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We present two examples of actions of non-regular locally compact quantum groups on
their homogeneous spaces. The homogeneous spaces are defined in a way specific to
these examples, but the definitions we use have the advantage of being expressed in
purely C∗-algebraic language. We also discuss continuity of the obtained actions. Finally
we describe in detail a general construction of quantum homogeneous spaces obtained as
quotients by compact quantum subgroups.
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1. Introduction

The main aim of this paper is to present two examples of quantum homogeneous spaces for non-regular quantum
groups. We will construct quotients of the quantum “az + b” and quantum E(2) groups (from [28,19,18,22] respectively)
by their classical subgroups. In both cases our definition of the quantum homogeneous space will be deeply rooted in
the particular form of the C∗-algebras related to these quantum groups. On the other hand, our definitions of quantum
homogeneous spaces will be given in purely C∗-algebraic language, without any use of von Neumann algebras. Let us also
remark that non-regular quantum groups do not fit into the elaborate and powerful framework of [21]. We will prove that
in both cases the action of the quantum group on its homogeneous space is continuous in an appropriate sense. The second
example (presented in Section 4) can also be used as basis of a simple definition of a quantum homogeneous space of
the form G/K, where G is a quantum group and K is a compact quantum subgroup of G. We develop this idea in the
last section. The notion of a quantum subgroup we will use is more restrictive than that of [21]. On the other hand, our
construction works for general bisimplifiable Hopf C∗-algebras, not only for locally compact quantum groups. In particular
we can use universal versions of quantum groups ([9], [20, Section 5]).

We will precede our examples of quantum homogeneous spaces with a brief discussion of actions of classical locally
compact groups on C∗-algebras. We shall provide a description of such actions in language appropriate for generalization to
quantum groups. Continuity of actions is discussed and a definition of a continuous action of a quantum group is proposed
and compared with existing approaches.

The tools used to prove our results will range from the notion of G-product and Lanstad algebra to C∗-algebras gen-
erated by unbounded affiliated elements. The material on crossed products by of C∗-algebras by actions of abelian groups
(including the notion of a G-product and Lanstad algebra) can be found in [12,14,8]. For the notions of multiplier algebra
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of a C∗-algebra, strict topology, morphisms of C∗-algebras and elements affiliated to C∗-algebras we refer to [25,11,26]. Let
us only mention here that by a morphism form a C∗-algebra A to another C∗-algebra B we shall mean a ∗-homomorphism
ϕ form A to the multiplier algebra M(B) of B which is non-degenerate, i.e. one whose image contains an approximate unit
for B . The set of all morphisms from A to B will be denoted by Mor(A, B). In [26] the reader will also find a detailed
exposition of the concept of a C∗-algebra generated by unbounded elements affiliated with it. We will also use some earlier
work on one of our examples from [17] as well as a wide range of results related to the considered quantum groups [23,22,
24,28,19,18].

The definition of a locally compact quantum group is due to Kustermans and Vaes [10], but we will not be making any
use of the Haar weights of the quantum groups under consideration. On the other hand our quantum groups will have a
co-unit. For the theory of compact quantum groups we refer to [27].

Let us briefly describe the contents of the paper. We begin with a section which carefully rephrases the theory of
actions of locally compact groups on C∗-algebras in the language suitable for quantum groups (much like various aspects
of locally compact group actions on locally compact spaces were treated in [6]). There are no new results in that section,
but we feel that some concepts present in the literature require clarification. Let us note that similar (yet different) results
can be found e.g. in [5, Appendix A.3]. At the end of this section we define continuous actions of quantum groups on
C∗-algebras (quantum spaces) and provide a short explanation of the standard problems encountered in construction of
quantum homogeneous spaces. In Section 3 we introduce the quantum “az +b” groups for various values of the deformation
parameter and define the homogeneous space obtained as the quotient by a classical subgroup. This construction was
already performed in [17]. Then we analyze the action of the quantum “az + b” group on its homogeneous space to show
that it is continuous. The example from Section 4 is very similar in spirit, but the methods of analyzing this example are
significantly different.

Motivated by the example from Section 4, in the last section we generalize known construction of a quotient quantum
homogeneous space for compact quantum group (cf. [15,16]) to the situation where the group is no longer compact, but
the subgroup is. We show that the action of the original quantum group on the resulting quantum homogeneous space is
continuous.

2. Continuity of classical actions

Let (B, G,α) be a C∗-dynamical system. Then for each x ∈ B we have the function

α(x) : G � t �→ αt(x) ∈ B. (2.1)

This function has constant norm and is norm-continuous by assumption. In particular it does not vanish at infinity on G
unless x = 0. It follows that α(x) /∈ C0(G) ⊗ B for non-zero x. However, it is easy to see that α is a ∗-homomorphism from
B to M(C0(G) ⊗ B), where the last algebra is naturally identified with the space of all norm-bounded functions G → M(B)

continuous in the strict topology.
This raises the question how to describe the special property that for each x ∈ B the function α(x) has its values in B

(not merely in M(B)) and is norm-continuous (not only strictly continuous). The well-known answer is that these properties
are equivalent to the fact that for each f ∈ C0(G) the element

( f ⊗ 1)α(x) ∈ C0(G) ⊗ B

(consider a function f constant and non-zero on a neighborhood of a given point t ∈ G).
Let us note here the fact which is well known, but difficult to find in the literature:

Proposition 2.1. Let (B, G,α) be a C∗-dynamical system and for each x ∈ B let α(x) be defined by (2.1). Then the linear span of the
set {

( f ⊗ 1)α(x)
∣∣ f ∈ C0(G), x ∈ B

}
is dense in C0(G) ⊗ B.

We will give a very short and easy proof of this fact once appropriate structure on C0(G) has been defined (in the
proof of Proposition 2.3). Nevertheless we want to include an elementary proof of Proposition 2.1 which does not use the
additional structure of C0(G).

