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Abstract

We start from Rieffel data (A,Ψ,ρ), where A is a C∗-algebra, ρ is an action of an abelian group Γ on
A and Ψ is a 2-cocycle on the dual group. Using Landstad theory of crossed product we get a deformed
C∗-algebra AΨ . In the case of Γ = Rn we obtain a very simple proof of invariance of K-groups under
the deformation. In the general case we also get a very simple proof that nuclearity is preserved under
the deformation. We show how our approach leads to quantum groups and investigate their duality. The
general theory is illustrated by an example of the deformation of SL(2,C). A description of it, in terms of
noncommutative coordinates α̂, β̂, γ̂ , δ̂, is given.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

In [12] Rieffel described the method of deforming of C∗-algebras known today as the
Rieffel deformation. Having an action of R

d on a C∗-algebra A and a skew symmetric opera-
tor J : R

d �→ R
d Rieffel defined a new product that gave rise to the deformed C∗-algebra AJ .

In [13] the Rieffel deformation was applied to the C∗-algebra of continuous functions vanishing
at infinity on a Lie group G. An action of R

n was constructed using the left and right shifts
along a fixed abelian Lie subgroup Γ . Having the deformed C∗-algebra Rieffel introduced a
comultiplication, a coinverse and a counit, showing that it is a locally compact quantum group.

M. Enock and L. Vainerman in [3] gave a method of deforming of the dual object associated
with the locally compact group G that is (C∗

r (G), 	̂) where C∗
r (G) is the reduced group C∗-

algebra and 	̂ is the canonical comultiplication on it. Using an abelian subgroup Γ ⊂ G and
a 2-cocycle Ψ on the Pontryagin dual group Γ̂ they twisted the canonical comultiplication 	̂

on the reduced group C∗-algebra C∗
r (G) obtaining a new quantum group. They also presented a

formula for a multiplicative unitary and described a Haar measure for this new quantum group.
The existence of these two methods of deforming of objects related to a group G prompts the

question about the relations between them. In this paper it is shown that they are dual versions
of the same mathematical procedure. Let us note that the deformation framework of Enock and
Vainerman is in a sense more general than the one of Rieffel: instead of a skew symmetric matrix
on Rn they use a 2-cocycle Ψ on the abelian subgroup Γ . This suggests that it should be possible
to perform the Rieffel deformation of a C∗-algebra A acted on by an abelian group Γ with a 2-
cocycle Ψ on Γ̂ . A formulation of Rieffel deformation in that context is one of the results of this
paper.

Let us briefly describe the contents of the whole paper. In the next section we revise the Land-
stad theory of crossed products. We prove a couple of useful results that we could not find in the
literature. In Section 3 we use the Landstad’s theory to give a new approach to the Rieffel defor-
mation of C∗-algebras. In Section 4 we apply the Rieffel deformation to locally compact groups.
We show that Enock–Vainerman’s and Rieffel’s approach give mutually dual, locally compact
quantum groups. Moreover, a formula for a Haar measure on a quantized algebra of functions
is given. In the last section we use our scheme to deform SL(2,C). The subgroup Γ consists
of diagonal matrices. We show that the deformed C∗-algebra A is generated in the sense of
Woronowicz by four affiliated elements α̂, β̂, γ̂ , δ̂ and give a detailed description of the commu-
tation relations they satisfy. Moreover, we show that the comultiplication 	Ψ ∈ Mor(A;A ⊗ A)

acts on the generators in the standard way:

	Ψ (α̂) = α̂ ⊗ α̂ � β̂ ⊗ γ̂ , 	Ψ (β̂) = α̂ ⊗ β̂ � β̂ ⊗ δ̂,

	Ψ (γ̂ ) = γ̂ ⊗ α̂ � δ̂ ⊗ γ̂ , 	Ψ (δ̂) = δ̂ ⊗ δ̂ � γ̂ ⊗ β̂. (1)
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Throughout the paper we will freely use the language of C∗-algebras and the theory of locally
compact quantum groups. For the notion of multipliers, affiliated elements, algebras generated by
a family of affiliated elements and morphism of C∗-algebras we refer the reader to [18] and [15].
For the theory of locally compact quantum groups we refer to [6] and [9]. For the theory of
quantum groups given by a multiplicative unitary we refer to [19].

Some remarks about the notation. For a subset X of a Banach space B , Xcls denotes the closed
linear span of X. Let A be a C∗-algebra and A∗ be its Banach dual. A∗ is an A-bimodule where
for ω ∈ A∗ and b, b′ ∈ A we define b · ω · b′ by the formula:

b · ω · b′(a) = ω(b′ab)

for any a ∈ A.

2. Landstad theory of crossed products

Let us start this section with a definition of Γ -product. For a detailed treatment of this notion
see [10].

Definition 2.1. Let Γ be a locally compact abelian group, Γ̂ its Pontryagin dual, B a C∗-algebra,
λ a homomorphism of Γ into the unitary group of M(B) continuous in the strict topology of
M(B) and let ρ̂ be a continuous action of Γ̂ on B . The triple (B,λ, ρ̂) is called a Γ -product if:

ρ̂γ̂ (λγ ) = 〈γ̂ , γ 〉λγ

for any γ̂ ∈ Γ̂ and γ ∈ Γ .

The unitary representation λ : Γ → M(B) gives rise to a morphism of C∗-algebras λ ∈
Mor(C∗(Γ );B). Identifying C∗(Γ ) with C∞(Γ̂ ) via the Fourier transform, we get a morphism
λ ∈ Mor(C∞(Γ̂ );B). Let τγ̂ ∈ Aut(C∞(Γ̂ )) denote the shift automorphism:

τγ̂ (f )(γ̂ ′) = f (γ̂ ′ + γ̂ ) for all f ∈ C∞(Γ̂ ).

It is easy to see that λ intertwines the action ρ̂ with τ :

λ
(
τγ̂ (f )

) = ρ̂γ̂

(
λ(f )

)
(2)

for any f ∈ C∞(Γ̂ ). The following lemma seems to be known but we could not find any refer-
ence.

Lemma 2.2. Let (B,λ, ρ̂) be a Γ -product. Then the morphism λ ∈ Mor(C∞(Γ̂ );B) is injective.

Proof. The kernel of the morphism λ is an ideal in C∞(Γ̂ ) hence it is contained in a maximal
ideal. Therefore there exists γ̂0 such that f (γ̂0) = 0 for all f ∈ kerλ. Eq. (2) implies that kerλ is
τ invariant. Hence f (γ̂0 + γ̂ ) = 0 for all γ̂ . This shows that f = 0 and kerλ = {0}. �

In what follows we usually treat a C∗-algebra C∞(Γ̂ ) as a subalgebra of M(B) and we will
not use the embedding λ explicitly.
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Definition 2.3. Let (B,λ, ρ̂) be a Γ -product and x ∈ M(B). We say that x satisfies the Landstad
conditions if: ⎧⎪⎨⎪⎩

(i) ρ̂γ̂ (x) = x for all γ̂ ∈ Γ̂ ;
(ii) the map Γ � γ �→ λγ xλ∗

γ ∈ M(B) is norm continuous;
(iii) f xg ∈ B for all f,g ∈ C∞(Γ̂ ).

(3)

In computations it is useful to smear unitary elements λγ ∈ M(B) with a function h ∈ L1(Γ ):

λh =
∫
Γ

h(γ )λγ dγ ∈ M(B).

Note that λh ∈ M(B) coincides with the Fourier transform of h: F(h) ∈ C∞(Γ̂ ). In the original
form of Definition 2.3 given by Landstad the third condition had the form:

λf x, xλf ∈ B for all f,g ∈ L1(Γ ). (4)

Our conditions are simpler to check, which turns out to be useful in the example considered at
the end of the paper. As shown below both definitions of invariants are in fact equivalent. The
argument is very similar to the one given in [11] which shows that the third Landstad condition
can be also replaced by

λf x ∈ B for all f ∈ L1(Γ ).

Assume that x ∈ M(B) satisfies the Landstad conditions (3). Choose ε � 0 and a function f ∈
L1(Γ ). By the second Landstad condition we can find a finite volume neighborhood O of the
neutral element e ∈ Γ such that:

‖λγ x − xλγ ‖ � ε for all γ ∈ O. (5)

Let χO denote the normalized characteristic function of O ⊂ Γ :

χO(γ ) =
{

1
vol O if γ ∈ O,

0 if γ ∈ Γ \ O.

Then by (5) we have:

‖λχO x − xλχO ‖ � ε. (6)

If necessary, we can choose a smaller neighborhood and assume also that:

‖λf λχO − λf ‖ � ε. (7)

The calculation below is self-explanatory

λf x = λf x − λf λχ x + λf λχ x = (λf x − λf λχ x) + (λf λχ x − λf xλχ ) + λf xλχ
O O O O O O
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and together with (6) and (7) shows that:

‖λf x − λf xλχO ‖ � ε
(‖x‖ + ‖λf ‖).

Hence we can approximate λf x by elements of the form λf xλχO ∈ B . This shows that λf x ∈ B .
A similar argument proves the second inclusion: xλf ∈ B .

The set of elements satisfying Landstad’s conditions is a C∗-algebra. We shall call it the
Landstad algebra and denote it by A. It follows from Definition 2.3, that if a ∈ A then λγ aλ∗

γ ∈ A

and the map Γ ∈ γ �→ λγ aλ∗
γ ∈ A is norm continuous. An action of Γ on A defined in this way

will be denoted by ρ.
It can be shown that the embedding of A into M(B) is a morphism of C∗-algebras (cf. [8,

Section 2]). Hence the multipliers algebra M(A) can also be embedded into M(B). Let x ∈ M(B).
Then x ∈ M(A) if and only if it satisfies the following two conditions:

⎧⎪⎪⎨⎪⎪⎩
(i) ρ̂γ̂ (x) = x for all γ̂ ∈ Γ̂ ;
(ii) for all a ∈ A, the map

Γ � γ �→ λγ xλ∗
γ a ∈ M(B)

is norm continuous.

