models with 
k > w can be obtained by enlarging the state vector X, and completing the matrices Qk and 
h in the way that they preserve the structures (24) (25) with the same q’ standing flush to 
the right and the first k - w elements of the last row being all zero. Obviously, nonsingular 
linear transformations give other equivalent models of orders k 2 w, but the canonical model 
(24,25) of minimal order w is unique. 

2.2.2. Vertical sweep method. Compute the matrices Qk according to (26) for s = 0 and 
k=1,2 ,.... Generally,fork=1,2 ,..., w all Qk appear in the form (19) and the form of 

Q~+I will become distorted. It indicates that Cs+,+ I is almost singular (C, are rarely singular 
because of noise in y,,), so w is the minimal order of a supposed stationary model. Then make 
horizontal sweep for k = w and s = 1,2, . . . to determine the interval of its existence. If all 
Q,, appear identical, then the model (24,25) exists on the interval beginning at s = 0, and, 
with Q,. = const computed, this model is already identified. If Q,+ will vary for s = I, 2, . . . , 
then on the interval with varying Qw a model of order w does not exist. Start again computing 
Q,fors=l,k=1,2 ,.... Then,ifamodelisnotfound,continuefors=2,k=1,2 ,..., etc. 

2.3. Moving average of observations 

Observations as well as a system itself contain noise, so the conditions (17) and 
correspondent relations are in practice always distorted. Zero mean noise in a measuring 
device can be eliminated by using a moving average of observations 

(27) 

in place of original observations y, (s = 0, 1,2, . . .). It follows from linearity of the model (3), 
(4) that the matrix Q, identified by using Z, in place of y, will correspond to the mean values 
of the observations for sufficiently large number N. However, the initial state cannot be 
identified by placing Z, for y, in (23), so that X, (23) becomes, as before, corrupted by a 
realization of the noise. 

The measure of distortion or deviation from a linear stationary path is given by the value 
of the last element A,,(s) of the matrix D, in (17) (all other elements of D, are zero whatever 
y,$ employed). The value Akk(s) equals exactly -A,, (for r = k) of (8) and gives the current 
deviation from the path of a would-be linear stationary model identified at the moment t,. 

2.4. Is there anything else to identify that can be ident$ed? 

A model identified as above has the canonical form (23-25). What is actually identified 
is the characteristic polynomial 

(Qw - 21) = (- l)“+‘a, - A[(- l)“a, - A[. . .-A(aw, - A)]]. . .] 

=(-l)“+‘(a, +a,ll +..~+awl”-‘+l”) 
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(or the vector q’ = (a,, us,. . . , a,> of its coefficients) corresponding to the part of the 
completely observable subsystem of (3,4) affected by the (actually realized) initial state x,, 
from (3). Its projection X,, dim X0 = w onto the completely observable subspace {M} (5) is 
given by (23) where k* = w is the total dimension of those root subspaces within {M} which 
are affected by x0 in (3). The nonsingular transformation with the matrix T* form (12), 
slightly modified in order to get real vectors instead of each pair of complex conjugate Jordan 
vectors, converts (3,4) into a form with exhibited block-space structure. The additional 
transformation of the blocks actually producing the given set of observations converts the 
corresponding subsystem into the canonical form (23-25). Then it is easily seen there is 
nothing more to identify since the subsystem generating the observations is completely 
identified by (23-25) and all other blocks give just no trace on the observations. 

However, canonical coordinates usually do not coincide with natural (physical) coordi- 
nates and it leads to the situation when the identified canonical model cannot be employed 
directly to control a process by some physical parameters distinct from the coefficients a, 
(i=l,..., w), even in the case when the system is completely observable and the state x,, 
affects all the modes. As an illustration, consider the example of a linear oscillator 

d2x 
m--+kkx =O; t 20, x(0)=x,, 

dx(0) . 
dt2 7 = x0 

y,=y(t,)=x(t,), t,=nAt, n =O, l,..., N; At >O. (29) 

Denoting x1 = x, x2 = dxldt, w2 = k/m, one gets the Cauchy form of the equation (28) 

%[zl]=[_t2 b].[“,:l, or $=Ax*, (30) 

x* = [;;I? x*(o) = [d;;;&] = [;] 
which appears already canonical. The system is completely observable and any real x *(0) # 0 
affects all the modes (since ,? = + oi, i2 = - 1, and eigenvectors are complex conjugate). 