Proof of Proposition 2.1. We need to approximate any element of C0(G) ⊗ B by functions of a specific form. It is enough
to approximate elements from a dense subspace Cc(G, B) ⊂ C0(G, B) ∼= C0(G) ⊗ B . Therefore let F be a fixed continuous
function G → B with compact support. For t ∈ supp F let

Ut = {
s ∈ G

∣∣ ∥∥F (s) − αst−1

(
F (t)

)∥∥ < ε
}
.
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By compactness of supp F there exist t1, . . . , tn such that supp F ⊂ ⋃n
i=1 Uti . Let (χi)i=1,...,n be a partition of unity subordi-

nated to the covering (Uti )i=1,...,n of supp F and define

X(t) =
n∑

j=1

χ j(t)αt
(
αt−1

j

(
F (t j)

))
.

In other words

X =
n∑

j=1

(χ j ⊗ 1)α
(
αt−1

j

(
F (t j)

))
.

Take now t ∈ supp F . We have

∥∥X(t) − F (t)
∥∥ =

∥∥∥∥∥
n∑

j=1

χ j(t)αtt−1
j

(
F (t j)

) − F (t)

∥∥∥∥∥
=

∥∥∥∥∥
n∑

j=1

χ j(t)αtt−1
j

(
F (t j)

) −
n∑

j=1

χ j(t)F (t)

∥∥∥∥∥
�

n∑
j=1

χ j(t)
∥∥αtt−1

j

(
F (t j)

) − F (t)
∥∥.

Now the j-th term of the last sum is non-zero only if t ∈ Ut j . It follows that each term of this sum is either zero or less
than χ j(t)ε.

We have thus shown that for each i we have supt∈Uti
‖X(t)− F (t)‖ � ε. On the other hand, outside

⋃n
i=1 Uti both X and

F are zero. �
An immediate corollary of Proposition 2.1 is that the linear span of{

( f ⊗ y)α(x)
∣∣ f ∈ C0(G), x, y ∈ B

}
is dense in C0(G) ⊗ B . Indeed, if f ⊗ y is a simple tensor in C0(G) ⊗ B then we can approximate it by finite sums of the
form ∑

( f i ⊗ 1)α(xi).

Now if (eλ) is a (bounded) approximate unit for B then, by the diagonal argument, we can approximate f ⊗ y by sums of
the form

∑
( f i ⊗ eλ)α(xi) because∥∥∥∑
( f i ⊗ eλ)α(xi) − g ⊗ y

∥∥∥ �
∥∥∥(1 ⊗ eλ)

(∑
( f i ⊗ 1)α(xi) − g ⊗ y

)∥∥∥ + ∥∥g ⊗ (eλ y − y)
∥∥.

Since the approximation works for simple tensors, it also works for general elements of C0(G) ⊗ B .

Corollary 2.2. Let (B, G,α) be a C∗-dynamical system and for each x ∈ B let α(x) be defined by (2.1). Then α ∈ Mor(B, C0(G) ⊗ B).

Let us note here one other density condition appearing in the literature. Quite clearly the linear span of{ ∫
ϕ(t)αt(x)dt

∣∣∣ ϕ ∈ L1(G), x ∈ B

}
is dense in B (any x ∈ B is the limit of such integrals with δ-like net of integrable functions). In order to rewrite this
condition in a more convenient way let us introduce for each ϕ ∈ L1(G) the continuous functional

ωϕ : C0(G) � f �→
∫

ϕ(t) f (t)dt.

Then we see that the linear span of{
(ωϕ ⊗ id)α(x)

∣∣ ϕ ∈ L1(G), x ∈ B
}

is dense in B .
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Let us introduce the standard comultiplication 	 ∈ Mor(C0(G),C0(G) ⊗ C0(G)):

	( f )(s, t) = f (st). (2.2)

Then one easily checks that (	 ⊗ id) ◦ α = (id ⊗ α) ◦ α.
Clearly one can also see that (ε ⊗ id) ◦ α = id, where ε is the evaluation functional

C0(G) � f �→ f (e) ∈ C.

We will now state and prove a simple proposition dealing with various conditions defining continuity of a group action
in the language adaptable to the more general context of quantum groups.

Proposition 2.3. Let G be a locally compact group and let B be a C∗-algebra. Let

α ∈ Mor
(

B, C0(G) ⊗ B
)

be such that

• with 	 defined by (2.2) we have

(	 ⊗ id) ◦ α = (id ⊗ α) ◦ α, (2.3)

• for any f ∈ C0(G) and x ∈ B we have

( f ⊗ 1)α(x) ∈ C0(G) ⊗ B.

Then the following conditions are equivalent

(1) (ε ⊗ id) ◦ α = id, where ε is the evaluation at the neutral element of G,
(2) kerα = {0},
(3) the linear span of{

( f ⊗ 1)α(x)
∣∣ f ∈ C0(G), x ∈ B

}
(2.4)

is dense in C0(G) ⊗ B,
(4) the linear span of{

(ωϕ ⊗ id)α(x)
∣∣ ϕ ∈ L1(G), x ∈ B

}
(2.5)

is dense in B.

Moreover, if the equivalent conditions (1)–(4) are satisfied then there exists a continuous action α of G on B such that α is defined
by (2.1).

Proof. Let us begin with defining a family (αt)t∈G of maps B → B by

αt(x) = α(x)(t) = (δt ⊗ id)α(x),

where δt is the evaluation functional C0(G) � f �→ f (t). One immediately find that each αt is an endomorphism of B and
that for each x ∈ B the mapping G � t �→ αt(x) is norm continuous. Moreover, it follows from (2.3) that

αt ◦ αs = αts

for all t, s ∈ G . In particular αe is an idempotent mapping B → B which commutes with all αt ’s. The range of all αt ’s is
equal to the range of αe and their kernels are all equal to kerαe .