(8)

Note that the first and the second condition of (3) imply conditions (8).
Examples of Γ -products can be obtained via the crossed-product construction. Let A be a C∗-

algebra with an action ρ of Γ on A. There exists the standard action ρ̂ of the group Γ̂ on A�ρ Γ

and a unitary representation λγ ∈ M(A�ρ Γ ) such that the triple (A�ρ Γ,λγ , ρ̂) is a Γ -product.
It turns out that all Γ -products (B,λ, ρ̂) are crossed-products of the Landstad algebra A by the
action ρ implemented by λ. The following theorem is due to Landstad [10, Theorem 7.8.8]:

Theorem 2.4. A triple (B,λ, ρ̂) is a Γ -product if and only if there is a C∗-dynamical system
(A,Γ,ρ) such that B = A �ρ Γ . This system is unique up to isomorphism and A consist of the
elements in M(B) that satisfy Landstad conditions while ργ (a) = λγ aλ∗

γ .

Remark 2.5. The main problem in the proof of the above theorem is to show that the Landstad
algebra is not small. It is solved by integrating the action ρ̂ over the dual group. More precisely,
we say that an element x ∈ M(B)+ is ρ̂-integrable if there exists y ∈ M(B)+ such that

ω(y) =
∫

dγ̂ ω
(
ρ̂γ̂ (x)

)
for any ω ∈ M(B)∗+. We denote y by E(x). If x ∈ M(B) is not positive then we say that it is
ρ̂-integrable if it can be written as a linear combination of positive ρ̂-integrable elements. The
set of ρ̂-integrable elements will be denoted by D(E). The averaging procedure induces a map:

E : D(E) �→ M(B).

It can be shown that for a large class of x ∈ D(E), E(x) is an element of the Landstad algebra A.
This is the case for f1bf2 where b ∈ B and f1, f2 ∈ C∞(Γ̂ ) are square integrable. Moreover the
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map:

B � b �→ E(f1bf2) ∈ M(B) (9)

is continuous with the following estimate for norms

∥∥E(f1bf2)
∥∥ � ‖f1‖2‖b‖‖f2‖2 (10)

where ‖ · ‖2 is the L2-norm. Furthermore, we have

{
E(f1bf2): b ∈ B, f1, f2 ∈ C∞(Γ̂ ) ∩ L2(Γ̂ )

}cls = A. (11)

The last equality was not proven in [10]. We shall need it at some point so let us give a proof
here. Let a ∈ A and f1, f2, f3, f4 be continuous, compactly supported functions on Γ . Consider
an element x = λf1λf2aλf3λf4 . Clearly x = F(f1)F(f2)aF(f3)F(f4) and F(f1), . . . ,F(f4) ∈
L2(Γ̂ ), hence by (10) x ∈ D(E). We compute:

E(x) =
∫

dγ̂ ρ̂γ̂ (λf1λf2aλf3λf4)

=
∫

dγ̂ ρ̂γ̂

(∫
dγ1 dγ2 dγ3 dγ4 f1(γ1)f2(γ2)λγ1+γ2aλγ3+γ4f3(γ3)f4(γ4)

)
=

∫
dγ̂

∫
dγ1 dγ2 dγ3 dγ4

(〈γ̂ , γ1 + γ2 + γ3 + γ4〉f1(γ1)f2(γ2)

× λγ1+γ2aλγ3+γ4f3(γ3)f4(γ4)
)
.

Using properties of the Fourier transform we obtain:

E(x) =
∫

dγ1 dγ2 dγ3 ργ1+γ2(a)f1(γ1)f2(γ2)f3(γ3)f4(−γ1 − γ2 − γ3). (12)

If f1, f2, f3 approximate the Dirac delta function and f4(0) = 1 then using (12) we see that
elements E(λf1λf2aλf3λf4) approximate a in norm. This proves (11).

The following lemma is simple but very useful:

Lemma 2.6. Let (B,λ, ρ̂) be a Γ -product, A its Landstad algebra, ρ an action of Γ on A

implemented by λ and V ⊂ A a subset of the Landstad algebra which is invariant under the
action ρ and such that (C∞(Γ̂ )V C∞(Γ̂ ))cls = B . Then V cls = A.

Proof. This proof is similar to the proof of formula (11). Let f1, f2, f3, f4 be continuous, com-
pactly supported functions on Γ . Using (10) and (11) we get:

A = {
E
(
λf (λf vλf )λf

)
: v ∈ V

}cls
. (13)
1 2 3 4
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A simple calculation shows that:

E
(
λf1(λf2vλf3)λf4

) =
∫

dγ1 dγ2 dγ3 ργ1+γ2(v)f1(γ1)f2(γ2)f3(γ3)f4(−γ1 − γ2 − γ3).

Note that the integrand

Γ × Γ � (γ1, γ2, γ3) �→ ργ1+γ2(v)f1(γ1)f2(γ2)f3(γ3)f4(−γ1 − γ2 − γ3) ∈ V

is a norm continuous, compactly supported function, hence

E(λf1vλf2λf3) ∈ V cls.

From this and (13) we get V cls = A. �
The next proposition shows that morphisms of Γ -products induce morphisms of their Land-

stad algebras. The below result can be, to some extent, deduced from the results of paper [4].

Proposition 2.7. Let (B,λ, ρ̂) and (B ′, λ′, ρ̂′) be Γ -products and let A, A′ be Landstad algebras
for B and B ′ respectively. Assume that π ∈ Mor(B,B ′) satisfies:

• π(λγ ) = λ′
γ ;

• π(ρ̂γ̂ (b)) = ρ̂′
γ̂
(π(b)).

Then π(A) ⊂ M(A′) and π |A ∈ Mor(A,A′). Moreover, if π(B) ⊂ B ′ then π(A) ⊂ A′. If
π(B) = B then π(A) = A′.

Proof. We start by showing that π(A) ⊂ M(A′). Let a ∈ A. Then

ρ̂′
γ̂

(
π(a)

) = π
(
ρ̂γ̂ (a)

) = π(a).

Hence π(a) is ρ̂′ invariant. Moreover the map:

Γ � γ �→ λ′
γ π(a)λ′∗

γ = π
(
λγ aλ∗

γ

) ∈ M(A′)

is norm continuous. This shows that π(a) satisfies the first and the second Landstad condition of
(3) which guaranties that π(a) ∈ M(A′).

To prove that the homomorphism π restricted to A is in fact a morphism from A to A′ we
have to check that the set π(A)A′ is linearly dense in A′. We know that π(B)B ′ is linearly dense
in B ′. Using this fact in the last equality below, we get(

C∗(Γ )π(A)A′C∗(Γ )
)cls = (

π
(
C∗(Γ )A

)
A′C∗(Γ )

)cls

= (
π(B)B ′)cls = B ′.

Moreover

λ′
γ π(a)a′λ′∗

γ = π
(
λγ aλ∗

γ

)
λ′

γ a′λ′∗
γ ,
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hence the set π(A)A′ is ρ′-invariant (remember that ρ′ is the action of Γ implemented by λ′).
This shows that π(A)A′ satisfies the assumptions of Lemma 2.6 and gives the density of π(A)A′
in A′.

Assume now that π(B) ⊂ B ′. Let a ∈ A satisfy Landstad conditions (3). Then as was shown
at the beginning of the proof, π(a) satisfies the first and the second Landstad condition. More-
over f π(a)g = π(f ag) ∈ B ′ for all f,g ∈ C∞(Γ̂ ), hence π(a) also satisfies the third Landstad
condition. Therefore π(a) ∈ A′.

If π(B) = B ′ then the equality

E
(
f1π(b)f2

) = π
(
E(f1bf2)

)
(14)

and property (11) shows that π(A) = A′.
To prove (14) take ω ∈ M(B ′)∗. Then

ω
(
π

(
E(f1bf2)

)) = ω ◦ π
(
E(f1bf2)

) =
∫

dγ̂ ω ◦ π
(
ρ̂γ̂ (f1bf2)

)
=

∫
dγ̂ ω

(
ρ̂γ̂

(
f1π(b)f2

)) = ω

(∫
dγ̂ ρ̂γ̂

(
f1π(b)f2

))
= ω

(
E
(
f1π(b)f2

))
.

Hence π(E(f1bf2)) = E(f1π(b)f2). �
Let Γ ′ be an abelian locally compact group and φ : Γ �→ Γ ′ a continuous homomorphism.

For γ̂ ′ ∈ Γ̂ ′ we set φT (γ̂ ′) = γ̂ ′ ◦ φ ∈ Γ̂ . The map

φT : Γ̂ ′ �→ Γ̂ , φT (γ̂ ′) = γ̂ ′ ◦ φ

is a continuous group homomorphism called the dual homomorphism. We have a version of
Proposition 2.7 with two different groups.

Proposition 2.8. Let (B,λ, ρ̂) be a Γ -product, (B ′, λ′, ρ̂′) a Γ ′-product, φ : Γ �→ Γ ′ a sur-
jective continuous homomorphism and φT : Γ̂ ′ �→ Γ̂ the dual homomorphism. Assume that
π ∈ Mor(B,B ′) satisfies:

• π(λγ ) = λ′
φ(γ );

• ρ̂′
γ̂ ′(π(b)) = π(ρ̂φT (γ̂ ′)(b)).

Then π(A) ⊂ M(A′) and π |A ∈ Mor(A,A′). Moreover, if π(B) ⊂ B ′ then π(A) ⊂ A′. If
π(B) = B then π(A) = A′.

