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a b s t r a c t

Some Legendre spectral element/Laguerre spectral coupled methods are proposed to
numerically solve second- and fourth-order equations on the half line. The proposed
methods are based on splitting the infinite domain into two parts, then using the
Legendre spectral element method in the finite subdomain and Laguerre method in the
infinite subdomain. C0 or C1-continuity, according to the problem under consideration,
is imposed to couple the two methods. Rigorous error analysis is carried out to establish
the convergence of the method. More importantly, an efficient computational process
is introduced to solve the discrete system. Several numerical examples are provided to
confirm the theoretical results and the efficiency of the method.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Manymathematical problems in science and engineering are set in unbounded domains. There is thus a need to consider
practical design and implementation issues in scientific computing for reliable and efficient solutions of these problems. For
problems set up in unbounded domains, the traditional way for their numerical solutions is to restrict calculations to some
bounded subdomains together with certain imposed conditions on artificial boundaries, and then solve the corresponding
approximate problems. The drawback of this strategy is that the boundary conditions are usually unknown, and the use of
inexact artificial conditions will affect the accuracy of the numerical results. An alternative strategy for these problems is
to work directly in unbounded domains, with design methods by using suitable approximation spaces. It is now becoming
known that Laguerre polynomials are good candidates for the construction of such approximation spaces. In fact, there have
been several works aimed at this interesting direction. For example, some methods using Laguerre polynomials/functions
for problems on unbounded domains have been developed, see [1–5]. These methods take advantage of the Laguerre
polynomials, which are orthogonal with respect to the weight function e−x on the half line. Generally, the larger the degree
of the Laguerre polynomials/functions used to approximate the solutions, the smaller the errors of numerical solutions.
However, from a practical point of view, the fact that the distance between the adjacent Laguerre Gauss–Radau points
increases very fast as the polynomial degree increases may lead to undesirable consequences. In particular, the numerical
solution may fit the exact solution badly when the latter exhibits high frequency spectra. This means that using single
Laguerre polynomials/functions in the whole domain is not efficient for practical computations.
To overcome this inefficiency, a stair Laguerre method was proposed in [6] for the model Helmholtz equation. The

method consists of progressively using the Laguerre method within a series of subintervals. However this method seems
to be unable to completely overcome the difficulty due to the non-equilibrium of the Laguerre node distribution. In [7],
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a composite Laguerre–Legendre method was constructed for approximating elliptic problems in unbounded domains. As a
generalization of thework [7], a Legendre spectral element/Laguerre coupledmethodwas introduced and analyzed in [8] for
the Helmholtz problem in unbounded domains. The method combines the good properties of the spectral element method
with the advantage of the Laguerre method in dealing with unbounded domains, and thus is capable to provide a high
accurate solution in any interested bounded subdomains.
In this paperwewill follow the idea of [8], and furthermore consider Legendre spectral element/Laguerre spectral coupled

methods for second- and fourth-order equations on the half line. As compared to our previous work, the contribution of the
present paper is threefold: (1)We construct a coupled Legendre spectral element/Laguerre spectralmethod for second-order
aswell as fourth-order elliptic equations. (2)Wegive a detailed analysis of the proposedmethods byproviding some rigorous
error estimates. Thanks to the use of the Laguerre functions instead of the Laguerre polynomials employed in [8], the function
change made in [8] becomes unnecessary, and thus the error analysis is greatly simplified. Moreover, the generalization to
the fourth-order problem becomes much more natural. (3) Finally, an efficient implementation technique is proposed to
accelerate the computation process, together with some numerical validations.
The rest of the paper is organized as follows: In Section 2, a Legendre spectral element/Laguerre spectral coupledmethod

is presented for the secondorder problem. Rigorous convergence analysis is carried out. An efficient implementation strategy
using a carefully chosenmodal basis is detailed. In Section 3, the coupled spectral method is generalized to the fourth-order
problem, together with some error estimates. Some concluding remarks are given in Section 4.

2. Coupled spectral method for second-order equations

2.1. Problem and approximation

Let R+ = (0,+∞) and α be a positive constant. We consider the following second-order problem:{
−∂2x u+ αu = f , x ∈ R+,
u(0) = 0, lim

x→+∞
u(x) = 0. (2.1)

In order to define the weak problem, some basic notations are useful. Let I be a finite or infinite interval and ω be a
positive function. We use Hmω (I) and H

m
0,ω(I), m ≥ 0, to denote the usual ω-weighted Sobolev spaces with norm ‖ · ‖m;ω,I .

We denote by (u, v)ω :=
∫
I uvωdx the inner product of L

2
ω(I)whose norm is denoted by ‖·‖0;ω,I . In caseswhere no confusion

would arise, ω (if ω ≡ 1) and I may be dropped from the notations.
The coupled spectral method to be introduced is based on decomposing the infinite domain R+ into a set of subdomains,

then using different kinds of methods in different subdomains. To this end, let Λ = (0, a) and R+a = (a,+∞). The
subdomain Λ is then further partitioned into K non-overlapping subdomains Λk = (ak−1, ak), k = 1, 2, . . . , K , where
ak, k = 0, 1, . . . , K , are K + 1 points such that 0 = a0 < a1 < · · · < aK = a. Let hk = ak − ak−1 and h = max1≤k≤K hk.
We then define the piecewise polynomial space as follows:

PN,K (Λ) := {v; v|Λk ∈ PN(Λk), k = 1, 2, . . . , K},

where PN denotes the space of all polynomials of degree less than or equal to N .
LetLi(x) be the Laguerre polynomial of degree i and L̂i(x) be the Laguerre function defined by:

L̂i(x) = Li(x)e−x/2, ∀x ∈ R+.