It follows that (1) ⇔ (2). Indeed, (1) clearly implies (2), but (2) means that for any non-zero x ∈ B the function t �→ αt(x)
is non-zero. Thus if x ∈ kerαe then αt(x) = 0 for all t and so x = 0. In other words, αe is an idempotent with zero kernel,
so αe = id. This is exactly (1).

In particular if (1) is satisfied then all αt ’s are automorphisms and α becomes a continuous action of G on B . To see that
this implies (3) without using Proposition 2.1 note that the mapping

C0(G) ⊗alg B � ( f ⊗ x) �→ ( f ⊗ 1)α(x) ∈ C0(G) ⊗ B (2.6)

extends to an automorphism of C0(G) ⊗ B . Indeed, the map (2.6) is bounded and multiplicative (because C0(G) is commu-
tative). The inverse mapping is given by
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( f ⊗ x) �→ ( f ⊗ 1)(id ⊗ κ)
(
α(x)

)
,

where κ is the automorphism of C0(G) given by κ( f )(t) = f (t−1). Therefore the linear span of (2.4) is dense in C0(G) ⊗ B
as the image of C0(G) ⊗alg B under an automorphism of C0(G) ⊗ B .

The fact that (3) ⇒ (4) is standard: approximate a simple tensor f ⊗ y ∈ C0(G) ⊗ B by sums of the form∑
( f i ⊗ 1)α(xi).

Then take ϕ ∈ L1(G) such that ωϕ( f ) = 1. Then the elements∑
(ωϕ f i ⊗ id)α(xi)

approximate y and consequently the linear span of (2.5) is dense in B .
Finally let us see that (4) implies (1). If (1) is not satisfied then we know that the ranges of all αt ’s are equal to the

range of αe which is strictly contained in B and closed (as the image of a C∗-algebra under a ∗-homomorphism). Then it
follows that for any ϕ ∈ L1(G) the element

(ωϕ ⊗ id)α(x) =
∫

ϕ(t)αt(x)dt

also lies in the range of αe and we see that (4) is not satisfied. �
In what follows we will deal with quantum groups of the form G = (A,	) with a co-unit ε . In Sections 3 and 4 these

will be the quantum “az + b”-group [28,19] and the quantum E(2) group [22]. Both are examples of locally compact quantum
groups in the sense of Kustermans and Vaes [10]. The definition of a locally compact quantum group involves considering
weights on C∗-algebras and is therefore technically complicated. One of the most important features of our approach is
that we do not make use of the sophisticated structure of the quantum groups under consideration. In fact, as shown in
Section 5, the most important features of the pair (A,	) are:

• coassociativity of 	 ∈ Mor(A, A ⊗ A): (	 ⊗ id) ◦ 	 = (id ⊗ 	) ◦ 	,
• the cancellation properties: the subspaces

span
{
	(a)

(
1 ⊗ a′) ∣∣ a,a′ ∈ A

}
and span

{
(a ⊗ 1)	

(
a′) ∣∣ a,a′ ∈ A

}
are dense subsets of A ⊗ A.

In both examples the quantum group G = (A,	) has a co-unit, i.e. a character ε ∈ Mor(A,C) such that (ε ⊗ id) ◦ 	 =
(id ⊗ ε) ◦ 	 = id. The quantum group G = (A,	) is compact if A is a unital C∗-algebra.

Motivated by Proposition 2.3, we will say that G acts continuously on a C∗-algebra B if there is a morphism α ∈
Mor(B, A ⊗ B) such that

• (	 ⊗ id) ◦ α = (id ⊗ α) ◦ α,
• for any c ∈ A and x ∈ B we have (c ⊗ 1)α(x) ∈ A ⊗ B ,
• (ε ⊗ id) ◦ α = id.

In the literature the last condition is often replaced by either requirement that the linear span of{
(c ⊗ 1)α(x)

∣∣ c ∈ A, x ∈ B
}

be dense in A ⊗ B or that{
(ω ⊗ id)α(x)

∣∣ ω ∈ A∗, x ∈ B
}

be dense in B (where A∗ is the space of normal linear functionals on A, cf. [20]). In [3, Proposition 5.8] it is shown that
these conditions are equivalent for regular locally compact quantum groups and that the second condition is strictly weaker
for semi-regular, but non-regular locally compact quantum groups.

If α ∈ Mor(B, A ⊗ B) is such that (	⊗ id) ◦α = (id ⊗α) ◦α and kerα = {0} then the established terminology is that α is
a reduced action of G on B (see e.g. [21,7]). As Proposition 2.3 shows, in case when G is a classical locally compact group,
all these conditions are equivalent.

Let G = (A,	) and K = (C,	C ) be quantum groups. We say that a morphism π ∈ Mor(A, C) identifies K as a closed
quantum subgroup of G if π is a surjective ∗-homomorphism A → C and (π ⊗ π) ◦ 	 = 	C ◦ π . As we mentioned in
Section 1, such a definition of a quantum subgroup is more restrictive than that of [21]. In the following sections we will
give examples of situations where this notion of quantum subgroup applies.
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Let us explain the difficulty which we come across as we try to generalize the standard construction of a quotient quan-
tum homogeneous space from [16]. Let us assume that the C∗-algebras A and B are commutative, so that A = C0(G) and
C = C0(K ), where G is a locally compact group and K is a closed subgroup of G . In this situation π is the restriction
morphism A � f �→ f |K ∈ M(C). The range rarely coincides with C . In the language of noncommutative topology the homo-
geneous space G/K is described by the C∗-algebra B = C0(G/K ). It is a non-trivial question how to identify this C∗-algebra
as a subalgebra of M(A) = Cb(G). Clearly any element x ∈ B should satisfy

(id ⊗ π)	(x) = x ⊗ 1, (2.7)

but this is certainly not enough. In fact all elements of M(B) also satisfy this condition. In the examples of Sections 3 and 4
G = (A,	) will be a non-regular locally compact quantum group with a subgroup K = (C,	C ) (which in both cases will
be a classical group) and we will produce a candidate for B . It will be a C∗-subalgebra of M(B) consisting of elements x
satisfying (2.7) and some additional conditions tailored to these specific examples. The next question which arises naturally
after the definition of a homogeneous space is whether the restriction of 	 to B actually defines an action of G on G/K.
We will have to check that α = 	|B is a morphism from B to A ⊗ B and that algebraic conditions of a (co)action are
satisfied. More importantly we would like to show that the action α is continuous. None of these facts is totally obvious
and we prove them by application of the theory of C∗-algebras generated by unbounded elements [26].