Let π ∈ Mor(B,B ′) be a morphism of C∗-algebras satisfying the assumptions of Proposi-
tion 2.7 such that π(B) = B ′. We have an exact sequence of C∗-algebras:

0 → kerπ → B
π→ B ′ → 0. (15)
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The C∗-algebra kerπ has a canonical Γ -product structure. Indeed, consider a morphism α ∈
Mor(B;kerπ) associated with the ideal kerπ ⊂ B:

α(b)j = bj

where b ∈ B and j ∈ kerπ . Note that

α(b) = b for any b ∈ kerπ ⊂ B. (16)

For all γ ∈ Γ we set λ̃γ = α(λγ ) ∈ M(kerπ). The map Γ � γ �→ λ̃γ ∈ M(kerπ) is a strictly
continuous representation of Γ on kerπ . Moreover kerπ is invariant under the action ρ̂. The
restriction of ρ̂ to kerπ will also be denoted by ρ̂. It is easy to check that ρ̂γ̂ (λ̃γ ) = 〈γ̂ , γ 〉λ̃γ

which shows that the triple (kerπ, λ̃, ρ̂) is a Γ -product. Let I , A, A′ be Landstad algebras for
the Γ -products (kerπ, λ̃, ρ̂), (B,λ, ρ̂), (B ′, λ′, ρ̂′) respectively. Our objective is to show that the
exact sequence (15) induces an exact sequence of Landstad algebras:

0 → I → A → A′ → 0. (17)

Let π̄ ∈ Mor(A;A′) denote a morphism of Landstad algebras induced by π . We assumed that π

is surjective, hence by Proposition 2.7 π̄(A) = A′ and we have an exact sequence of C∗-algebras:

0 → ker π̄ → A
π̄→ A′ → 0.

It is easy to check that the morphism α ∈ Mor(B;kerπ) satisfies the assumptions of Proposi-
tion 2.7, hence α(A) ⊂ M(I). If we show that α restricted to ker π̄ identifies it with the Landstad
algebra I , then the existence of the exact sequence (17) will be proven. There are two conditions
to be checked:

(i) α(ker π̄) = I ;
(ii) if x ∈ ker π̄ and α(x) = 0 then x = 0.

Ad(i) Let a ∈ ker π̄ and f ∈ C∞(Γ̂ ). Then af ∈ B ∩ kerπ , hence

α(a)f = α(af ) = af ∈ kerπ, (18)

where we used (16). This shows that α(a) satisfies the third Landstad condition for Γ -product
(kerπ, λ̃, ρ̂). As in Proposition 2.7 we check that α(a) also satisfies the first and the second
Landstad condition, hence α(ker π̄ ) ⊂ I . Furthermore, E(f1bf2) ∈ ker π̄ for all b ∈ kerπ , and
we have

α
(
E(f1bf2) = E

(
f1α(b)f2

)) = E(f1bf2).

Using (11) we see that α(ker π̄ ) = I .

Ad(ii) Assume that a ∈ ker π̄ and α(a) = 0. Note that af ∈ kerπ for any f ∈ C∞(Γ̂ ). Using
(16) we get af = α(af ) = α(a)α(f ) = 0. Hence af = 0 for any f ∈ C∞(Γ̂ ), which implies that
a = 0. We can summarize the above considerations in the following:
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Proposition 2.9. Let (B,λ, ρ̂), (B ′, λ′, ρ̂′) be Γ -products with Landstad algebras A, A′ respec-
tively, π ∈ Mor(B,B ′) a surjective morphism intertwining ρ̂ and ρ̂′ such that π(λγ ) = λ′

γ . Let

(kerπ, λ̃, ρ̂) be the Γ -product described after Proposition 2.8 and let I ⊂ M(kerπ) be its Land-
stad algebra. Then I can be embedded into A and we have a Γ -equivariant exact sequence:

0 → I → A
π̄→ A′ → 0

where π̄ = π |A.

3. Rieffel deformation of C∗-algebras

3.1. Deformation procedure

Let (B,λ, ρ̂) be a Γ -product. A 2-cocycle on the group Γ̂ is a continuous function Ψ : Γ̂ ×
Γ̂ → T

1 satisfying:

(i) Ψ (e, γ̂ ) = Ψ (γ̂ , e) = 1 for all γ̂ ∈ Γ̂ ;
(ii) Ψ (γ̂1, γ̂2 + γ̂3)Ψ (γ̂2, γ̂3) = Ψ (γ̂1 + γ̂2, γ̂3)Ψ (γ̂1, γ̂2) for all γ̂1, γ̂2, γ̂3 ∈ Γ̂ .

(For the theory of 2-cocycles we refer to [5].)
For γ̂ , γ̂1 we set Ψγ̂ (γ̂1) = Ψ (γ̂1, γ̂ ). It defines a family of functions Ψγ̂ : Γ̂ �→ T

1. Using the

embedding λ ∈ Mor(C∞(Γ̂ );B) we get a strictly continuous family of unitary elements

Uγ̂ = λ(Ψγ̂ ) ∈ M(B). (19)

The 2-cocycle condition for Ψ gives:

Uγ̂1+γ̂2 = Ψ (γ̂1, γ̂2)Uγ̂1 ρ̂γ̂1(Uγ̂2). (20)

Theorem 3.1. Let (B,λ, ρ̂) be a Γ -product and let Ψ be a 2-cocycle on Γ̂ . For any γ̂ ∈ Γ̂ the
map

ρ̂Ψ
γ̂

: B � b �→ ρ̂Ψ
γ̂

(b) = U∗
γ̂
ρ̂γ̂ (b)Uγ̂ ∈ B

is an automorphism of C∗-algebra B . Moreover,

ρ̂Ψ : Γ̂ � γ̂ �→ ρ̂Ψ
γ̂

∈ Aut(B)

is a strongly continuous action of Γ̂ on B and the triple (B,λγ , ρ̂Ψ ) is a Γ -product.

Proof. Using Eq. (20) we get

ρ̂Ψ
γ̂1+γ̂2

(b) = U∗
γ̂1+γ̂2

ρ̂γ̂1+γ̂2(b)Uγ̂1+γ̂2

= Ψ (γ̂1, γ̂2)U
∗
γ̂1

ρ̂γ1(Uγ̂2)
∗ρ̂γ̂1

(
ρ̂γ̂2(b)

)
ρ̂γ1(Uγ̂2)Uγ̂1Ψ (γ̂1, γ̂2)

= U∗ ρ̂γ

(
U∗ ρ̂γ̂ (b)Uγ̂

)
Uγ̂ = ρ̂Ψ

(
ρ̂Ψ (b)

)
.

γ̂1 1 γ̂2 2 2 1 γ̂1 γ̂2
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This shows that ρ̂Ψ is an action of Γ̂ on B . Applying ρ̂Ψ to λγ we get:

ρ̂Ψ
γ̂

(λγ ) = U∗
γ̂
ρ̂γ̂ (λγ )Uγ̂ = 〈γ̂ , γ 〉U∗

γ̂
λγ Uγ̂ = 〈γ̂ , γ 〉λγ .

The last equality follows from commutativity of Γ . Hence the triple (B,λγ , ρ̂Ψ ) is a Γ -
product. �

The above theorem leads to the following procedure of deformation of C∗-algebras. The data
needed to perform the deformation is a triple (A,ρ,Ψ ) consisting of a C∗-algebra A, an action ρ

of a locally compact abelian group Γ and a 2-cocycle Ψ on Γ̂ . Such a triple is called deformation
data. The resulting C∗-algebra will be denoted AΨ . The procedure is carried out in three steps:

(1) Construct the crossed product B = A �ρ Γ . Let (B,λ, ρ̂) be the standard Γ -product struc-
ture of the crossed product.

(2) Introduce a Γ -product (B,λ, ρ̂Ψ ) as described in Theorem 3.1.
(3) Let AΨ be the Landstad algebra of the Γ -product (B,λ, ρ̂Ψ ).

Note that AΨ still carries an action ρΨ of Γ given by

ρΨ
γ (x) = λγ xλ∗

γ .

In this case it is not the formula defining the action itself, but its domain of definition that changes
under deformation. The triple (AΨ ,Γ,ρΨ ) will be called a twisted dynamical system. The pro-
cedure of deformation described above is called the Rieffel deformation. Using Theorem 2.4 we
immediately get

Proposition 3.2. Let (A,ρ,Ψ ) be deformation data and (AΨ ,Γ,ρΨ ) be the twisted dynamical
system considered above. Then

A �ρ Γ = AΨ
�ρΨ Γ.

In what follows we investigate the dependence of the Rieffel deformation on the choice of a
2-cocycle. Let f : Γ̂ �→ T

1 be a continuous function such that f (e) = 1. For all γ̂1, γ̂2 ∈ Γ̂ we
set

∂f (γ̂1, γ̂2) = f (γ̂1 + γ̂2)

f (γ̂1)f (γ̂2)
.

One can check that the map

∂f : Γ̂ × Γ̂ � (γ̂1, γ̂2) �→ f (γ̂1 + γ̂2)

f (γ̂1)f (γ̂2)
∈ T

is a 2-cocycle. 2-cocycles of this form are considered to be trivial. We say that a pair of 2-cocycles
Ψ1,Ψ2 is in the same cohomology class if they differ by a trivial 2 cocycle: Ψ2 = Ψ1∂f .
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Theorem 3.3. Let (A,ρ,Ψ ) be deformation data, giving rise to a Landstad algebra AΨ . Then
the isomorphism class of the Landstad algebra AΨ depends only on the cohomology class of Ψ .

Theorem 3.3 easily follows from the next two lemmas.

Lemma 3.4. Let (A,ρ,Ψ ) be deformation data with a trivial 2-cocycle Ψ = ∂f . Then A and
AΨ are isomorphic. More precisely, treating f as an element of C∗-algebra M(A�ρ Γ ) we have
AΨ = {f af ∗: a ∈ A}.