We also define the spaces:

PM(R+a ) = span{Li(x− a), i = 0, 1, . . . ,M},

and

P̂M(R+a ) = span{L̂i(x− a), i = 0, 1, . . . ,M}.

LetN denote the set of discrete parameters (N, K ,M). We define the global approximation spaces:

SN = {v; v|Λ ∈ PN,K (Λ), v|R+a ∈ P̂M(R+a )},

XN = SN ∩ H1(R+), X0N = SN ∩ H
1
0 (R
+).

Then the Legendre spectral element/Laguerre spectral coupled approximation to problem (2.1) reads: Find uN ∈ X0N such
that

a(uN , vN ) = (f , vN ) ∀vN ∈ X0N , (2.2)

where a(uN , vN ) = (∂xuN , ∂xvN )+ α(uN , vN ).
Before going into the details about the computational process of this approximation, we first investigate the convergence

behavior of the numerical solution.
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2.2. Error estimation

In order to carry out the error analysis for the approximation problem (2.2), we need some preliminary approximation
results. We start with some notations and definitions. We denote ωr(x) = (x− a)rea−x, ω̂r(x) = (x− a)r . In particular, we
set ω(x) = ω0(x), ω̂(x) = ω̂0(x).
For any non-negative integer r , we define two spaces

Âr(R+a ) := {v; v is measurable on R
+

a and ‖v‖Âr (R+a ) <∞},

Ar(R+a ) := {v; v is measurable on R
+

a and ‖v‖Ar (R+a ) <∞},

equipped respectively with the following norms

‖v‖Âr (R+a )
=

(
r∑
k=0

|v|2
Âk,R+a

) 1
2

, with |v|Âk,R+a = ‖∂
k
x v‖0;ωk,R

+
a
,

‖v‖Ar (R+a )
=

(
r∑
k=0

‖∂kx v‖
2
0;ω̂r ,R+a

) 1
2

.

Moreover, for r ≥ 1, we introduce the space (cf. [9]),

Br(R+a ) := {v; v is measurable on R
+

a and ‖v‖Br (R+a ) <∞},

with norm

‖v‖Br (R+a )
=

(
r∑
k=0

‖(x− a)(r−1)/2(x− a+ 1)1/2∂kx v‖
2
0;R+a

)1/2
.

Now we define some useful projection operators and present the basic approximation results.
Let π (k)N be the L

2(Λk)-orthogonal projector from L2(Λk) into PN(Λk), defined by: for all v ∈ L2(Λk),

(v − π
(k)
N v, φ)Λk = 0, ∀φ ∈ PN(Λk).

Let π+M be the L
2
ω-orthogonal projector from L̂

2(R+a ) into PM(R+a ), defined by:∫
∞

a
(v − π+M v)φMωdx = 0, ∀v ∈ L̂

2(R+a ), ∀φM ∈ PM(R+a ).

Then we define the operator π̂+M from L
2(R+a ) into P̂M(R+a ) by (cf. [4]):

π̂+M v(x) = e
(a−x)/2π+M (v(x)e

(x−a)/2), ∀v ∈ L2(R+a ).

It can be easily verified that∫
∞

a
(π̂+M v − v)φMdx =

∫
∞

a

(
π+M

(
v(x)e

x−a
2

)
− v(x)e

x−a
2

)
e
a−x
2 φMdx = 0, ∀φM ∈ P̂M(R+a ).

Consequently, π̂+M is the orthogonal projector from L
2(R+a ) into P̂M(R+a ). We know from [10] that for any integer r ≥ 0,

v ∈ Ar(R+a ),

‖v − π̂+M v‖0;R+a
. M−r/2|e(x−a)/2v|Âr (R+a ) . M

−r/2
‖v‖Ar (R+a )

. (2.3)

We define below two projectors with respect to the global domain R+:

– L2(R+)-orthogonal projector πN : L2(R+)→ SN , such that for all v ∈ L2(R+),

(v − πN v, φN )R+ = 0, ∀φN ∈ SN ;

– H10 (R
+)-orthogonal projector π1,0N : H

1
0 (R
+)→ X0N , such that for all v ∈ H

1
0 (R
+),

(∂x(v − π
1,0
N v), ∂xφN )R+ = 0, ∀φN ∈ X0N .

Then, we have the following approximation results.

Lemma 2.1 (Cf. [8]). Let r ≥ 0. Then for all v ∈ Hr(Λk),

‖v − π
(k)
N v‖0;Λk . h

min(N+1,r)
k N−r‖v‖r;Λk .
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Let us define space Hr,s(R+) as follows

Hr,s(R+) := {v; v|Λ ∈ Hr(Λ), v|R+a ∈ A
s(R+a )}.

Then we have

Lemma 2.2. Let r, s ≥ 0. For all v ∈ Hr,s(R+), it holds that

‖v − πN v‖0;R+ . h
min(N+1,r)N−r‖v‖r;Λ +M−

s
2 ‖v‖As(R+a )

.

Proof. Let

φv =

{
π
(k)
N v, x ∈ Λk, k = 1, 2, . . . , K ,
π̂+M v, x ∈ R+a .