Discrete observations come out as if they were produced by a discrete system of the 
structure 

x,*+, = Fx,*, F=exp(AtA), x$=x*(O), n =O, l,... (31) 

Y, = [1,01x,* (32) 

which corresponds to (28-30) and yields exact sampled data x,* = x*(&J on the trajectories 
since x:+~ = x*(t,+,) = e 4’” + 1x*(0) = eA(‘. +4x*(O) = eAtA eA’“x *(O) = @Ax,*. 

One can easily verify that the matrix F = exp(At . A) of (31) is not in the canonical form 
as the matrix A is. Therefore, identification by the observed data y,, of (29) will identify not 
(31) but a transformed system which has the canonical form (cf. (23-25)) 

(33) 

with a,, a2 computed by (10) or (26) where r = k* = 2. 
However, one needs to identify the parameters m, k, x0, i. of the original system (28), not 

its discrete equivalent (33) producing the same observed data. The reason is not only that 
the state vector X, in (33) has no physical sense but that it is not clear from the values of 
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a,, a, how the changes of yet unknown physical parameters, mass m and rigidity k, may affect 
the oscillations (the period is also unknown). So, if identification aims at prediction of 
observed data, then the procedure is completed upon arrival at (33). But if the aim is 

iden@cation and control of real trajectories, then (33) completes just the first step of the 
research. 

Suppose that the structure of a model (28) is known in advance and it remains to identify 
m, k and the realization of a trajectory. From (28) to (33) one calculates: 

LA = + oi, pe = pF= eA’“A = e*“jA’ = (cos w At + i sin oAt), (i’ = - 1) 

a2=,u,+p2=2cos~At, a,=-p+2=-1. (34) 

The condition a, = - 1 gives the test for validation of the assumed structure (28) and the 

first equality of (34) yields the parameters 

1 a2 2nAf 
0 = G arccos 2 period T = g = 

arccos (a,/2) (35) 

with the structure (28) and w determined; the trajectory is identified by the initial conditions: 

x0 =yo, . xo = & (Y, -Y, ~0s oAtI. (36) 

To avoid the integration of (28) with (36), one can predict the exact sample-data trajectory 
directly from the discrete model (33): 

x(&J = Xh’), n = 0, 1,2, . . , 
(37) 

w=g =&& (X;*’ - i;” cos @At) 
1” 

(which reduces to (36) for n = 0). 
The physical parameters m, k are dynamically indeterminable, but the linear relation 

k=mu*=m(&arccos(F)) 

gives an effective means to control the oscillations. 
This closed form solution was possible because of additional information given in the 

assumed structure of the model (28). In the general case, the final result of model 
identification is a set of nonlinear relations in the space of physical parameters RY 
(y = m2 + m, m = dim x) which single out a variety of possible models equivalent in regard 
to the observations. From that variety one makes a choice on the basis of some additional 
information about the physical, biological, etc., properties of the phenomenon under 
consideration (cf. the Brunhilda case below). 

2.5 Proper discretization 

Poor choice of the time increment At may cause degeneracy of the observations as it does 
the incomplete observability and/or initial state not affecting some of the root subspaces. In 
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the above example, if At = nk/w (k = 1,2, . . .) were chosen, this would reduce the order of 
the canonical model (33) to w = 1 since in this case the observations (as follows from the 
solution of (28)) would appear y, = y, = const for even k and y, = (- 1 )“yO for odd k and, in 
either case, the rank of the matrix (15) is w = 1. So, with such At, the system (28) is not 
identifiable despite its complete observability and x*(O) affecting all the modes. The general 
rule for avoiding degeneracy is that At must not be a multiple of a half period of any of the 
periodic functions contained in a solution. Those periods are not known in advance, so, in 
the case of doubt, one should try several At taking such that brings the maximum rank in 
the matrix (15). Since degenerate increments form a countable set, it can be accomplished 
also by a small change of At. Nondegenerate variations of At affect the transformation from 
the canonical model onto original (physical) model as can be seen from (37). But they do not 
affect the root subspaces (T;‘} in (12) so the structural properties of a model and of the 
set of observations are invariant with respect to the choice of nondegenerate increment At. 

3. CONTINUOUS OBSERVATIONS 

For a continuous system (1) with continuous output (2) available for observation it is 
expedient, especially in complex cases, to identify directly the matrix A of (1) without going 
through the matrix F = exp(Atd) of its discrete representation (3). 