Proof. Fixing the second variable in Ψ we get a family Ψγ̂ of the form

Ψγ̂ = f (γ̂ )f ∗τγ̂ (f ), (21)

where τγ̂ (f )(γ̂ ′) = f (γ̂ + γ̂ ′). Let Uγ̂ ∈ M(A �ρ Γ ) be the unitary element given by Ψγ̂

(cf. (19)). The function f can be embedded into M(A �ρ Γ ) and using (21) we get:

Uγ̂ = f (γ̂ )f ∗ρ̂γ̂ (f ). (22)

Assume that a ∈ A. Then

ρ̂Ψ
γ̂

(
f af ∗) = U∗

γ̂
ρ̂γ̂

(
f af ∗)Uγ̂

= U∗
γ̂
ρ̂γ̂ (f )aρ̂γ̂ (f )∗Uγ̂ .

Using Eq. (22) we see that

ρ̂Ψ
γ̂

(
f af ∗) = f (γ̂ )f ρ̂γ̂ (f )∗ρ̂γ̂ (f )aρ̂γ̂ (f )∗f (γ̂ )f ∗ρ̂γ̂ (f ) = f af ∗

which means that the element f af ∗ satisfies the first Landstad condition for the Γ -product
(A �ρ Γ,λ, ρ̂Ψ ). It is easy to check that it also satisfies the second and third Landstad condition,
hence f Af ∗ ⊂ AΨ . An analogous reasoning proves the opposite inclusion f Af ∗ ⊃ AΨ . �

Let Ψ1,Ψ2 be a pair of 2-cocycles on Γ̂ . Their product Ψ1Ψ2 is also a 2-cocycle. Let (A,Γ,ρ)

be a dynamical system. The deformation data (A,ρ,Ψ1) gives rise to the twisted dynamical
system (AΨ1,Γ,ρΨ1). Furthermore, the triple (AΨ1, ρΨ1,Ψ2) is deformation data which gives
rise to the C∗-algebra (AΨ1)Ψ2 . At the same time, using the deformation data (A,ρ,Ψ1Ψ2) we
can introduce the C∗-algebra AΨ1Ψ2 .

Lemma 3.5. Let (A,Γ,ρ) be a Γ -product and let Ψ1,Ψ2 be 2-cocycles on the group Γ̂ . Let
(AΨ1)Ψ2 be a C∗-algebra constructed from the deformation data (AΨ1, ρΨ1,Ψ2) and let AΨ1Ψ2

be a C∗-algebra constructed from the deformation data (A,ρ,Ψ1Ψ2). Then

AΨ1Ψ2 � (
AΨ1

)Ψ2 .
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Proof. The algebras AΨ1Ψ2 and (AΨ1)Ψ2 can be embedded into M(A �ρ Γ ): they are Landstad
algebras of the Γ -products (A �ρ Γ,λ, ρ̂Ψ1Ψ2) and (A �ρ Γ,λ, (ρ̂Ψ1)Ψ2) respectively. Note that
U

Ψ1Ψ2
γ̂

= U
Ψ1
γ̂

U
Ψ2
γ̂

, hence

ρ̂
Ψ1Ψ2
γ̂

(b) = UΨ1Ψ2∗
γ̂ ρ̂γ̂ (b)U

Ψ1Ψ2
γ̂

= UΨ2
∗
γ̂ UΨ1

∗
γ̂ ρ̂γ̂ (b)U

Ψ1
γ̂

U
Ψ2
γ̂

= (
ρ̂Ψ1

)Ψ2
γ̂

(b).

This shows that ρ̂Ψ1Ψ2 = (ρ̂Ψ1)Ψ2 and implies that the (A �ρ Γ,λ, ρ̂Ψ1Ψ2) and (A �ρ Γ,

λ, (ρ̂Ψ1)Ψ2) are in fact the same Γ -products. Therefore their Landstad algebras coincide. �
3.2. Functorial properties of the Rieffel deformation

Let (B,λ, ρ̂) be a Γ -product, Ψ a 2-cocycle on the dual group Γ̂ and H a Hilbert space. Using
Theorem 3.1 we introduce the twisted Γ -product (B,λ, ρ̂Ψ ). Let A,AΨ ⊂ M(B) be Landstad
algebras of (B,λ, ρ̂) and (B,λ, ρ̂Ψ ) respectively and π ∈ Rep(B;H) a representation of the
C∗-algebra B . The representation of B extends to multipliers M(B) and can be restricted to A

and AΨ .

Theorem 3.6. Let (B,λ, ρ̂), (B,λ, ρ̂Ψ ) be Γ -products considered above, A, AΨ their Landstad
algebras and π a representation of C∗-algebra B on a Hilbert space H . Then π is faithful on A

if and only if it is faithful on AΨ .

Proof. Assume that π is faithful on A and let a ∈ AΨ be such that π(a) = 0. Invariance of a

with respect to the action ρ̂Ψ implies that ρ̂γ̂ (a) = Uγ̂ aU∗
γ̂

. Hence

ρ̂γ̂ (f )Uγ̂ aU∗
γ̂
ρ̂γ̂

(
gf ∗λ−γ

) = ρ̂γ̂

(
f agf ∗λ−γ

)
(23)

for all f,g ∈ C∞(Γ̂ ). The element a ∈ AΨ belongs to kerπ therefore

π
(
ρ̂γ̂ (f )Uγ̂ aU∗

γ̂
ρ̂γ̂

(
gf ∗λ−γ

)) = 0.

Combining it with Eq. (23) we obtain π(ρ̂γ̂ (f agf ∗λ−γ )) = 0.

Assume now that f,g ∈ L2(Γ̂ ) ∩ C∞(Γ̂ ). Let E denote the averaging map with respect to
undeformed action ρ̂. Then f agf ∗λ−γ ∈ D(E) and E(f agf ∗λ−γ ) = 0. Indeed, let ω ∈ B(H)∗.
Then

ω
(
π

(
E
(
f agf ∗λ−γ

))) = ω ◦ π
(
E
(
f agf ∗λ−γ

))
=

∫
dγ̂ ω

(
π

(
ρ̂
(
f agf ∗λ−γ

))) = 0.

Hence ω(π(E(f agf ∗λ−γ ))) = 0 for any ω ∈ B(H)∗ and π(E(f agf ∗λ−γ )) = 0. But
E(f agf ∗λ−γ ) ∈ A and π is faithful on A hence

E
(
f agf ∗λ−γ

) = 0 for all f,g ∈ L2(Γ̂ ) ∩ C∞(Γ̂ ). (24)
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We will show that the above equation may be satisfied only if a = 0. Let fε ∈ L1(Γ ) be an
approximation of the Dirac delta function as used in Theorem 7.8.7 of [10]. This theorem says
that for any y of the form y = f agf ∗ we have the following norm convergence:

lim
ε→0

∫
E(yλ−γ )λγ λfε dγ = y.

Using (24) we get E(yλ−γ ) = E(f agf ∗λ−γ ) = 0 hence f agf ∗ = 0 for all f,g ∈ L2(Γ̂ ) ∩
C∞(Γ̂ ). This immediately implies that a = 0 and shows that π is faithful on AΨ . A similar
argument shows that faithfulness of π on AΨ implies its faithfulness on A. �
Definition 3.7. Let (A,ρ,Ψ ), (A′, ρ′,Ψ ′) be deformation data with groups Γ and Γ ′ respec-
tively. Let φ : Γ �→ Γ ′ be a surjective continuous homomorphism, φT : Γ̂ ′ �→ Γ̂ the dual
homomorphism and π ∈ Mor(A,A′). We say that (π,φ) is a morphism of deformation data
(A,ρ,Ψ ) and (A′, ρ′,Ψ ′) if:

• Ψ ◦ (φT × φT ) = Ψ ′;
• ρ′

φ(γ )π(a) = π(ργ (a)).

Using universal properties of crossed products, we see that a morphism (π,φ) of the deforma-
tion data induces the morphism πφ ∈ Mor(A � Γ ;A′

� Γ ′) of crossed products. One can check
that πφ satisfies the assumptions of Proposition 2.8 with the Γ -product (A �ρ Γ,λ, ρ̂) and the
Γ ′-product (A′

�ρ′ Γ ′, λ′, ρ̂′). This property is not spoiled by the deformation procedure. Apply-
ing Proposition 2.8 and Theorem 3.6 to the morphism πφ ∈ Mor(A�ρ Γ ;A′

�ρ′ Γ ′), Γ -product
(A �ρ Γ,λ, ρ̂Ψ ) and Γ ′-product (A′

�ρ′ Γ ′, λ′, ρ̂′Ψ ′
) we get

Proposition 3.8. Let (π,φ) be a morphism of deformation data (A,ρ,Ψ ) and (A′, ρ′,Ψ ′)
and let πφ ∈ Mor(A �ρ Γ ;A′

�ρ′ Γ ′) be the induced morphism of the crossed products
considered above. Then πφ(AΨ ) ⊂ M(A′Ψ ′

) and πφ |AΨ ∈ Mor(AΨ ;A′Ψ ′
). Morphism π ∈

Mor(A;A′) is injective if and only if so is πφ |AΨ ∈ Mor(AΨ ;A′Ψ ′
) and π(A) = A′ if and only

if πφ(AΨ ) = A′Ψ ′
.

Let (I,Γ,ρI ), (A,Γ,ρ), (A′,Γ,ρ′) be dynamical systems and let

0 → I → A
π→ A′ → 0 (25)

be an exact sequence of C∗-algebras which is Γ -equivariant. Morphism π induces a surjective
morphism π ∈ Mor(A �ρ Γ ;A′

�ρ′ Γ ). It sends A to A′ by means of π and it is identity on
C∗(Γ ). Its kernel can be identified with I �ρI Γ so we have an exact sequence of crossed
product C∗-algebras:

0 → I �ρI Γ → A �ρ Γ
π→ A′

�ρ′ Γ → 0. (26)

Note that π ∈ Mor(A �ρ Γ ;A′
�ρ′ Γ ) satisfies the assumptions of Proposition 2.9 with the

Γ -products (A �ρ Γ,λ, ρ̂) and (A′
�ρ′ Γ,λ′, ρ̂′). This property is not spoiled by the defor-

mation procedure. Hence applying Proposition 2.9 to the Γ -products (A �ρ Γ,λ, ρ̂Ψ ) and
(A′

�ρ′ Γ,λ′, ρ̂′Ψ ) we obtain
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Theorem 3.9. Let (I,Γ,ρI ), (A,Γ,ρ), (A′,Γ,ρ′) be dynamical systems. Let

0 → I → A
π→ A′ → 0

be an exact sequence of C∗-algebras which is Γ -equivariant, Ψ a 2-cocycle on the dual group
Γ̂ and I Ψ , AΨ , A′Ψ the Landstad algebras constructed from the deformation data (I, ρI ,Ψ ),
(A,ρ,Ψ ), (A′, ρ′,Ψ ). Then we have the Γ -equivariant exact sequence:

0 → I Ψ → AΨ πΨ−→ A′Ψ → 0

where the morphism πΨ ∈ Mor(AΨ ;A′Ψ ) is the restriction of the morphism π ∈ Mor(A �ρ Γ,

A′
�ρ′ Γ ) to the Landstad algebra AΨ ⊂ M(A �ρ Γ ).