Then φv ∈ SN , and from (2.3) and Lemma 2.1 it holds

‖v − πN v‖
2
0;R+ ≤ ‖v − φv‖

2
0;R+

=

K∑
k=1

‖v − π
(k)
N v‖

2
0;Λk + ‖v − π̂

+

M v‖
2
0;R+a

. h2min(N+1,r)N−2r
K∑
k=1

‖v‖2r;Λk +M
−s
|e
x−a
2 v|2

Âs(R+a )

. h2min(N+1,r)N−2r‖v‖2r;Λ +M
−s
‖v‖2

As(R+a )
.

The proof is completed. �

Lemma 2.3. Let r ≥ 1, s ≥ 1. Then for all v ∈ {v; v|Λ ∈ Hr(Λ), v|R+a ∈ B
s(R+a )} ∩ H

1
0 (R
+), we have the following estimate,

‖v − π
1,0
N v‖1;R+ . h

min(N,r−1)N1−r‖v‖r;Λ +M
1
2−

s
2 ‖v‖Bs(R+a )

.

Proof. For all v ∈ H10 (R
+), by the definition of π1,0N , we have

‖v − π
1,0
N v‖1;R+ . |v − π

1,0
N v|1;R+ ≤ inf

φ∈X0N

|v − φ|1;R+ .

We define the function φ by

φ(x) =
{
φk1(x), x ∈ Λk, k = 1, 2, . . . , K ,
φ2(x), x ∈ R+a ,

where

φk1(x) =
∫ x

ak−1
π
(k)
N−1(∂yv(y))dy+ v(ak−1),

φ2(x) = e
a−x
2

(∫ x

a
π+M−1∂y

(
e
y−a
2 v(y)

)
dy+ v(a)

)
.

Then it can be checked that

φk1(ak) = φ
k+1
1 (ak) = v(ak), k = 1, 2, . . . , K − 1,

φK1 (a) = φ2(a) = v(a).

This means

φ ∈ X0N , (φ − v)|Λk ∈ H
1
0 (Λ

k), k = 1, 2, . . . , K − 1; (φ − v)
|R+a
∈ H10 (R

+

a ).

On the other hand, we can express v by

v(x) = e
a−x
2

(∫ x

a
∂y

(
e
y−a
2 v(y)

)
dy+ v(a)

)
, x ∈ R+a .
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Let χ(x) = ea−x. Then, combining Lemma 2.2 of [5] and the approximation results of the projectors π (k)N and π
+

M , we have

‖v − π
1,0
N v‖21;R+ .

K∑
k=1

|v − φk1|
2
1;Λk + |v − φ2|

2
1;R+a

.

K∑
k=1

|v − φk1|
2
1;Λk + |χ

−
1
2 (v − φ2)|

2
1;χ,R+a

=

K∑
k=1

‖∂xv − π
(k)
N−1∂xv‖

2
1;Λk + ‖∂x(χ

−
1
2 v)− π+M−1∂x(χ

−
1
2 v)‖2

0;χ,R+a

. h2min(N,r−1)N2−2r
K∑
k=1

‖∂xv‖
2
r−1;Λka

+M1−s|∂x(χ−
1
2 v)|2

Âs−1(R+a )

. h2min(N,r−1)N2−2r‖v‖2r;Λ +M
1−s
‖v‖2

Bs(R+a )
.

This completes the proof. �

We are now in a position to derive the error estimation.

Theorem 2.1. Let α > 0, r ≥ 1 and s ≥ 1. u and uN are the solutions of (2.1) and (2.2) respectively. Then the following estimate
holds

‖u− uN ‖1;R+ . h
min(N,r−1)N1−r‖u‖r;Λ +M

1
2−

s
2 ‖u‖Bs(R+a ).

Proof. Let eN = uN − π
1,0
N u. By subtracting (2.2) from (2.1),

(∂xeN , ∂xvN )+ α(eN , vN ) = (∂x(u− π
1,0
N u), ∂xvN )+ α(u− π

1,0
N u, vN ), ∀vN ∈ X0N .

Taking vN = eN in the above equation, we find

min(1, α)‖eN ‖21;R+ ≤ α(u− π
1,0
N u, eN ) ≤ α‖u− π

1,0
N u‖1;R+‖eN ‖1;R+ .

This gives

‖eN ‖1;R+ . ‖u− π
1,0
N u‖1;R+ .

Finally, by using the triangle inequality and Lemma 2.3, we obtain

‖u− uN ‖1;R+ ≤ ‖u− π
1,0
N u‖1;R+ + ‖eN ‖1;R+ . ‖u− π

1,0
N u‖1;R+

. hmin(N,r−1)N1−r‖u‖r;Λ +M
1
2−

s
2 ‖u‖Bs(R+a ). �

2.3. Implementation: a Schur complement method

Now we give the detailed computational process of the discrete problem (2.2). Let

V̊ kN := PN(Λk) ∩ H10 (Λ
k), k = 1, 2, . . . , K ; W̊M := P̂M(R+a ) ∩ H

1
0 (R
+

a ).

To construct a suitable basis for the approximation space, we will use the orthogonality of the Legendre and Laguerre
polynomials. First we transform the physical domain Λk to the reference domain Λ̂ = (−1, 1) by the coordinate
transformation as follows:

x̂k := x̂k(x) =
2
hk
x−

ak + ak−1
hk

, ∀x ∈ Λk.