3. The action of the quantum “az + b” group on its homogeneous space

The construction of the quantum “az + b” group starts with choosing the value of the deformation parameter q. There
are at least three possibilities to choose q. They are described in detail in [18]. One of these possibilities is to take
q ∈ ]0,1[ (cf. [28, Appendix A]). It is not important for our purposes to dwell on this choice since the aspects of quan-
tum “az + b” groups we shall need are the same regardless of the value of the deformation parameter. All details can be
found in [28,19,18].

We let Γ be the subgroup of the multiplicative group C \ {0} generated by q and {qit | t ∈ R} with an appropriate fixed
choice of logarithm of q. Appropriate choice of q ensures either of the following two possibilities: Γ ∼= T×Z or Γ ∼= R×ZN

for some N . In both cases the abelian locally compact group Γ is isomorphic to its Pontryagin dual Γ̂ . We fix one such
isomorphism by noticing that there exists a unique continuous function χ : Γ × Γ → T such that χ is a bicharacter (i.e. it
is multiplicative in both variables) and

χ
(
γ ,γ ′) = χ

(
γ ′, γ

)
,

χ
(
γ ,qit) = |γ |it,

χ(γ ,q) = γ
|γ |

for all γ ,γ ′ ∈ Γ and t ∈ R (for the proof cf. [19, Proposition 2.1]). The isomorphism Θ : Γ → Γ̂ is now given by
(Θ(γ ))(γ ′) = χ(γ ,γ ′) for all γ ,γ ′ ∈ Γ .

Now let Γ be the closure of Γ in C. The set Γ is not compact (because |q−1| > 1), so the identity function z �→ z is
unbounded and does not belong to C0(Γ ) nor to M(C0(Γ )). However it is an element affiliated with the C∗-algebra C0(Γ )

[25, Example 2]. This element is called the canonical generator of C0(Γ ) (cf. also [26, Section 3, Example 2]).
The group Γ acts on Γ by multiplication of complex numbers. Clearly this defines an action β of Γ on C0(Γ ) via

(βγ ( f ))(γ ′) = f (γ γ ′). We define A to be the associated crossed product C∗-algebra:

A = C0(Γ ) �β Γ.

The canonical inclusion C0(Γ ) ↪→ M(A) is a morphism form C0(Γ ) to A. Recall from [25, Theorem 1.2] that morphisms
extend to sets of unbounded elements. Therefore we can define an affiliated element bηA as the image of the canonical
generator of C0(Γ ) in A.

By [28, Section 2] and [19, Section 6] (the actual reference depends on the chosen value of q, cf. [18]) there exists a
unique element a affiliated with A such that a−1 is also affiliated with A, Sp a ⊂ Γ and for all γ ∈ Γ we have

χ(a, γ ) = Uγ ,

where (Uγ )γ ∈Γ is the canonical family of unitary elements of M(A) implementing the action β on C0(Γ ) ⊂ M(A).
By the results of [28,19] there exists a unique 	 ∈ Mor(A, A ⊗ A) such that

	(a) = a ⊗ a, 	(b) = a ⊗ b +̇ b ⊗ 1

and G = (A,	) is a quantum group (in fact a non-regular locally compact quantum group cf. also [29]).
Let us first see that Γ is a subgroup of G in the sense described at the end of Section 2, i.e. there exists a morphism

π ∈ Mor(A,C0(Γ )) such that
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	 ◦ π = (π ⊗ π) ◦ 	

and π is a surjection onto C0(Γ ). Indeed, since the C∗-algebra A is generated by unbounded elements a, a−1 and b affiliated
with it (cf. [28,19,18]), it is enough to define π on the generators by putting π(b) = 0 and letting π(a) be the canonical
generator of C0(Γ ) (the identity function Γ � γ �→ γ ∈ C).

Let us remark here that in [17] it is the Pontryagin dual of Γ which is identified with a subgroup of G which we are
describing. This is correct since Γ ∼= Γ̂ , but the distinction has no bearing on our construction of quantum homogeneous
space, so we will stick with the choice of Γ as a subgroup of G.

We shall now define a quantum homogeneous space G/Γ . By definition the C∗-algebra B of continuous functions van-
ishing at infinity on G/Γ is the set of those x ∈ M(A) for which

(1) (id ⊗ π)	(x) = x ⊗ 1,
(2) for any y ∈ C∗(Γ ) ⊂ M(A) the element yx ∈ A,
(3) the mapping Γ � γ �→ χ(a, γ )∗xχ(a, γ ) is continuous.

Condition (1) selects elements of M(A) which are “constant along the fibers” of the fibration G → G/Γ . However, they
cannot correspond to functions vanishing at infinity on G/Γ (e.g. the unit 1 satisfies this condition). Therefore condition
(2) is introduced to select those “continuous bounded functions on G” which not only are constant on cosets of Γ , but in
addition vanish at infinity “in the direction transversal to the cosets”. Condition (3) does not have a classical analogue. This
definition of the algebra of “continuous functions vanishing at infinity on G/Γ ” was first introduced in [17].

It is not difficult to check that B coincides with the set{
f (b)

∣∣ f ∈ C0(Γ )
} ⊂ M(A).