3.3. Preservation of nuclearity

Theorem 3.10. Let (A,ρ,Ψ ) be the deformation data which gives rise to the Landstad alge-
bra AΨ . C∗-algebra A is nuclear if and only if AΨ is.

The proof follows from the equality A�ρ Γ = AΨ
�ρΨ Γ (Proposition 3.2) and the following:

Theorem 3.11. Let A be a C∗-algebra with an action ρ of an abelian group Γ . Then A is nuclear
if and only if A �ρ Γ is nuclear.

The above theorem can be deduced from Theorem 3.3 and Theorem 3.16 of [14].

3.4. K-theory in the case of Γ = R
n

In this section we will prove the invariance of K-groups under the Rieffel deformation in the
case of Γ = R

n. The tool we use is the analogue of the Thom isomorphism due to Connes [2]:

Theorem 3.12. Let A be a C∗-algebra, and ρ an action of R
n on A. Then

Ki (A) � Ki+n

(
A �ρ R

n
)
.

Theorem 3.13. Let (A,R
n, ρ) be a dynamical system and let (A,ρ,Ψ ) be the deformation data

giving rise to the Landstad algebra AΨ . Then

Ki (A) � Ki

(
AΨ

)
.

Proof. Proposition 3.2 asserts that

A �ρ R
n � AΨ

�ρΨ R
n.

Hence using Theorem 3.12 we get

Ki (A) � Ki+n

(
A �ρ R

n
) � Ki+n

(
AΨ

�ρΨ R
n
) � Ki

(
AΨ

)
. �
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4. Rieffel deformation of locally compact groups

4.1. From an abelian subgroup with a dual 2-cocycle to a quantum group

In this section we shall apply our deformation procedure to the algebra of functions on a
locally compact group G. First we shall fix a notation and introduce auxiliary objects. Let
G � g �→ Rg ∈ B(L2(G)) be the right regular representation of G on Hilbert space L2(G) of
the right invariant Haar measure. Let C∞(G) ⊂ B(L2(G)) be the C∗-algebra of continuous
functions on G vanishing at infinity, C∗

r (G) ⊂ B(L2(G)) the reduced group C∗-algebra gener-
ated by Rg and V ∈ B(L2(G × G)) the Kac–Takesaki operator: Vf (g,g′) = f (gg′, g′) for any
f ∈ L2(G × G). By 	G ∈ Mor(C∞(G);C∞(G) ⊗ C∞(G)) we will denote the comultiplication
on C∞(G). It is known that the Kac–Takesaki operator V is an element of M(C∗

r (G) ⊗ C∞(G))

which implements comultiplication:

	G(f ) = V (f ⊗ 1)V ∗

for any f ∈ C∞(G). Let Γ ⊂ G be an abelian subgroup of G, Γ̂ its dual group and 	
Γ̂

∈
Mor(C∞(Γ̂ );C∞(Γ̂ )⊗C∞(Γ̂ )) the comultiplication on C∞(Γ̂ ). Let πR ∈ Mor(C∗(Γ );C∗

r (G))

be a morphism induced by the following representation of the group Γ :

Γ � γ �→ Rγ ∈ M
(
C∗

r (G)
)
.

Identifying C∗(Γ ) with C∞(Γ̂ ) we get πR ∈ Mor(C∞(Γ̂ );C∗
r (G)).

Let us fix a 2-cocycle Ψ on the group Γ̂ . Our objective is to show that an action of Γ 2 on the
C∗-algebra C∞(G) given by the left and right shifts and a 2-cocycle on Γ̂ 2 determined by Ψ ,
give rise to a quantum group. We shall describe this construction step by step.

Let ρR be the action of Γ on C∞(G) given by right shifts: ρR
γ (f )(g) = f (gγ ) for any f ∈

C∞(G). Let BR be the crossed product C∗-algebra C∞(G) �ρR Γ and (BR,λ, ρ̂) the standard

Γ -product structure on it. The standard embeddings of C∞(G) and C∞(Γ̂ ) into M(BR) enable
us to treat (πR ⊗ id)Ψ and V ∗(1 ⊗ f )V (where f ∈ C∞(Γ̂ )) as elements of M(C∗

r (G) ⊗ BR).
One can show that V ∗(1 ⊗ λγ )V = Rγ ⊗ λγ for all γ ∈ Γ , which implies that

V ∗(1 ⊗ f )V = (
πR ⊗ id

)
	

Γ̂
(f ) (27)

for any f ∈ C∞(Γ̂ ). Using Ψ we deform the standard Γ -product structure on BR to (BR,λ, ρ̂Ψ ).

Proposition 4.1. Let (BR,λ, ρ̂Ψ ) be the deformed Γ -product and V (πR ⊗ id)Ψ ∈ M(C∗
r (G) ⊗

BR) the unitary element considered above. Then V (πR ⊗ id)Ψ is invariant with respect to the
action id ⊗ ρ̂Ψ .

Proof. The 2-cocycle equation for Ψ implies that:

(
id ⊗ ρ̂Ψ

γ̂

)
Ψ = (id ⊗ ρ̂γ̂ )Ψ

= (I ⊗ Uγ̂ )∗	 ˆ (Uγ̂ )Ψ.

Γ
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The second leg of V is invariant with respect to the action ρ̂ hence

(
id ⊗ ρ̂Ψ

γ̂

)
V = (

I ⊗ U∗
γ̂

)(
(id ⊗ ρ̂γ̂ )V

)
(I ⊗ Uγ̂ )

= (
I ⊗ U∗

γ̂

)
V (I ⊗ Uγ̂ ) = V

(
πR ⊗ id

)
	

Γ̂
(Uγ̂ )∗(I ⊗ Uγ̂ ).

The last equality follows from (27). Finally

(
id ⊗ ρ̂Ψ

γ̂

)[
V

(
πR ⊗ id

)
Ψ

]
= V

(
πR ⊗ id

)
	

Γ̂
(Uγ̂ )∗(I ⊗ Uγ̂ )(I ⊗ Uγ̂ )∗

(
πR ⊗ id

)
	

Γ̂
(Uγ̂ )

(
πR ⊗ id

)
Ψ

= V
(
πR ⊗ id

)
Ψ

where in the last equality we used the fact that Uγ̂ is unitary. �
Let ρL be the action of Γ on C∞(G) given by left shifts: ρL

γ (f )(g) = f (γ −1g) for any

f ∈ C∞(G). Let BL be the crossed product C∗-algebra C∞(G) �ρL Γ and let (BL,λ, ρ̂) be the

standard Γ -product structure on it. For any γ̂1, γ̂2 ∈ Γ̂ we set

Ψ �(γ̂1, γ̂2) = Ψ (γ̂1,−γ̂1 − γ̂2).

This defines a function Ψ � ∈ Cb(Γ̂
2). The standard embeddings of C∞(G) and C∞(Γ̂ ) into

M(BL) enable us to treat (πR ⊗ id)Ψ �V and V (1 ⊗ f )V ∗ (where f ∈ C∞(Γ̂ )) as elements of
M(C∗

r (G) ⊗ BR). One can show that V (1 ⊗ λγ )V ∗ = Rγ ⊗ λγ for all γ ∈ Γ , which implies that

V (1 ⊗ f )V ∗ = (
πR ⊗ id

)
	

Γ̂
(f ) (28)

for any f ∈ C∞(Γ̂ ). Let Ψ̃ denote a 2-cocycle defined by the formula:

Ψ̃ (γ̂1, γ̂2) ≡ Ψ (−γ̂1,−γ̂2)

for any γ̂1, γ̂2 ∈ Γ̂ . Using Ψ̃ we deform the standard Γ -product structure on BL to (BL,λ, ρ̂Ψ̃ ).

Proposition 4.2. Let (BL,λ, ρ̂Ψ̃ ) be the deformed Γ -product and (πR ⊗ id)Ψ �V ∈ M(C∗
r (G) ⊗

BL) the unitary element considered above. Then (πR ⊗ id)Ψ �V ∈ M(C∗
r (G) ⊗ BL) is invariant

with respect to the action id ⊗ ρ̂Ψ̃ .

Proof. One can check that

Ψ �(γ̂1, γ̂2 + γ̂ ) = Ψ (γ̂1,−γ̂1 − γ̂2 − γ̂ ) = Ψ̃ (γ̂2, γ̂ )Ψ̃ (γ̂1 + γ̂2, γ̂ )Ψ �(γ̂1, γ̂2).

Hence

(
id ⊗ ρ̂Ψ̃

)
Ψ � = (I ⊗ Ũγ̂ )	 ˆ (Ũγ̂ )∗Ψ �.
γ̂ Γ
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Moreover (
id ⊗ ρ̂Ψ̃

γ̂

)
V = (I ⊗ Ũγ̂ )∗V (I ⊗ Ũγ̂ ) = (I ⊗ Ũγ̂ )∗

(
πR ⊗ id

)
	

Γ̂
(Ũγ̂ )V .