Then following [11,4], we define

φkj (x) =


1

√
4j+ 6

(Lj(x̂k)− Lj+2(x̂k)), x ∈ Λk,

0, others,
j = 0, 1, . . . ,N − 2, k = 1, 2, . . . , K ;

φ̂j(x) =
{
L̂j(x− a)− L̂j+1(x− a), x ∈ R+a ,
0, others, j = 0, 1, . . . ,M − 1,
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where Lj(x) is the Legendre polynomial of degree j. It is readily seen that

V̊ kN = span{φ
k
0(x), φ

k
1(x), . . . , φ

k
N−2(x)}, k = 1, 2, . . . , K ;

W̊M = span{φ̂0(x), φ̂1(x), . . . , φ̂M−1(x)}.
Defining the space

X̊N = {v; v|Λk ∈ V̊
k
N , k = 1, 2, . . . , K ; v|R+a ∈ W̊M},

we now construct the basis functions ϕ1, ϕ2, . . . , ϕK corresponding respectively to the interfacial nodes a1, a2, . . . , aK , such
that

X0N = X̊N ⊕ span{ϕ1, ϕ2, . . . , ϕK }.
To this end we define ϕk, k = 1, 2, . . . , K − 1, as follows:

ϕk(x) =


1
2
(L0(x̂k)+ L1(x̂k)), x ∈ Λk,

1
2
(L0(x̂k+1)− L1(x̂k+1)), x ∈ Λk+1,
0, others,

and set

ϕK (x) =


1
2
(L0(x̂K )+ L1(x̂K )), x ∈ ΛK ,

3
2

L̂0(x− a)−
1
2

L̂1(x− a), x ∈ R+a ,

0, others.
Then it is verified that

ϕk ∈ X0N , ϕk(ak) = 1.

Moreover, all ϕk, together with φkj , j = 0, 1, . . . ,N − 2, k = 1, 2, . . . , K , and φ̂j, j = 0, 1, . . . ,M − 1 are linearly
independent, and form a basis of X0N .
Next we employ the idea, used in [12] in the frame of a dual-Petrov–Galerkin method for third-order equations, to solve

our coupled spectral approximation problem (2.2). The computational process consists of the following steps:
• Complement space. In this step we construct the orthogonal complement of the space X̊N with respect to the bilinear
form a(·, ·). Let ϕ̊1, ϕ̊2, . . . , ϕ̊K ∈ X̊N be the solutions of the following problems:

a(ϕ̊k, v̊N ) = −a(ϕk, v̊N ), ∀v̊N ∈ X̊N , k = 1, 2, . . . , K . (2.4)

SetΘk = ϕ̊k + ϕk, k = 1, 2, . . . , K , and X̊⊥N = span{Θ1,Θ2, . . . ,ΘK }. Then it is immediate that space X̊
⊥
N is orthogonal

to space X̊N in the sense that

a(ϕN , vN ) = 0, ∀ϕN ∈ X̊⊥N , vN ∈ X̊N .

• Solve the Schur complement problem for the values at the interfacial nodes a1, a2, . . . , aK :

K∑
k=1

a(Θk,Θj)uN (ak) = (f ,Θj), j = 1, 2, . . . , K . (2.5)

• Solve the subproblems for the values at the interior nodes of each subdomain: Find ůN ∈ X̊N , such that

a(ůN , v̊N ) = (f , v̊N ), ∀v̊N ∈ X̊N . (2.6)

• Assemblage: Let uN = ůN +
∑K
k=1 uN (ak)Θk. Then for all vN there exist v̊N ∈ X̊N and v⊥N ∈ X̊

⊥
N such that vN = v̊N +v

⊥
N ,

and consequently

a(uN , vN ) = a

(
ůN +

K∑
k=1

uN (ak)Θk, v̊N + v
⊥

N

)

= a(ůN , v̊N )+ a(ůN , v
⊥

N )+

K∑
k=1

uN (ak)a(Θk, v̊N )+

K∑
k=1

uN (ak)a(Θk, v⊥N )

= (f , v̊N )+ (f , v⊥N )
= (f , vN ).

In the above, we have used the fact that a(ůN , v
⊥
N ) = 0 and a(Θk, v̊N ) = 0 due to the orthogonality. Thus ůN +∑K

k=1 uN (ak)Θk is the solution we are seeking.
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Fig. 1. Iteration numbers of the conjugate gradient for the Schur complement versus K .

From the above algorithm we see that problem (2.2) is decomposed into some smaller subproblems: two sets of elemental
problems (2.4) and (2.6), and one Schur complement problem (2.5). Note that problem (2.6) can be completely split into
K independent subproblems. Thus the computational process is very efficient. To derive the matrix statements of these
problems, we denote

uN (x)|Λk =
N−2∑
i=0

ûki φ
k
i (x), Uk = (ûk1, û

k
2, . . . , û

k
N−2)

T
;

uN (x)|R+a =
M−1∑
i=0

û+i φ̂i(x), U+ = (û+1 , û
+

2 , . . . , û
+

M−2)
T
;

Bkji = (φ
k
i , φ

k
j )Λk , Akji = (φ

k
i
′
, φkj
′
)Λk , B+ji = (φ̂i, φ̂j)R+a , A+ji = (φ̂

′

i , φ̂
′

j )R+a
;

Bk = (Bkji)0≤i, j≤N−2, Ak = (Akji)0≤i, j≤N−2, B+ = (B+ji )0≤i, j≤M−1, A+ = (A+ji )0≤i, j≤M−1.