This is because conditions (1)–(3) are really the Lanstad conditions for the Γ -product structure on A = C0(Γ ) �β Γ

(cf. [12,14]). In particular B is isomorphic to C0(Γ ), so that the homogeneous space G/Γ is a classical space, i.e. one
described by a commutative C∗-algebra.

It was pointed out already in [17] that the restriction of 	 to B ⊂ M(A) defines a morphism α ∈ Mor(B, A ⊗ B) and that

(	 ⊗ id) ◦ α = (id ⊗ α) ◦ α.

Moreover one can easily see that (ε ⊗ id) ◦ α = id, where ε is the co-unit of G defined by ε(a) = 1, ε(b) = 0. Therefore, in
order to say that the action of G on the homogeneous space G/Γ is continuous we only need to prove the following:

Theorem 3.1. Let G = (A,	) be the quantum “az + b” group and let B ⊂ M(A) be the C∗-algebra of functions vanishing at infinity
on the quantum homogeneous space G/Γ . Let α ∈ Mor(B, A ⊗ B) be the morphism defined above. Then for any c ∈ A and any x ∈ B
the element

(c ⊗ 1)α(x) ∈ A ⊗ B. (3.1)

Proof. We shall identify B with C0(Γ ) and A ⊗ B with A ⊗ C0(Γ ) ∼= C0(Γ , A). The element bηB corresponds to the function
Γ � z �→ z ∈ C and α(b) to

Γ � z �→ (az +̇ b)ηA

(cf. [26, Formula 2.6]).
It follows that for any f ∈ C0(Γ ) the image of f (b) under α is identified with the element

Γ � z �→ f (az +̇ b)

of Cstrict
b (Γ , M(A)) (the space of functions on Γ with values in M(A) which are continuous in the strict topology, cf. [26,25]).

Therefore with x = f (b) the element (3.1) corresponds to the function

Γ � z �→ cf (az +̇ b)

which is an element of Cb(Γ , A). We want to show that this is in fact an element of C0(Γ , A) = C0(Γ ) ⊗ A.
According to results [23,28,19] (again the reference depends on the choice of q) there is a continuous function Fq : Γ → T

such that az +̇ b = Fq(z−1ba−1)∗azFq(z−1ba−1), so that

f (az +̇ b) = Fq
(
z−1ba−1)∗

f (az)Fq
(
z−1ba−1). (3.2)

Our aim is to show that for any fixed c ∈ A the norm of

cFq
(
z−1ba−1)∗

f (az)Fq
(
z−1ba−1)
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tends to 0 as z goes to ∞ of Γ . Clearly this norm is equal to the norm of

cFq
(
z−1ba−1)∗

f (az).

Since ba−1ηA, it is known (see e.g. [28, Theorem 5.1]) that Fq(z−1ba−1) tends to 1 strictly in M(A) az z → ∞ (note that
Fq(0) = 1). Therefore for any ε > 0 there exists a constant Rε such that∥∥cFq

(
z−1ba−1)∗ − c

∥∥ < ε,

for all z ∈ Γ with |z| > Rε . Thus the norm∥∥cFq
(
z−1ba−1)∗

f (az)
∥∥ �

∥∥cf (az)
∥∥ + ∥∥(

cFq
(
z−1ba−1)∗ − c

)
f (az)

∥∥ <
∥∥cf (az)

∥∥ + ε‖ f ‖.
To see that the norm of cf (az) goes to zero as z → ∞ we can assume that f has compact support and that c is of the form

c = f̃ (b)g(a)

for some f̃ ∈ C0(Γ ) and g ∈ C0(Γ ) (the set of such elements is linearly dense in A). Then

cf (za) = f̃ (b)Gz(a),

where Gz(z′) = g(z′) f (zz′). Since g vanishes at 0, it is easy to see that ‖Gz‖ −−−−→z→∞ 0 and it follows that ‖cf (za)‖ < ε for
sufficiently large |z|. �
4. The action of the quantum E(2) group on its homogeneous space

For the description of the quantum E(2) group we will fix a Hilbert space H with an orthonormal basis (ei, j)i, j∈Z . We
will change our notation slightly in order to be in agreement with conventions established in the literature [22,24]. Let
q ∈ ]0,1[ be a parameter and (as in Section 3) let Γ be the subgroup of C \ {0} generated by q and {qit | t ∈ R}. In [22] this
set is denoted by C

q . As before we let Γ be the closure of Γ in C.
We will now define two operators on H. We let v be the unitary operator defined uniquely by vei, j = ei−1, j for i, j ∈ Z

and let n be the closed linear operator on H such that the linear span of the orthonormal basis (ei, j)i, j∈Z is a core of n and
nei, j = qiei, j+1 for all i, j ∈ Z. Then n is a normal operator with Spn ⊂ Γ . We define A as the closure of the set of finite
linear combinations∑

fl(n)vl, (4.1)

where fl ∈ C0(Γ ) for all l ∈ Z. With this definition A is a non-degenerate C∗-subalgebra of B(H) isomorphic to C0(Γ ) �β Z,
where β is the natural action by multiplication by q (cf. [22]). Moreover v ∈ M(A) and nηA and A is generated by n and v
[26, Example 4].

It is shown in [22] that there exists a unique 	 ∈ Mor(A, A ⊗ A) such that

	(v) = v ⊗ v, 	(n) = v ⊗ n +̇ n ⊗ v∗

and G = (A,	) is a non-regular locally compact quantum group [1] called the quantum E(2) group.
The classical group T is a subgroup of G, i.e. we have a quantum group morphism π ∈ Mor(A, C(T)) defined uniquely

by putting π(n) = 0 and letting π(v) be the canonical unitary generator of C(T). We wish to describe the quantum homo-
geneous space G/T.