Following the proof of Proposition 4.1 we get our assertion. �
Let ρ denote the action of Γ 2 on C∞(G) given by the left and right shifts, B the crossed

product C∗-algebra C∞(G) �ρ Γ 2 and (B,λ, ρ̂) the standard Γ 2-product. The standard embed-
ding of C∞(G) into M(B) applied to the second leg of V ∈ M(C∗

r (G)⊗ C∞(G)) embeds V into
M(C∗

r (G)⊗B). We have two embeddings λL and λR of C∞(Γ̂ ) into M(B) corresponding to the
left and the right action of Γ . Moreover by Eqs. (27) and (28) we have:

V
(
1 ⊗ λL(f )

)
V ∗ = (

πR ⊗ λL
)
	

Γ̂
(f ),

V ∗(1 ⊗ λR(f )
)
V = (

πR ⊗ λR
)
	

Γ̂
(f ) (29)

for any f ∈ C∞(Γ̂ ). Note also that:

(id ⊗ λγ1,γ2)V
(
id ⊗ λ∗

γ1,γ2

) = (R−γ1 ⊗ I )V (Rγ2 ⊗ I ). (30)

Let us introduce elements Ψ L and Ψ R :

Ψ L = (
πR ⊗ λL

)(
Ψ �

)
, Ψ R = (

πR ⊗ λR
)
(Ψ ) ∈ M

(
C∗

r (G) ⊗ B
)
. (31)

Multiplying Ψ L,V and Ψ R we get the unitary element:

V Ψ = Ψ LV Ψ R ∈ M
(
C∗

r (G) ⊗ B
)
. (32)

Using the 2-cocycle Ψ̃ ⊗ Ψ on Γ̂ 2 we deform the standard Γ 2-product structure on B to
(B,λ, ρ̂Ψ̃ ⊗Ψ ).

Proposition 4.3. Let (B,λ, ρ̂Ψ̃ ⊗Ψ ) be the deformed Γ 2-product structure and V Ψ ∈
M(C∗

r (G) ⊗ B) the unitary element given by (32). Then V Ψ is invariant with respect to the

action id ⊗ ρ̂Ψ̃ ⊗Ψ . Moreover, for any γ1, γ2 ∈ Γ we have

(id ⊗ λγ1,γ2)V
Ψ

(
id ⊗ λ∗

γ1,γ2

) = (R−γ1 ⊗ I )V Ψ (Rγ2 ⊗ I ). (33)

Proof. Invariance of V Ψ with respect to the action id ⊗ ρ̂Ψ̃ ⊗Ψ follows easily from Proposi-
tions 4.1 and 4.2. The group Γ is abelian, hence

(id ⊗ λγ1,γ2)V
Ψ

(
id ⊗ λ∗

γ1,γ2

) = (id ⊗ λγ1,γ2)Ψ
LV Ψ R

(
id ⊗ λ∗

γ1,γ2

)
= Ψ L(id ⊗ λγ1,γ2)V

(
id ⊗ λ∗

γ1,γ2

)
Ψ R.

Using (30) we get
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(id ⊗ λγ1,γ2)V
Ψ

(
id ⊗ λ∗

γ1,γ2

) = Ψ L(R−γ1 ⊗ I )V (Rγ2 ⊗ I )Ψ R

= (R−γ1 ⊗ I )Ψ LV Ψ R(Rγ2 ⊗ I )

= (R−γ1 ⊗ I )V Ψ (Rγ2 ⊗ I ).

This proves (33). �
The first leg of V Ψ belongs to C∗

r (G) so it acts on L2(G). It is well known that slices of Kac–
Takesaki operator V by normal functionals ω ∈ B(L2(G))∗ give a dense subspace of C∞(G)

(see [1, Section 2]). We will show that slices of V Ψ give a dense subspace of C∞(G)Ψ̃ ⊗Ψ .

Theorem 4.4. Let (B,λ, ρ̂Ψ̃ ⊗Ψ ) be the deformed Γ 2-product structure and V Ψ ∈ M(C∗
r (G)⊗B)

the unitary operator given by (32). Then

V = {
(ω ⊗ id)V Ψ : ω ∈ B

(
L2(G)

)
∗
}

is a norm dense subset of C∞(G)Ψ̃ ⊗Ψ .

Proof. We need to check that for any ω ∈ B(L2(G))∗ the element (ω ⊗ id)V Ψ ∈ M(B) satisfies
Landstad conditions for Γ 2-product (B,λ, ρ̂Ψ̃ ⊗Ψ ). The first Landstad condition is equivalent to
the invariance of the second leg of V Ψ with respect to the action ρ̂Ψ̃ ⊗Ψ (Proposition 4.3). Using
(33) we get

λγ1,γ2

[
(ω ⊗ id)V Ψ

]
λ∗

γ1,γ2
= (Rγ2 · ω · R−γ1 ⊗ id)V Ψ (34)

for any γ1, γ2 ∈ Γ . The norm continuity of the map

Γ 2 � (γ1, γ2) �→ Rγ2 · ω · R−γ1 ∈ B
(
L2(G)

)
∗

implies that (ω ⊗ id)V Ψ satisfies the second Landstad condition. To check the third Landstad
condition we need to show that

f1
[
(ω ⊗ id)V Ψ

]
f2 ∈ B (35)

for any f1, f2 ∈ C∞(Γ̂ × Γ̂ ). Let us consider the set

W = {
f1

[
(ω ⊗ id)V Ψ

]
f2: f1, f2 ∈ C∞(Γ̂ × Γ̂ ), ω ∈ B

(
L2(G)

)
∗
}cls

. (36)

We will prove that W = B which is a stronger property than (35). Taking for ω ∈ B(L2(G))∗
elements of the form πR(h3) · μ · πR(h4), for f1 ∈ C∞(Γ̂ × Γ̂ ) elements λR(h1)λ

L(h2) where
h1, h2 ∈ C∞(Γ̂ ) and similarly for f2 we do not change the closed linear span. Thus we have:

W = {
λR(h1)λ

L(h2)
[((

πR(h3) · μ · πR(h4)
) ⊗ id

)(
V Ψ

)]
λR(h5)λ

L(h6):

h1, h2, . . . , h6 ∈ C∞(Γ̂ ),μ ∈ B
(
L2(G)

) }cls
.
∗
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Note that

λR(h1)λ
L(h2)

[((
πR(h3) · μ · πR(h4)

) ⊗ id
)(

V Ψ
)]

λR(h5)λ
L(h6)

= λR(h1)
[
(μ ⊗ id)

(
πR ⊗ λL

)(
Ψ �(h4 ⊗ h2)

)
V

(
πR ⊗ λR

)(
Ψ (h3 ⊗ h5)

)]
λL(h6),

hence W coincides with the following set:

{
λR(h1)

[
(μ ⊗ id)

(
πR ⊗ λL

)(
Ψ �(h4 ⊗ h2)

)
V

(
πR ⊗ λR

)(
Ψ (h3 ⊗ h5)

)]
λL(h6):

h1, h2, . . . , h6 ∈ C∞(Γ̂ ),μ ∈ B
(
L2(G)

)
∗
}cls

.

Using the fact that Ψ and Ψ � are unitary we get

W = {
λR(h1)

[
(μ ⊗ id)

(
πR ⊗ λL

)
(h4 ⊗ h2)V

(
πR ⊗ λR

)
(h3 ⊗ h5)

]
λL(h6):

h1, h2, . . . , h6 ∈ C∞(Γ̂ ),μ ∈ B
(
L2(G)

)
∗
}cls

= {
λR(h1)λ

L(h2)
[((

πR(h3) · μ · πR(h4)
) ⊗ id

)
(V )

]
λR(h5)λ

L(h6):

h1, h2, . . . , h6 ∈ C∞(Γ̂ ),μ ∈ B
(
L2(G)

)
∗
}cls

.

Now again

{
λR(h1)λ

L(h2)
[((

πR(h3) · μ · πR(h4)
) ⊗ id

)
(V )

]
λR(h5)λ

L(h6):

h1, h2, . . . , h6 ∈ C∞(Γ̂ ),μ ∈ B
(
L2(G)

)
∗
}cls

= {
f1

[
(ω ⊗ id)V

]
f2: f1, f2 ∈ C∞(Γ̂ × Γ̂ ),ω ∈ B

(
L2(G)

)
∗
}cls

hence we get

W = {
f1

[
(ω ⊗ id)V

]
f2: f1, f2 ∈ C∞(Γ̂ × Γ̂ ),ω ∈ B

(
L2(G)

)
∗
}cls

.

The set {(ω ⊗ id)V : ω ∈ B(L2(G))∗} is dense in C∞(G) which shows that W = B and proves
formula (36).

We see that the elements of the set V satisfy the Landstad conditions. To prove that V is
dense in C∞(G)Ψ̃ ⊗Ψ we use Lemma 2.6. According to (34), V is a ρΨ̃ ⊗Ψ -invariant subspace of
C∞(G)Ψ̃ ⊗Ψ . Moreover we have that (C∗(Γ 2)V C∗(Γ 2))cls = W = B . Hence the assumptions of
Lemma 2.6 are satisfied and we get the required density. �
Remark 4.5. The representation of C∞(G) on L2(G) is covariant. The action of Γ 2 is im-
plemented by the left and right shifts: Lγ1 ,Rγ2 ∈ B(L2(G)), where by Lg ∈ B(L2(G)) we
understand the unitarized left shift. More precisely, let δ : G → R

+ be the modular function
for the right Haar measure. Then Lg ∈ B(L2(G)) is a unitary given by:

(Lgf )(g′) = δ(g)
1
2 f

(
g−1g′)
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for any g,g′ ∈ G and f ∈ L2(G). This covariant representation of C∞(G) induces the represen-
tation of crossed product B = C∞(G) �ρ Γ 2, which we denote by πcan. Clearly it is faithful on

C∞(G), hence by Theorem 3.6 it is faithful on C∞(G)Ψ̃ ⊗Ψ .