By bringing the above expressions into (2.4) and (2.6), we obtain the following linear systems:

(αBk + Ak)Uk = F k, k = 1, 2, . . . , K ,
(αB+ + A+)U+ = F+,

where F k = (f k1 , f
k
2 , . . . , f

k
N−2)

T , with f kj = (f , φ
k
i )Λk . Similarly for F

+. By the orthogonality of the Legendre polynomials and
Laguerre functions respectively, it can be easily verified that the coefficient matrices of the above systems are respectively
pentagonal and triangular. On the other side, the matrix for the interfacial unknowns is full, but has small dimension
(generally K is small). A natural choice for solving the linear system on the interfacial unknowns is the conjugate gradient
iteration since the coefficient matrix is symmetric positive definite. The convergence behavior of this iteration method will
be investigated by means of some numerical tests.

2.4. Numerical validation

2.4.1. Convergence test

Example 1. We consider problem (2.1) with an exact analytical solution:

u(x) = sin(kx)e−γ x, (2.7)

where k is a constant describing the frequency of the solution, γ measures the decay speed as x tends to infinity. We first
investigate the convergence property of the conjugate gradient method for the Schur complement system (2.5) in terms
of the discrete parameters K ,N,M . In Fig. 1 we plot the iteration numbers needed for the iteration method to reach the
convergence tolerance as a function of the element number K . We observe a clear linear increase with increasing K in this
figure. Moreover, further tests have shown that the convergence of the iteration is basically independent of the polynomial
degrees N orM . This implies that the condition number of the coefficient matrix of (2.5) behaves as O(K 2).
The next test concerns the investigation of the convergence property of the coupled spectral method. We fix k = 8, γ =

1, a = 8, and let vary N and/orM .



622 Q. Zhuang, C. Xu / Journal of Computational and Applied Mathematics 235 (2010) 615–630

 
er

ro
r

N

 H1 error

 0.01

er
ro

r

h

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

1 L2 error

 12  14  16  18  20  22  24  26  28  0.0625  0.125  0.25
 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

L2 error with N=6
H1 error with N=6
L2 error with N=7
H1 error with N=7
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• Fix M = 320. This M has been checked large enough such that the error from the Laguerre domain is negligible. In
Fig. 2(left), we plot the errors in Λ as a function of the polynomial degree N with K = 4. A logarithmic scale is used for
the error-axis. Clearly, the errors show an exponential decay, since one observes that the error variations are essentially
linear versus the polynomial degree. That is the so-called spectral convergence as expected for a smooth exact solution.
In Fig. 2(right), we plot in a log–log scale the errors in Λ as a function of h with N = 6 and N = 7 respectively. The
obvious linear decrease in this log–log plot indicates that the convergence with respect to h is algebraic, as predicted by
the theoretical estimates.
• Wenow fixN = 32 andK = 4 to avoid error contamination from the Legendre approximation inΛ. In Fig. 3wepresent in
semi-logarithmic scale, the errors in R+a as a function ofM . It is clear that the errors show an exponential decay, indicating
the spectral accuracy of the Laguerre approximation in the infinite subdomain R+a .

Example 2. We test for an algebraic decay solution as follows:

u(x) =
sin(kx)
(1+ x)γ

, (2.8)

where k is temporarily fixed to 4, γ to 3.5. This solution is expected to be more difficult to capture since it shows slower
decay at infinity than the previous solution. We repeat below the same tests as in Example 1.

• M = 320. We give in Fig. 4(left) the errors in Λ versus N with K = 4. Once again, the numerical solution converges
exponentially to the exact solution inΛ as N increases.
Fig. 4(right) shows the errors in the log–log scale as a function of h inΛwith N = 6 and N = 7 respectively. We see then
an algebraic convergence, as we have explained in Example 1.
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• N = 32, K = 4.We plot in Fig. 5 the errors in R+a as a function ofM . Although there is a slow decay feature of the solution
in R+a , we still observe an exponential convergence with respect to the degree of the Laguerre function.

2.4.2. Comparison with pure Laguerre method
We now make a comparison on the accuracy of our coupled method to the pure Laguerre–Galerkin method proposed

in [4] as follows: Find uM ∈ X̂M = H10 (R
+) ∩ PM(R+), such that

(∂xuM , ∂xvM)+ α(uM , vM) = (f , vM) ∀vM ∈ X̂M . (2.9)

In this pure Laguerre method, the Laguerre polynomials are used to approximate the solution in the whole infinite domain.
We first employ the method (2.9) to approximate the solutions given in Examples 1 and 2.

• In Fig. 6(left), we plot the errors as a function ofM for the exact solution (2.7) with k = 3, 4, γ = 1, 2 respectively. It is
clear that the convergence rate remains exponential for all these smooth solutions.
• In Fig. 6(right), we show the results using (2.8) with k = 3, 4, γ = 3.5, 4.5. In this case we obtain only algebraic
convergences, which is in full consistency with the limited regularity of the exact solutions.