To that end let us define structure of a Z-product on A different from the standard one (arising from the fact that A is
the crossed product of C0(Γ ) by Z). We define a representation

V : Z � n �→ Vn = vn ∈ M(A)

and action of T on A by automorphisms (β̃μ)μ∈T such that

β̃μ(v) = μv, β̃μ(n) = μ−1n

for all μ ∈ T. The triple (A, V , β̃) is a Z-product. This Z-product structure on A is not a “twist” of the standard Z-product
structure on A as defined in [8], but let us note that if we denote by β̂ the action of T on A dual to β then for each μ ∈ T.

β̃μ(y) = Uμβ̂μ(y)U∗
μ,

where Uμ is the unitary operator such that Uμei, j = μ− jei, j .
Following the example from Section 3 we define the C∗-algebra of B of continuous functions vanishing at infinity on

G/T as the set of those x ∈ M(A)
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(1) (id ⊗ π)	(x) = x ⊗ 1,
(2) for any y ∈ C∗(Z) ⊂ M(A) the element yx ∈ A.

The above conditions are, as in Section 3, precisely the Lanstad conditions for the Z-product structure we have defined
(in particular B really is a C∗-algebra). Condition (1) is exactly the condition of being β̃-invariant, while condition (2) says
that the “function” x vanishes at infinity in the direction transversal to that of the subgroup T. In fact condition (2) is
equivalent to demanding that x ∈ A (because C∗(Z) is unital). The third Lanstad condition (i.e. the continuity condition
corresponding to condition (3) from Section 3) is empty because Z is a discrete group.

Before proceeding let us define a certain C∗-algebra which will turn out to be the algebra of continuous functions
vanishing at infinity on G/T. Let C0(Z ∪ {+∞}) be the C∗-algebra of sequences (xn)n∈Z for which limn→−∞ xn = 0 and
limn→+∞ xn exists and is finite. We let C be the crossed product C = C0(Z ∪ {+∞}) � Z, where the action of Z is by
translation. The C∗-algebra C is an extension of K by C(T). More precisely we have

C ∼=
{[

x y
z u

] ∣∣∣ x ∈ T , y, z, u ∈ K
}

(where T is the Toeplitz algebra) and the extension is

0 K ∼= M2(K) C
ρ

C(T) 0

with ρ sending a matrix
[ x y

z u

]
to the symbol of x.

Proposition 4.1. Let B be the algebra of continuous functions vanishing at infinity on G/T. Then

(1) The C∗-algebra B is the closure of the set of finite sums of the form∑
fk(n)vk (4.2)

where for each k ∈ Z the function fk ∈ C0(Γ ) is such that

fk(μz) = μk fk(z)

for all z ∈ Γ and μ ∈ T.
(2) The operator vn is affiliated with B.
(3) B is generated by vn.
(4) B is isomorphic to C.

Proof. We shall first prove point (1). Let B0 be the closure of the set of finite sums described in statement (1). Since each
term fk(n)vn is invariant under β̃ and is already contained in A (as opposed to M(A)) we have B0 ⊂ B . Moreover B0 is
invariant under conjugation with v . Finally let us note that

C∗(Z)B0C∗(Z) (4.3)

is dense in A (as before, we identify C∗(Z) with the C∗-subalgebra of M(A) generated by v). This is because the functions fk
appearing in (4.2) are trigonometric monomials along the individual circles of Γ . Therefore we can uniformly approximate
on each circle sufficiently regular functions (e.g. twice differentiable) and those are dense in all continuous functions on the
circle. This can be done on each circle separately. As a result all elements of the form (4.1) lie in the closure of (4.3). By
[8, Lemma 2.6] B0 = B .

Now we shall deal with points (2)–(4). The operator vn is affiliated with B . This is because the z-transform of vn clearly
belongs to B0 and the element 1− z∗

vnzvn = (1+n∗n)−1 is a strictly positive element of B (cf. [26, Section 1]). Let us denote
by X the operator vn and let X = U |X | be the polar decomposition of X . We have U ei, j = ei−1, j+1 and |X |ei, j = qiei, j . One
easily finds that for fk ∈ C0(Γ ) such that fk(μz) = μk fk(z) we have

fk(n)vk = fk
(|X |)Uk. (4.4)

A moment of reflection shows now that B ∼= C and point (4) follows.
Let ρ be a representation of B on a Hilbert space L. Then ρ(vn) is a closed operator on L. Moreover by (4.4) the

image under ρ of any element x ∈ B0 is determined by the polar decomposition of ρ(vn). This means that vn separates
representations of B and it follows that B is generated by vn by [26, Theorem 3.3], since (1 + (vn)∗(vn))−1 ∈ B . �

Before proceeding let us emphasize the fact that B ⊂ A. Moreover since B ⊂ A we have that

B = {
x ∈ A

∣∣ β̃μ(x) = x for all μ ∈ T
}

= {
x ∈ A

∣∣ (id ⊗ π)	(x) = x ⊗ 1
}
.



P.M. Sołtan / J. Math. Anal. Appl. 372 (2010) 224–236 233
We also have

Lemma 4.2. A ⊗ B = {X ∈ A ⊗ A | (id ⊗ β̃μ)(X) = X for all μ ∈ T}.

Proof. The inclusion “⊂” is obvious. For the converse one let us take X ∈ A ⊗ A such that (id ⊗ β̃μ)(X) = X for all μ ∈ T.
X is a limit of finite sums of simple tensors:

X = lim
k→∞

Nk∑
i=1

a(k)
i ⊗ b(k)

i .

Let dμ be the normalized Haar measure on T. We have

X =
∫

(id ⊗ β̃μ)(X)dμ = lim
k→∞

Nk∑
i=1

a(k)
i ⊗

∫
β̃μ

(
b(k)

i

)
dμ.

Clearly the elements c(k)
i = ∫

β̃μ(b(k)
i )dμ are β̃-invariant, so that they belong to B . It follows that X ∈ A ⊗ B . �

Now let us describe the action of G on its homogeneous space G/T. The image of vnηA under 	 is

v2 ⊗ vn +̇ vn ⊗ 1.