3.1 Criterion in d#erential form 

Differentiating the output y(t) of (2) one comes to the sequence of relations 

y”“(t) = dky/dtk= hAkx(t), k = 0, 1,. . . , r (39) 

which are identical to (7) with the matrix A employed in place of F. This justifies the same 
procedure as in Sec. 2 to determine the existence, order, dynamics, and initial state of a 
suppposed linear stationary model (1) for a plant generating the observed output y(t). One 
employs the sequential derivatives (39) in place of discrete signals y, in the matrices (lo), (15) 
and proceeds with the same procedures. A linear stationary model exists if and only if the 
matrix (15) filled with y(“)(t) has a constant rank w whatever f and k employed. The number 
w is the minimal order of a model (1) and the constant coefficients a,, . . . , a, determined from 
(10) filled with yCk)(t) give its dynamics in the canonical form similar to (23,24). To illustrate 
how it works, we take again the example (28) in which the observed signal is 

v(t) = x(t) = C sin(ot + B), t 2 0; C, w, /I yet unknown. (40) 

Differentiating (40) and putting into (15), one can easily see that the matrix (filled with 
observations) will necessarily have the rank w = 2. So the dynamics of a model is determined 
by the constants a,, a2 given by the relation (cf. (10)): 

Making use of the assumed structure (28) (40), one can see that (41) gives the solution 
a, = -02, a2 = 0 whi c corresponds to the canonical model (cf. (23,24)): h 

g=[_oo’#; z=[;$q, t20. (42) 
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Physical model (28) also has the canonical structure (30), so x*(t) = Z(t) and they coincide 
completely. With known o, the constants C and fi in (40) are determined by the relations: 

/?=Arctan%-or 
Y 

(take IpI <t). 

Because of noisy measurements, sequential derivatives are impractical in computations and 
should be approximated by integrals. We present also another method using the integrated 

output. 

3.2 Criterion in integral form 

Take a set of time intervals t,y = t + At, and compute the values: 

Yo = Y(t)? Y,i = s ,‘I y(z - t) dr, s=l,2,... (43) 

to fill the matrix (15). It can be shown that a linear stationary model exists if and only if this 

matrix has a constant rank w whatever t and At, (At, must be properly chosen, otherwise the 
rank can appear less than w). The coefficients a:, . . . , a,* computed from (10) filled with (43) 

determine the dynamics of a model but not in the canonical form. To obtain an approxi- 
mation to a canonical model, one has to employ in place of (43) the values 

f+Ar, 

Y dT -y(t) = N,@t,h 
1 

. 

N 

2 
= W&W - N&b)1 

At, - At, 
= Nz(At,, At& 

= N,(At,, At2, At3), etc. (44) 

It can be verified, that if (10) is filled with the values (44) and all At + 0 then at += ai 
(i=l,..., w) where a, are the coefficients of a model (1) in the canonical form. 

Another procedure with greater smoothing effect employs, in place of (43), the successively 
integrated output with one common At: 

s t+At 

YO = y(t)> y,@t) = y,_,(~ - t)dr, s = 1,2,. . . 
I 

Using these values, one can obtain an approximation to a canonical model by means of 
a construction similar to (44) in which No and N, remain the same but all following 
functionals are different, for example: 

One can see that this construction as well as (44) present an integral form of the moving 
average of observations. 
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4. DISCUSSION OF THE BRUNHILDA MODEL 

The catenary model studied by Jennrich and Bright [3] was of the form 

which corresponds to the equation 

dx -8, - e,, e,, 0 

dt= 0 - 

0:’ 

6, - 04, 05 I x, x(0) = (2. lo’, 0,O) (45) 
e 42 -6 

y(t) = [l, 0, 01.X = x,(t), t 2 0 

containing unknown parameters 0,, . . . , 0,. With t$.8, # 0 (which is evident by construction 
of the model) the system (4546) is completely observable. There were given the values of 
21 observations measured at different times. We took a set of evenly spaced observations 
measured at times ti = 10, 20, 30, . . . , 90 and computed the least squares fit of the difference 
equation (9) for orders 1, 2, 3, 4 which procedure gave a minimum MSE for the order 3. 
Another set of observations taken at time t, = 10, 30, 50, . . . , 170 yielded the order 4. This 
rules out the question of Wiggins [4] that the simpler two-compartment model might have 
served better and, on the contrary, suggests that the real process might have had a variable 
structure or one of compartments on the interval (90, 1701 might have been functioning as 
a second-order system rather than the first-order one. There were too few observations to 
analyze that in detail. 