From Fig. 6, we observe that in the pure Laguerre approximation the convergence quickly slows down as the exact solution
has higher frequency, i.e., bigger k, or shows slower decay as x tends to infinity, i.e., smaller γ . An explanation of this
phenomena is, as shown in Fig. 7, that the distance between adjacent Laguerre–Gauss points increases very fast as M
increases.
We now compare the numerical results obtained respectively by our coupled method and the pure Laguerre method for

the solutions in Example 1 with γ = 2, k = 5, 10. The parameters used are a = 16, K = 8,N = 16, and M = 192 for the
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coupled method, and M = 320 for the pure Laguerre method. Note that in order to make the comparisons reasonable, the
discretization parameters have been chosen such that the total grid points for both methods are nearly the same. The errors
of the numerical solutions by the twomethods are compared in Fig. 8, fromwhich we see that the coupledmethod provides
a much more accurate numerical solution than the pure Laguerre method, especially for the high frequency solution in the
upstream domain.

2.5. Remarks for equations with variable coefficients

We now consider the elliptic equation with variable coefficients as follows:

∂x(β(x)∂xu)+ α(x)u = f

where α(x) and β(x) are two positive coefficients depending on x. In this case, the fast evaluation of the integrals involving
in the weak formulation is no longer available because the basis functions constructed in Section 2.3 are not orthogonal
with respect to the coefficients α(x) and β(x). Nevertheless, the Schur complement technique presented in Section 2.3
remains applicable. The only difference is that in this case the integrals should be computed by using a Gauss–Lobatto/Gauss
quadrature and it is recommended to use suitable nodal basis functions instead of the modal basis.

3. Coupled spectral methods for fourth-order equations

In this section, we will consider coupled spectral approximations to a fourth-order equation. As is known, in the
multi-domain computation of fourth-order equations, it is not easy to handle the continuity at the elemental interfaces.
Previous work for such problems includes approaches based on overlapping domain decomposition or splitting the original
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equations into two second-order equations. We propose here a method based on non-overlapping domain decomposition.
The implementation of the method employs the idea proposed in the previous sections for the second-order problem. The
key to the efficiency of our algorithm is to construct appropriate basis functions, which lead to systemswith sparsematrices
for the discrete variational formulation. Error estimation of the approximation is also carried out. The efficiency and high
accuracy of the proposed method is confirmed by some numerical tests, together with a comparison with a pure Laguerre
approximation.

3.1. Problems and error estimation

We consider the following problem{
∂4x u− α1∂

2
x u+ α2u = f , x ∈ R+,

u(0) = ∂xu(0) = 0, lim
x→+∞

u(x) = lim
x→+∞

∂xu(x) = 0, (3.1)

where α1 > 0, α2 > 0.
We define the approximation spaces

YN = SN ∩ H2(R+), Y 0N = SN ∩ H
2
0 (R
+),

where space SN is defined in Section 2.
Then the Legendre spectral element/Laguerre spectral coupled method to problem (3.1) reads: Find uN ∈ Y 0N such that

b(uN , vN ) = (f , vN ) ∀vN ∈ Y 0N , (3.2)

where

b(u, v) = (∂2x u, ∂
2
x v)+ α1(∂xu, ∂xv)+ α2(u, v).

In order to carry out the error analysis, we first define the orthogonal projection operator π2N : H
2(R+) → YN : for all

v ∈ H2(R+), π2N v ∈ YN is given by

(∂2x (v − π
2
N v), ∂

2
x φ)+ (∂x(v − π

2
N v), ∂xφ)+ (v − π

2
N v, φ) = 0, ∀φ ∈ YN . (3.3)

We also define π2,0N : H
2
0 (R
+)→ Y 0N by

(∂2x (v − π
2,0
N v), ∂2x φ) = 0, ∀φ ∈ Y

0
N . (3.4)

Lemma 3.1. Let r, s ≥ 2. Then for all v ∈ {v; v|Λ ∈ Hr(Λ), ∂2x (e
x−a
2 v)

|R+a
∈ Âs−2(R+a )} ∩ H

2(R+),

‖v − π2N v‖2;R+ . h
min(N−1,r−2)N2−r‖v‖r;Λ +M1−

s
2 |∂2x (e

x−a
2 v)|Âs−2(R+a )

;
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and for all v ∈ {v; v|Λ ∈ Hr(Λ), ∂2x (e
x−a
2 v)

|R+a
∈ Âs−2(R+a )} ∩ H

2
0 (R
+),

‖v − π
2,0
N v‖2;R+ . h

min(N−1,r−2)N2−r‖v‖r;Λ +M1−
s
2 |∂2x (e

x−a
2 v)|Âs−2(R+a )

.

Proof. By the definition of π2N , we have

‖v − π2N v‖2;R+ ≤ inf
φ∈YN
‖v − φ‖2;R+ .

For all v ∈ {v; v|Λ ∈ Hr(Λ), ∂2x (e
x−a
2 v)

|R+a
∈ Âs−2(R+a )} ∩ H

2(R+), let

φ(x) =
{
φk1(x), x ∈ Λk, k = 1, 2, . . . , K ,
φ2(x), x ∈ R+a ,

where

φk1(x) =
∫ x

ak−1

∫ z

ak−1
π
(k)
N−2∂

2
y vdydz + v(ak−1)+ ∂xv(ak−1)(x− ak−1),

φ2(x) = e
a−x
2

[∫ x

a

(∫ z

a
π+M−2∂

2
y

(
e
y−a
2 v
)
dy
)
dz +

(
∂xv +

v

2

)
(a)(x− a)+ v(a)

]
.

Then it can be verified that

φk1(ak) = φ
k+1
1 (ak) = v(ak), (φk1)

′(ak) = (φk+11 )′(ak) = v′(ak), k = 1, 2, . . . , K − 1;

φK1 (a) = φ2(a) = v(a), (φK1 )
′(a) = φ′2(a) = v

′(a).