By [30, Theorem 6.1] and [23, Theorem 5.1] this element is affiliated with A ⊗ B . Since vn generates B , we see that the map
α = 	|B is a morphism form B to A ⊗ B . Clearly we have

(	 ⊗ id) ◦ α = (id ⊗ α) ◦ α

and (ε ⊗ id) ◦ α = id, where ε is the co-unit of G (defined by ε(v) = 1 and ε(n) = 0).
Since B ⊂ A we have α(B) ⊂ A ⊗ A by [24, Formula (57)]. Note also that

(id ⊗ β̃μ) ◦ 	 = 	 ◦ β̃μ. (4.5)

In view of Lemma 4.2, this implies that in fact α(x) ∈ A ⊗ B for any x ∈ B . In particular for any c ∈ A and x ∈ B we have
(c ⊗ 1)α(x) ∈ A ⊗ B . Thus we obtain

Corollary 4.3. α ∈ Mor(B, A ⊗ B) is a continuous action of G on G/T.

Remark 4.4. Let us also note that the set of all elements (c ⊗ 1)α(x) with c ∈ A and x ∈ B is not only contained (as
shown above), but also linearly dense in A ⊗ B . Indeed if we denote by E the conditional expectation A � c �→ ∫

β̃μ dμ ∈ B
used in the proof of Lemma 4.2 then it follows from (4.5) that (id ⊗ E) ◦ 	 = 	 ◦ E . Using the fact that the span of
{(a ⊗ 1)	(b) | a,b ∈ A} is dense in A ⊗ A we see that

span
{
(c ⊗ 1)α(x)

∣∣ c ∈ A, x ∈ B
} = span

{
(c ⊗ 1)	(x)

∣∣ c ∈ A, x ∈ B
}

= span
{
(c ⊗ 1)	

(
E(d)

) ∣∣ c,d ∈ A
}

= span
{
(c ⊗ 1)(id ⊗ E)

(
	(d)

) ∣∣ c,d ∈ A
}

= span
{
(id ⊗ E)

(
(c ⊗ 1)	(d)

) ∣∣ c,d ∈ A
}

is dense in A ⊗ B (cf. Lemma 4.2).

5. Quotients by compact subgroups

A pair G = (A,	) consisting of a C∗-algebra A and a coassociative 	 ∈ Mor(A, A ⊗ A) such that

span
{
	(a)

(
1 ⊗ a′) ∣∣ a,a′ ∈ A

} = A ⊗ A, (5.1a)

span
{
(a ⊗ 1)	

(
a′) ∣∣ a,a′ ∈ A

} = A ⊗ A, (5.1b)

is usually called a bisimplifiable Hopf C∗-algebra (see e.g. [2]), while in [13] such objects are called “proper C∗-bialgebras
with cancellation property”. We will stick to the former terminology.

This section is devoted to the proof of the next theorem which is a direct generalization of the construction in
[15, Section 6], [16, Section 1] (cf. also [4]) to the situation where the original quantum group (or Hopf C∗-algebra) G is
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not compact. We include the assumption that G possesses a co-unit in order to fit the scheme of earlier sections. In case G

does not have a co-unit the all statements of Theorem 5.1 (except (3)) are still true.
Note also that many of the results of Section 4 are in fact consequences of Theorem 5.1, but the proofs given in Section 4

are different and independent of the next result.

Theorem 5.1. Let G = (A,	) be a bisimplifiable Hopf C∗-algebra with a co-unit ε and let K = (C,	C ) be a compact quantum group.
Let π be a ∗-homomorphism A → C which is surjective and satisfies

(π ⊗ π) ◦ 	 = 	C ◦ π.

Let B = {x ∈ A | (id ⊗ π)	(x) = x ⊗ 1}. Then

(1) B is a non-degenerate C∗-subalgebra of A,
(2) the map α = 	|B has values in M(A ⊗ B) and belongs to Mor(A, A ⊗ B),
(3) (ε ⊗ id) ◦ α = id,
(4) for any b ∈ B and a ∈ A we have (a ⊗ 1)α(b) ∈ A ⊗ B.

Proof. Denote γ = (id ⊗ π)	 ∈ Mor(A, A ⊗ C). We note the identities

(γ ⊗ id) ◦ γ = (id ⊗ 	C ) ◦ γ , (5.2a)

(	 ⊗ id) ◦ γ = (id ⊗ γ ) ◦ 	 (5.2b)

which follow directly form the coassociativity of 	. Next we note that

span
{
γ (a)(1 ⊗ c)

∣∣ a ∈ A, c ∈ C
} = A ⊗ C, (5.3a)

span
{
(a ⊗ 1)γ

(
a′) ∣∣ a,a′ ∈ A

} = A ⊗ C (5.3b)

(in particular both sets on the left-hand side are contained in A ⊗ C ). Both (5.3a) and (5.3b) follow from (5.1) by the
surjectivity of π . If K has a co-unit then it can be shown that ε = εC ◦ π and then (id ⊗ εC ) ◦ γ = id. This means that γ
defines a continuous (right) action of K on A.

Let h be the Haar measure of K and let

E : A � a �→ (id ⊗ h)γ (a).

Here we use the strictly continuous extension of (id ⊗ h) to M(A ⊗ C). By (5.3a) E has values in A. Indeed we have that
h = vh′ for some h′ ∈ C∗ and v ∈ C , so that

(id ⊗ h)γ (a) = (
id ⊗ h′)(γ (a)(1 ⊗ v)

)
is an element of A. Moreover E2 = E because

E2(a) = (id ⊗ h ⊗ h)
(
(γ ⊗ id)γ (a)

)
= (id ⊗ h ⊗ h)

(
(id ⊗ 	C )γ (a)

)
= (id ⊗ h)γ (a) = E(a).