Further, assuming a model of order 3 on [lo, 901, one can obtain by (6) exactly three 
(r = m = 3) transcendental equations for di where F = exp(At . A), At = 10, A(8,), h = const 
given by (45,46) and a,, uZ, a3 computed from (10). Those equations in five-dimensional space 
R5 of 0’s do not determine a point but rather a two-dimensional manifold for 8,, 8,, &, t14, 
8, corresponding to the given observations. It leaves two degrees of freedom in B’s and even 
the reasonable demand suggested (but not confirmed) by the authors “that the first two 

compartments exchange at an equal rate, 8, = 0;, would still leave one degree of freedom. 
This explains the result of Wiggins [4] who has obtained different estimates for 6’s using the 
output y*(t) = x3(t) instead of the original observations in the verification scheme: 

(y(t) =x,(t)) = > (6) = > {x,(t) = y*(t)} = > {eI*} # (Q 

In such a situation the results of weighted least-square fit are obviously model-dependent, 
compartment-dependent, even algorithm- and weights-dependent. The knowledge of initial 
state, seemingly useful in augmenting the goodness-of-fit, in reality does not contribute to 
estimation of dynamics (i.e., 19’s). A poor initial state may only add to uncertainty causing 
degeneracy of the observations which, fortunately, is not the case in the Brunhilda model. 

Finally, we have to mention that in order to predict further observations it is not necessary 
to identify 0’s: a canonical model producing y(t) is completely identified by (23) (24). 
However, to study an animal (to cure a sick person), a natural biological model (45) is to 
be identified to understand and control the process. For this task additional information is 
needed to identify all 8’s. Griffiths [5] also points out the need of additional information to 
identify all 8’s. He identifies the coefficients of the characteristic polynomial and of the powers 
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of s in the Laplace transform representation. Thereby it is suggested to use the initial values 
of the first derivatives of x,(t), x*(t) and of the second derivative of x3(t) in (45) which we 

are hesitant to employ. 

5. SOME EXPERIMENTAL RESULTS 

The procedures developed in Section 2 were tested on various models with the observations 
generated on a computer. These experiments revealed the following general features: 

1. The coefficients ai computed by (10) are very sensitive to the noise in observations; 2. The use of 
a moving average (27) brings great improvement in computations; 3. The sum of squares due to errors 
is very sensitive with respect to the order and decreases sharply with the reach of the right order of 

a model; 4. The observations are not equally and uniformly good in time, e.g., they may degenerate 
with a decaying exponent in the solution which may cause an illusion of variable order in the case of 
noisy measurements. 

As an illustration of the dependence of the SSE on the order of a supposed model, we present 
the following figures obtained when computing the least-squares fit of the difference equation 
(9) for the Brunhilda model within time interval [10,90]: 

(order = > 10e3 X MSE): = > (1 = > 8360), (2 = > 690), (3 = > 64), (4 = > 171). 

6. CONCLUSIONS 

The methods and computational procedures developed in this research present an effective 
means to solve the problem of the existence and identification of a linear stationary model 
on the basis of a set of continuous or evenly spaced discrete observations. The order and the 
canonical structure of the minimal model give a complete solution to the problem of 
prediction of further observations. Building a model in natural coordinates usually requires 
certain additional information unless natural coordinates coincide with the canonical ones. 
If the matrix of a model contains more unknown parameters than the dimension of the state 
vector, then the observations identify a set of models equivalent with respect to the output, 
from which set one makes a choice on the basis of some additional information. The 
least-squares fit methods like the one proposed by Jennrich and Bright [3] may converge to 
one of the models depending on a concrete algorithm, weights and an initial guess taken to 
start the computations. A certain level of noise always present in measurements brings in 
some statistical approach (see, e.g., [15-17]), however, the first step in noise elimination is 
simply to take a moving average in place of the separate observations to identify the dynamics 
of a model. 

As concerns structural properties, it is established that there is no one-to-one correspon- 
dence between a model and the signal trajectory. To obtain such a map in canonical form, 
the following four conditions must be satisfied: 

1. the system should be completely observable; 
2. the initial state should affect all the modes; 
3. the time increment At should be properly chosen; 
4. the matrix of a model should contain the number of unknown parameters not greater than the order 
calculated as the rank of the matrix (15) filled by observations. 

This matrix gives the answer on the question of the existence of a linear stationary model, 
and if affirmative, it determines its order and dynamics. The initial state of its canonical 
representation is then given by w successive observations where w is the order of the matrix 
(15) or, which is the same, of the difference equation (9). 
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Computational experiments have shown stability of the algorithm in respect to the 
calculation of the order in the presence of noise. The computation of dynamical coefficients 
a, has proved to be very sensitive to the noise and requires the application of a moving average 
of observations. In the presence of noise one can observe the phenomenon of varying order 
due to degeneracy of observations when they become comparable in magnitude with the 
noise. Distinction should be made between this phenomenon and an order actually varying 
due to the features of a real system. 
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