On the other hand, we have

v(x) = e
a−x
2

[∫ x

a

(∫ z

a
∂2y

(
e
y−a
2 v
)
dy
)
dz +

(
∂xv +

v

2

)
(a)(x− a)+ v(a)

]
, x ∈ R+a .

A direct consequence of the above equalities is:

φ ∈ Y 0N , (φ − v)|Λk ∈ H
2
0 (Λ

k), k = 1, 2, . . . , K , (φ − v)
|R+a
∈ H20 (R

+

a ).

Moreover, by Lemma 2.2 of [5] and the approximation results of the projectors π (k)N and π
+

M , we have

‖v − π2N v‖
2
2;R+ ≤

K∑
k=1

‖v − φk1‖
2
2;Λk + ‖v − φ2‖

2
2;R+a

.

K∑
k=1

|v − φk1|
2
2;Λk + |χ

−
1
2 (v − φ2)|

2
2;χ,R+a

=

K∑
k=1

‖∂2x v − π
(k)
N−2∂

2
x v‖

2
2;Λk + ‖∂

2
x (χ

−
1
2 v)− π+M−2∂

2
x (χ

−
1
2 v)‖2

0;χ,R+a

. h2min(N−1,r−2)N4−2r
K∑
k=1

‖∂2x v‖
2
r−2;Λk +M

2−s
|∂2x (χ

−
1
2 v)|2

Âs−2(R+a )

. h2min(N−1,r−2)N4−2r‖v‖2r;Λ +M
2−s
|∂2x (e

x−a
2 v)|2

Âs−2(R+a )
.

Thus the first estimate is obtained. The second estimate can be proved similarly. �

By Lemma 3.1 and the following standard result for the approximation (3.1):

‖u− uN ‖2;R+ . ‖v − π
2,0
N v‖2;R+ ,

we derive immediately the error estimate as follows.

Theorem 3.1. Let u and uN be respectively the solution of (3.1) and (3.2). Then

‖u− uN ‖2;R+ . h
min(N−1,r−2)N2−r‖v‖r;Λ +M1−

s
2 |∂2x (e

x−a
2 v)|Âs−2(R+a )

.

3.2. Implementation

Let
V̊ kN := PN(Λk) ∩ H20 (Λ

k), k = 1, 2, . . . , K ; W̊M := P̂M(R+a ) ∩ H
2
0 (R
+

a ).
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We construct the basis functions: for 0 ≤ i ≤ N − 4, 0 ≤ j ≤ M − 2,

φki (x) =


1√

2(2i+ 3)2(2i+ 5)

(
Li(x̂k)−

2(2i+ 5)
2i+ 7

Li+2(x̂k)+
2i+ 3
2i+ 7

Li+4(x̂k)
)
, x ∈ Λk,

0, others,

φ̂j(x) =
{
L̂j(x− a)− 2L̂j+1(x− a)+ L̂j+2(x− a), x ∈ R+a ,
0, others.

Following [11,4], it can be proved that

V̊ kN = span{φ
k
0(x), φ

k
1(x), . . . , φ

k
N−4(x)}, k = 1, 2, . . . , K ;

W̊M = span{φ̂0(x), φ̂1(x), . . . , φ̂M−2(x)}.

Let us now denote

Y̊N = {v; v|Λk ∈ V̊
k
N , k = 1, 2, . . . , K ; v|R+a ∈ W̊M}.

Then we construct the basis functions ϕk, ψk, k = 1, 2, . . . , K , associated to the interfacial nodes a1, a2, . . . , aK , such that

Y 0N = Y̊N ⊕ span{ϕ1, ϕ2, . . . , ϕK , ψ1, ψ2, . . . , ψK }.

This can be done by asking ϕk, ψk, k = 1, 2, . . . , K to satisfy:{
ϕk ∈ Y 0N , ϕk(ak) = 1, ϕ′k(ak) = 0,
ψk ∈ Y 0N , ψk(ak) = 0, ψ ′k(ak) = 1,

k = 1, 2, . . . , K .

It can be checked that the following functions meet the requirement:

ϕk =


1
2
L0(x̂k)+

3
5
L1(x̂k)−

1
10
L3(x̂k), x ∈ Λk,

1
2
L0(x̂k+1)−

3
5
L1(x̂k+1)+

1
10
L3(x̂k+1), x ∈ Λk+1,

0, others,

k = 1, 2, . . . , K − 1;

ϕK =


1
2
L0(x̂K )+

3
5
L1(x̂K )−

1
10
L3(x̂K ), x ∈ ΛK ,

3
2

L̂0(x− a)−
1
2

L̂1(x− a), x ∈ R+a ,

0, others.

ψk =


hk
2

(
L2(x̂k)− L0(x̂k)

6
+
L3(x̂k)− L1(x̂k)

10

)
, x ∈ Λk,

hk+1
2

(
L0(x̂k+1)− L2(x̂k+1)

6
+
L3(x̂k+1)− L1(x̂k+1)

10

)
, x ∈ Λk+1,

0, others,

k = 1, 2, . . . , K − 1;

ψK =


hK
2

(
L2(x̂K )− L0(x̂K )

6
+
L3(x̂K )− L1(x̂K )

10

)
, x ∈ ΛK ,

L̂0(x− a)− L̂1(x− a), x ∈ R+a ,
0, others.