In the above calculation we must remember that we are dealing with extensions of strictly continuous maps to multiplier
algebras. For example the identity (h ⊗ h) ◦ 	C = h follows from the definition of the Haar measure, but (id ⊗ h ⊗ h) ◦
(id ⊗ 	C ) = (id ⊗ h) is an identity between maps on M(A ⊗ C). We obtain it by extending both sides from A ⊗ C to
M(A ⊗ C) by strict continuity.

Similarly we show that E(A) ⊂ B . Indeed, denoting by H the map C � c �→ h(c)1 we have

γ
(

E(a)
) = γ

(
(id ⊗ h)γ (a)

)
= (id ⊗ id ⊗ h)

(
(γ ⊗ id)γ (a)

)
= (id ⊗ id ⊗ h)

(
(id ⊗ 	C )γ (a)

)
= (

id ⊗ [
(id ⊗ h) ◦ 	C

])
γ (a)

= (id ⊗ H)γ (a) = E(a) ⊗ 1. (5.4)

As before the identities satisfied by the maps involved in the above calculation are extended by strict continuity to multiplier
algebras.
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An immediate consequence of (5.4) is that B = E(A). To prove point (1) of Theorem 5.1 we note that it follows from (5.3b)
that

span{ab | a ∈ A, b ∈ B} = span
{

aE
(
a′) ∣∣ a,a′ ∈ A

}
= span

{
a(id ⊗ h)γ

(
a′) ∣∣ a,a′ ∈ A

}
= span

{
(id ⊗ h)

(
(a ⊗ 1)γ

(
a′)) ∣∣ a,a′ ∈ A

}
is a dense subset of A. In other words the inclusion of B into A belongs to Mor(B, A).

In particular M(B) is the idealizer of B in M(A) and M(A ⊗ B) is the idealizer of A ⊗ B in M(A ⊗ B) [11, Proposition 2.3],
i.e.

M(A ⊗ B) = {
X ∈ M(A ⊗ A)

∣∣ XY , Y X ∈ A ⊗ B for all Y ∈ A ⊗ B
}
. (5.5)

Let us also note that we have

A ⊗ B = {
Y ∈ A ⊗ A

∣∣ (id ⊗ γ )(Y ) = Y ⊗ 1
}
. (5.6)

Indeed, the inclusion “⊂” is clear. For “⊃” we use the conditional expectation E in the same way as in the proof of
Lemma 4.2. Any Y belonging to the right-hand side of (5.6) satisfies (id ⊗ E)(Y ) = Y and it is not difficult to see that A ⊗ B
is the image of (id ⊗ E). Using (5.6) we can show that

M(A ⊗ B) = {
X ∈ M(A ⊗ A)

∣∣ (id ⊗ γ )(X) = X ⊗ 1
}
. (5.7)

The inclusion “⊃” follows because if X ∈ M(A ⊗ A) satisfies (id ⊗ γ )(X) = X ⊗ 1 then for any Y ∈ A ⊗ B we have XY , Y X ∈
A ⊗ B , so that X ∈ M(A ⊗ B). Conversely, if X ∈ M(A ⊗ B) then for any Y ∈ A ⊗ B we have XY ∈ A ⊗ B , so by (5.6) we have(

(id ⊗ γ )(X)
)
(Y ⊗ 1) = (

(id ⊗ γ )(X)
)(

(id ⊗ γ )(Y )
)

= (id ⊗ γ )(XY ) = (XY ⊗ 1) = (X ⊗ 1)(Y ⊗ 1).

This means that T = (id ⊗ γ )(X) − X ⊗ 1 ∈ M(A ⊗ A ⊗ B) satisfies

T (Y ⊗ 1) = 0

for all Y ∈ A ⊗ B . It follows that T (a ⊗ a′ ⊗ b) is zero for all a,a′ ∈ A, b ∈ B , so that T = 0 and we obtain “⊂” in (5.7).
Let us now address point (2) of Theorem 5.1. The map α = 	|B is a composition of the inclusion of B into A with 	.

Therefore it is an element of Mor(B, A ⊗ A). We want to show that it belongs to Mor(B, A ⊗ B). For this it is enough to
demonstrate that the range of α lies in M(A ⊗ B).

By application of (id ⊗ id ⊗ h) to both sides of (5.2b) we obtain

	 ◦ E = (id ⊗ E) ◦ 	.

This shows that the image of α is in the image of (id ⊗ E) extended to M(A ⊗ A). Clearly for any X ∈ A ⊗ A and Y ∈ A ⊗ B
we have

(id ⊗ γ )
[(

(id ⊗ E)(X)
)
Y
] = XY ⊗ 1. (5.8)

Both sides of this formula are strictly continuous with respect to X , so (5.8) holds also for X ∈ M(A ⊗ A). In view of (5.7),
formula (5.8) (together with the analogous one (id ⊗ γ )[Y ((id ⊗ E)(X))] = Y X ⊗ 1 and its extension) for proves that the
range of α is contained in M(A ⊗ B).

Point (3) of Theorem 5.1 is a straightforward consequence of the definition of α. To prove point (4) we note that{
(a ⊗ 1)α(b)

∣∣ a ∈ A, b ∈ B
} = {

(a ⊗ 1)	
(

E
(
a′)) ∣∣ a,a′ ∈ A

}
= {

(a ⊗ 1)(id ⊗ E)	
(
a′) ∣∣ a,a′ ∈ A

}
= {

(id ⊗ E)
(
(a ⊗ 1)	

(
a′)) ∣∣ a,a′ ∈ A

}
so that (a ⊗ 1)α(b) ∈ A ⊗ B for all a ∈ A, b ∈ B . �
Remark 5.2. Note that it follows easily from the last lines of the proof of Theorem 5.1 that the linear span of the set{

(a ⊗ 1)α(b)
∣∣ a ∈ A, b ∈ B

}
is dense in A ⊗ B (cf. Remark 4.4).
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