Let us introduce the unitary operator:

W = (
id ⊗ πcan)V Ψ ∈ B

(
L2(G) ⊗ L2(G)

)
. (37)

Theorem 4.6. The unitary operator W ∈ B(L2(G)⊗L2(G)) considered above satisfies the pen-
tagonal equation:

W ∗
12W23W12 = W13W23.

Remark 4.7. A similar construction of the operator W and the proof that it satisfies the pentag-
onal equation was given by Enock and Vainerman in [3] and independently by Landstad in [7].
We included the following proof for the completeness of the exposition.

Proof. Let us introduce two unitary operators X,Y ∈ B(L2(G) ⊗ L2(G)):

X = (
id ⊗ πcan)(Ψ R

)
, Y = (

id ⊗ πcan)(Ψ L
)

(38)

where Ψ R,Ψ L ∈ M(C∗
r (G) ⊗ B) are elements defined by (31). Note that

X ∈ M
(
C∗

r (G) ⊗ C∗
r (G)

)
, Y ∈ M

(
C∗

r (G) ⊗ C∗
l (G)

)
, (39)

hence W = YV X ∈ M(C∗
r (G) ⊗ K) where K is the algebra of compact operators acting on

L2(G). Inserting γ̂3 → (−γ̂1 − γ̂2 − γ̂3) into the 2-cocycle condition

Ψ (γ̂1, γ̂2 + γ̂3)Ψ (γ̂2, γ̂3) = Ψ (γ̂1 + γ̂2, γ̂3)Ψ (γ̂1, γ̂2) (40)

and taking the complex conjugate we get

Ψ (γ̂1,−γ̂1 − γ̂3)Ψ (γ̂2,−γ̂1 − γ̂3 − γ̂2) = Ψ (γ̂1, γ̂2)Ψ (γ̂1 + γ̂2,−γ̂1 − γ̂2 − γ̂3).

This implies that

Ψ (γ̂1, γ̂2)Ψ
�(γ̂1 + γ̂2, γ̂3) = Ψ �(γ̂1, γ̂3)Ψ

�(γ̂2, γ̂1 + γ̂3) (41)

where Ψ �(γ̂1, γ̂2) = Ψ (γ̂1,−γ̂1 − γ̂2). Using Eqs. (38), (40), (41) and the fact that V implements
the coproduct we obtain:

X∗
12V

∗
12Y23V12 = Y13V13Y23V

∗
13,

V ∗
12X23V12X12 = V ∗

23X13V23X23.

Now we can check the pentagonal equation:
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W ∗
12W23W12 = X∗

12V
∗
12Y

∗
12W23Y12V12X12

= X∗
12V

∗
12Y23V23X23V12X12

= (
X∗

12V
∗
12Y23V12

)(
V ∗

12V23V12
)(

V ∗
12X23V12X12

)
= (

Y13V13Y23V
∗
13

)
(V13V23)

(
V ∗

23X13V23X23
)

= Y13V13Y23X13V23X23 = (Y13V13X13)(Y23V23X23) = W13W23.

In the second equality we used the fact that the second leg of element Y commutes with the first
leg of W (see (39)). �

Our next aim is to show that W is manageable. For all γ̂ ∈ Γ̂ we set u(γ̂ ) = Ψ (−γ̂ , γ̂ ). It
defines a function u ∈ Cb(Γ̂ ). Applying πR ∈ Mor(C∞(Γ̂ );C∗

r (G)) to u ∈ M(C∞(Γ̂ )) we get
the unitary operator:

J = πR(u) ∈ M
(
C∗

r (G)
) ⊂ B

(
L2(G)

)
. (42)

Theorem 4.8. Let W ∈ B(L2(G) ⊗ L2(G)) be the multiplicative unitary and J ∈ B(L2(G)) be
the unitary operator (42). Then W is manageable. Operators Q and W̃ entering Definition 1.2
of [19] equal respectively 1 and (J ⊗ 1)W ∗(J ∗ ⊗ 1).

Remark 4.9. The presented proof seems to be simpler than the Landstad’s proof given in [7]. In
what follows we shall use the bracket notation for the scalar product: let H be a Hilbert space,
x, y ∈ H , and T ∈ B(H). Then (x|T |y) denotes the scalar product (x|Ty).

Proof. Let x, y, z, t ∈ L2(G), γ1, γ2, γ3, γ4 ∈ Γ . The Kac–Takesaki operator is manageable,
therefore (

x ⊗ t |(Rγ1 ⊗ Lγ2)V |(Rγ3 ⊗ Rγ4)|z ⊗ y
)

= (R−γ1x ⊗ L−γ2 t |V |Rγ3z ⊗ Rγ4y)

= (
Rγ3z ⊗ L−γ2 t |V ∗|R−γ1x ⊗ Rγ4y

)
= (

z ⊗ t |(R−γ3 ⊗ Lγ2)V
∗(R−γ1 ⊗ Rγ4)|x ⊗ y

)
.

Using well-known equalities

V ∗(I ⊗ Rg)V = Rg ⊗ Rg,

V (I ⊗ Lg)V
∗ = Rg ⊗ Lg

and commutativity of Γ we get the following formula:(
z ⊗ t |(R−γ3 ⊗ Lγ2)V

∗(R−γ1 ⊗ Rγ4)|x ⊗ y
)

= (
z ⊗ t |(R−γ3+γ4 ⊗ Rγ4)V

∗(R−γ1+γ2 ⊗ Lγ2)|x ⊗ y
)
. (43)

Hence:
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(
x ⊗ t |(Rγ1 ⊗ Lγ2)V (Rγ3 ⊗ Rγ4)|z ⊗ y

)
= (

z ⊗ t |(R−γ3+γ4 ⊗ Rγ4)V
∗(R−γ1+γ2 ⊗ Lγ2)|x ⊗ y

)
. (44)

Using continuity arguments, this equality will be extended. We will repeatedly use the identifica-
tions C∗(Γ 2) = C∞(Γ̂ 2) = C∞(Γ̂ ) ⊗ C∞(Γ̂ ), etc. Let uγ be a unitary generator of C∗(Γ ). Let
us define the following morphisms:

ΦR
1 ∈ Mor

(
C∗(Γ ) ⊗ C∗(Γ );C∗

r (G) ⊗ C∗
r (G)

): ΦR
1 (uγ1 ⊗ uγ2) = Rγ1 ⊗ Rγ2 ,

ΦL
1 ∈ Mor

(
C∗(Γ ) ⊗ C∗(Γ );C∗

r (G) ⊗ C∗
l (G)

): ΦL
1 (uγ1 ⊗ uγ2) = Rγ1 ⊗ Lγ2

and automorphism Θ ∈ Aut(C∞(Γ̂ 2)) given by the formula:

Θ(f )(γ̂1, γ̂2) = f (−γ̂1, γ̂1 + γ̂2)

for any f ∈ C∞(Γ̂ 2). One can check that

Θ(uγ1 ⊗ uγ2) = u−γ1+γ2 ⊗ uγ2 .

Using the above morphisms we reformulate (44):(
x ⊗ t |ΦL

1 (uγ1 ⊗ uγ2)V ΦR
1 (uγ3 ⊗ uγ4)|z ⊗ y

)
= (

z ⊗ t |ΦR
1 ◦ Θ(uγ3 ⊗ uγ4)V

∗ΦL
l ◦ Θ(uγ1 ⊗ uγ2)|x ⊗ y

)
.

By linearity and continuity we get(
x ⊗ t |ΦL

1 (f )V ΦR
1 (g)|z ⊗ y

)
= (

z ⊗ t |ΦR
1 ◦ Θ(g)V ∗ΦL

1 ◦ Θ(f )|x ⊗ y
)

for any f,g ∈ M(C∞(Γ̂ ) ⊗ C∞(Γ̂ )). In particular(
x ⊗ t |ΦL

1

(
Ψ �

)
V ΦR

1 (Ψ )|z ⊗ y
)

= (
z ⊗ t |ΦR

1 ◦ Θ(Ψ )V ∗ΦL
1 ◦ Θ

(
Ψ �

)|x ⊗ y
)
.

It is easy to see that X = ΦR
1 (Ψ ), Y = ΦL

1 (Ψ �) and Θ(Ψ ) = Ψ (u⊗ I ) where X and Y are given
by (38). Therefore

ΦR
1 ◦ Θ(Ψ ) = ΦR

1

(
Ψ (u ⊗ I )

) = (J ⊗ I )X∗. (45)

Similarly we prove that

ΦL
1 ◦ Θ

(
Ψ �

) = Y ∗(J ∗ ⊗ I
)

(46)

and finally we get
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(
x ⊗ t |ΦL

1

(
Ψ �

)
V ΦR

1 (Ψ )|z ⊗ y
)

= (
z ⊗ t |(J ⊗ I )X∗V ∗Y ∗(J ∗ ⊗ I

)|x ⊗ y
)
.

This shows that

W̃ = (
(J ⊗ I )YV X

(
J ∗ ⊗ I

))∗ = (J ⊗ I )W ∗(J ∗ ⊗ I
)

and Q = 1. �
Proposition 4.10. Let W ∈ B(L2(G) ⊗ L2(G)) and J ∈ B(L2(G)) be the unitaries defined in
(37) and (42) respectively. Let x, y be vectors in L2(G) and ωx,y ∈ B(L2(G))∗ a functional
given by ωx,y(T ) = (x|T |y) for any T ∈ B(L2(G)). Then we have[

(ωx,y ⊗ id)W
]∗ = (ωJ ∗x̄,J ∗ȳ ⊗ id)(W). (47)

Proof. Using manageability of W we get:

(ωx,y ⊗ id)W = (ωȳ,x̄ ⊗ id)(W̃ ) = (ωȳ,x̄ ⊗ id)
(
(J ⊗ 1)W ∗(J ∗ ⊗ 1

))
= (ωJ ∗ȳ,J ∗x̄ ⊗ id)

(
W ∗) = [

(ωJ ∗x̄,J ∗ȳ ⊗ id)(W)
]∗

. �
Let A be a C∗-algebra obtained by slicing the first leg of a manageable multiplicative unitary

W ∈ B(L2(G) ⊗ L2(G)):

A = {
(ω ⊗ id)W : ω ∈ B

(
L2(G)

)
∗
}‖·‖.