Similar to the second-order equation, we solve problem (3.2) by the following process:

• Schur complement space: Construct the orthogonal complement of Y̊N with respect to the bilinear form b(·, ·). Let
ϕ̊k, ψ̊k ∈ Y̊N be the solutions of the following problems:{

b(ϕ̊k, v̊N ) = −b(ϕk, v̊N ),

b(ψ̊k, v̊N ) = −b(ψk, v̊N ),
∀v̊N ∈ Y̊N , k = 1, 2, . . . , K . (3.5)

Set Θk = ϕ̊k + ϕk,Υk = ψ̊k + ψk, and Y̊⊥N = span{Θk,Υk, k = 1, 2, . . . , K}. Then it is readily seen that space Y̊
⊥
N is

orthogonal to space Y̊N in the sense that

b(ϕN , vN ) = 0, ∀ϕN ∈ Y̊⊥N vN ∈ Y̊N .
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Fig. 9. Square of the iteration number of the conjugate gradient versus K .

• Solve the Schur complement problem for the unknowns uN (ak), u′N (ai), k = 1, 2, . . . , K , associated to the interfacial
nodes:

K∑
k=1

b(Θk,Θj)uN (ak)+
K∑
k=1

b(Υk,Θj)u′N (ak) = (f ,Θj), j = 1, 2, . . . , K ,

K∑
k=1

b(Θk,Υj)uN (ak)+
K∑
k=1

b(Υk,Υj)u′N (ak) = (f ,Υj), j = 1, 2, . . . , K .
(3.6)

• Solve subproblems for the values at the interior nodes of each subdomain: Find ůN ∈ Y̊N such that

b(ůN , v̊N ) = (f , v̊N ), ∀v̊N ∈ Y̊N . (3.7)

• Assemblage: Let uN = ůN +
∑K
k=1 uN (ak)Θk +

∑K
k=1 u

′
N (ak)Υk. Then by combining (3.5)–(3.7), we have

b(uN , vN ) = (f , vN ), vN ∈ Y 0N .

Thus the assembled uN is the solution of (3.2).

As for the second-order problem, the fourth-order problem (3.2) is now split into some smaller systems: elemental
subproblems (3.5) and (3.7), and the Schur complement problem (3.6) associated to the interfacial unknowns. Thanks to the
orthogonality of the basis functions, subproblems (3.5) and (3.7) for all elements are sparse (enneahedral or pentagonal).
Note that the Schur complement problem (3.6) has the same dimension as the element number, and can be solved by using
the conjugate gradient iteration since the coefficient matrix is symmetric positive definite.

3.3. Numerical validation

3.3.1. Convergence test
We first consider the solution:

u(x) = sin2(kx)e−x, (3.8)

with k = 2 and a = 16 for the domain decomposition.
In Fig. 9 we plot the square of the iteration number of the conjugate gradient method for the Schur complement problem

to reach the convergence.We find that theminimum iteration number behaves likeO(K 2). This dependence is stronger than
what we have found for the second-order problem (only O(K)) for reasons unknown to us. Note that as for the second-order
problem, the conjugate gradient iteration is insensitive to N orM .
Next we numerically investigate the discretization errors of the coupled spectral method.

• Fix M = 320, let N and h vary. We present in a semi-log scale in Fig. 10(left) the errors in H2-norm in Λ as a function
of N with h = 0.5 and h = 0.8. An exponential decay of the errors is observed, which is consistent with the theoretical
estimate. In Fig. 10(right), we plot in a log–log scale the errors inΛ as a function of hwithN = 7 andN = 8. It is observed
that the error curves are straight lines in this full log representation. This indicates that the numerical solutions converge
algebraically in h.
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Fig. 10. Left: errors as a function of N; right: errors as a function of h.
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Fig. 11. Errors as a function ofM .

• Fix h and N , let us vary M . Fig. 11 shows the errors in R+a versusM in a semi-logarithmic scale. It is clear that the errors
show an exponential decay. Furthermore, the fact that two different N give the same line means that the effect of N in
this test is negligible.

3.3.2. Comparison with a pure Laguerre method
The coupled method is compared to a pure Laguerre method proposed in [4], which consists in seeking the numerical

solution in the global polynomial space ŶM := P̂M ∩ H20 (R
+).

We first investigate the convergence behavior of this pure Laguerre approximation. In Fig. 12, we plot the errors versus
M for the solution (3.8) with k = 1 and k = 2. It is seen that the convergence quickly slows down as k becomes bigger.
The efficiency of the coupled method can be demonstrated by comparing the accuracy for high frequency solutions. To

this end,we take k = 5, 10 in (3.8), and compare the numerical solutions by bothmethods. The discretization parameters are
chosen such that the total grid points are the same in both approximations. As shown in Fig. 13, the coupled approximation
leads to much better results than the pure Laguerre method.

4. Concluding remarks

We have presented a complete analysis for the Legendre–Laguerre coupled spectral element method to the second-
and fourth-order equations on the half line. Some error estimates are derived to demonstrate the spectral accuracy
of the proposed methods. Moreover, we presented a fast algorithm for both problems, together with some numerical
results to confirm the efficiency of the methods. A comparison with the pure Laguerre method indicates that the coupled
approximation is more accurate, especially for high frequency problems. A particular advantage of the approach is that the
decomposition point a can be chosen suitably according to the practical need.
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Fig. 12. Errors versusM by the pure Laguerre method.
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Fig. 13. Pointwise errors of the two methods. Left: k = 5; right: k = 10.
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