Theorem 1.5 of [19] shows that A carry the structure of a quantum group. The comultiplication
on A is given by the formula:

A � a �→ W(a ⊗ I )W ∗ ∈ M(A ⊗ A).

At the same time, using the morphism πcan ∈ Rep(B;L2(G)) introduced in Remark 4.5 we can
faithfully represent C∞(G)Ψ̃ ⊗Ψ on L2(G). By Theorem 4.4 πcan(C∞(G)Ψ̃ ⊗Ψ ) = A, hence we
can transport the structure of a quantum group from A to C∞(G)Ψ̃ ⊗Ψ . Our next objective is to
present a useful formula for comultiplication on C∞(G)Ψ̃ ⊗Ψ which does not use multiplicative
unitary W . The construction is done in two steps.

• Let ρ be the action of Γ 2 on C∞(G) given by left and right shifts along the subgroup Γ ⊂ G.
The comultiplication is covariant:

	G

(
ργ1,γ2(f )

) = (ργ1,0 ⊗ ρ0,γ2)
(
	G(f )

)
for any f ∈ C∞(G). Therefore, it induces a morphism of crossed products:

	 ∈ Mor
(
C∞(G) � Γ 2;C∞(G) � Γ 2 ⊗ C∞(G) � Γ 2).

	 restricted to C∞(G) ⊂ M(C∞(G) � Γ 2) coincides with 	G and 	 restricted to
C∞(Γ̂ 2) ⊂ M(C∞(G) � Γ 2) is given by
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	(h) = (
λL ⊗ λR

)
h ∈ M

(
C∞(G) � Γ 2 ⊗ C∞(G) � Γ 2)

where λL,λR ∈ Mor(C∞(Γ̂ ),C∞(G) � Γ 2) are morphisms introduced after the proof of
Proposition 4.2 and h ∈ C∞(Γ̂ 2).

• Let Ψ be a 2-cocycle on Γ̂ . Recall that Ψ � ∈ M(C∞(Γ̂ 2)) is defined by

Ψ �(γ̂1, γ̂2) = Ψ (γ̂1,−γ̂1 − γ̂2).

Let us introduce the unitary element Υ ∈ M(C∞(G) � Γ 2 ⊗ C∞(G) � Γ 2):

Υ = (
λR ⊗ λL

)
Ψ �

and a morphism 	Ψ ∈ Mor(C∞(G) � Γ 2;C∞(G) � Γ 2 ⊗ C∞(G) � Γ 2) given by the
formula

	Ψ (a) = Υ 	(a)Υ ∗ (48)

for any a ∈ C∞(G) � Γ 2.

Theorem 4.11. Let 	Ψ ∈ Mor(C∞(G) � Γ 2;C∞(G) � Γ 2 ⊗ C∞(G) � Γ 2) be the morphism
defined by formula (48). For all a ∈ C∞(G)Ψ̃ ⊗Ψ we have

	Ψ (a) ∈ M
(
C∞(G)Ψ̃ ⊗Ψ ⊗ C∞(G)Ψ̃ ⊗Ψ

)
and

	Ψ |C∞(G)Ψ̃ ⊗Ψ ∈ Mor
(
C∞(G)Ψ̃ ⊗Ψ ;C∞(G)Ψ̃ ⊗Ψ ⊗ C∞(G)Ψ̃ ⊗Ψ

)
.

Moreover 	Ψ |C∞(G)Ψ̃ ⊗Ψ coincides with the comultiplication implemented by W :

C∞(G)Ψ̃ ⊗Ψ � a �→ W(a ⊗ 1)W ∗ ∈ M
(
C∞(G)Ψ̃ ⊗Ψ ⊗ C∞(G)Ψ̃ ⊗Ψ

)
.

Proof. By Theorem 1.5 of [19] it is enough to show that(
id ⊗ 	Ψ

)
V Ψ = V Ψ

12V Ψ
13 .

From the definition of 	 it follows that

(id ⊗ 	)V Ψ = (id ⊗ 	)
((

πR ⊗ λL
)(

Ψ �
)
V

(
πR ⊗ λR

)
(Ψ )

)
= ((

πR ⊗ λL
)
Ψ �V

)
12

(
V

(
πR ⊗ λR

)
Ψ

)
13.

Hence (
id ⊗ 	Ψ

)
V Ψ = (1 ⊗ Υ )

((
πR ⊗ λL

)
Ψ �V

) (
V

((
πR ⊗ λR

)
Ψ

) )(
1 ⊗ Υ ∗).
12 13
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By Eq. (29) we get

(1 ⊗ Υ )V12 = V12
((

πR ⊗ λR ⊗ λL
) ◦ (	

Γ̂
⊗ id)

(
Ψ �

))
and

V13(1 ⊗ Υ ) = ((
πR ⊗ λR ⊗ λL

) ◦ (σ ⊗ id) ◦ (id ⊗ 	
Γ̂

)
(
Ψ �

))
V13

where σ is the flip operator. Therefore(
id ⊗ 	Ψ

)
V Ψ = ((

πR ⊗ λL
)
Ψ �V

)
12

((
πR ⊗ λR ⊗ λL

) ◦ (	
Γ̂

⊗ id)
(
Ψ �

))
× ((

πR ⊗ λR ⊗ λL
) ◦ (σ ⊗ id) ◦ (id ⊗ 	

Γ̂
)
(
Ψ �

)∗)(
V

(
πR ⊗ λR

)
Ψ

)
13.

We compute

Ψ (γ̂1 + γ̂2,−γ̂1 − γ̂2 − γ̂3)Ψ (γ̂2,−γ̂1 − γ̂2 − γ̂3)

= Ψ (γ̂1, γ̂2)Ψ (γ̂1,−γ̂1 − γ̂3)Ψ (γ̂2,−γ̂1 − γ̂2 − γ̂3)Ψ (γ̂2,−γ̂1 − γ̂2 − γ̂3)

= Ψ (γ̂1, γ̂2)Ψ (γ̂1,−γ̂1 − γ̂3).

The above equality implies that(
πR ⊗ λR ⊗ λL

) ◦ (	
Γ̂

⊗ id)
(
Ψ �

)(
πR ⊗ λR ⊗ λL

) ◦ (σ ⊗ id) ◦ (id ⊗ 	
Γ̂

)
(
Ψ �

)∗

= ((
πR ⊗ λR

)
Ψ

)
12

((
πR ⊗ λL

)
Ψ �

)
13.

Hence(
id ⊗ 	Ψ

)
V Ψ = ((

πR ⊗ λL
)
Ψ �V

(
πR ⊗ λR

)
Ψ

)
12

((
πR ⊗ λL

)
Ψ �V

(
πR ⊗ λR

)
Ψ

)
13

= V Ψ
12V Ψ

13 .

This ends the proof. �
4.2. Dual quantum group

Let G be a locally compact group, Γ an abelian subgroup of G and Ψ a 2-cocycle on Γ̂ .
Using the results of previous sections we can construct the quantum group (C∞(G)Ψ̃ ⊗Ψ ,	Ψ )

and the multiplicative unitary W ∈ B(L2(G) ⊗ L2(G)). In this section we will investigate the
dual quantum group in the sense of duality given by W . Our objective is to show that this is
the twist, in the sense of M. Enock and L. Vainerman (see [3]), of the canonical quantum group
structure on the reduced group C∗-algebra C∗

r (G).

Theorem 4.12. Let W ∈ B(L2(G) ⊗ L2(G)) be a manageable multiplicative unitary (37) and
(Â, 	̂

Â
) a quantum group obtained by slicing the second leg of W :

Â = {
(id ⊗ ω)

(
W ∗): ω ∈ B

(
L2(G)

)}‖·‖.



1314 P. Kasprzak / Journal of Functional Analysis 257 (2009) 1288–1332
Then

1. Â = C∗
r (G).

2. The comultiplication on Â is given by

Â � a �→ 	̂
Â
(a) = ΣX∗Σ	̂(a)ΣXΣ ∈ M(Â ⊗ Â)

where 	̂ is the canonical comultiplication on C∗
r (G) and X is given by (38).

3. The coinverse on Â is given by

κ̂
Â
(a) = J κ̂(a)J ∗

where κ̂ is the canonical coinverse on C∗
r (G) and J is given by (42).

The proof was communicated to the author by S.L. Woronowicz.

Proof. Using Eq. (33) we get

Rγ1

[
(id ⊗ ω)W

]
Rγ2 = (id ⊗ R−γ2Lγ1 · ω · L−γ1Rγ2)W (49)

for any γ1, γ2 ∈ Γ . Therefore Rγ ∈ B(L2(G)) is a multiplier of Â and representation:

Γ � γ �→ Rγ ∈ M(Â)

is strictly continuous. This representation induces a morphism which we denote by χ ∈
Mor(C∞(Γ̂ ), Â). Applying it to Ψ and Ψ � we obtain

X = (χ ⊗ χ)(Ψ ) ∈ M(Â ⊗ Â),

Y = (
χ ⊗ πL

)(
Ψ �

) ∈ M(Â ⊗ K).

Recall that W ∈ M(Â ⊗ A), hence

V = Y ∗WX∗ ∈ M(Â ⊗ K) (50)

which immediately implies that V ∗
12V23,V12V

∗
23 ∈ M(Â⊗ K ⊗C∞(G)). The pentagonal equation

for V together with (50) gives

V13 = V ∗
12V23V12V

∗
23 ∈ M

(
Â ⊗ K ⊗ C∞(G)

)
,

therefore

V ∈ M
(
Â ⊗ C∞(G)

)
. (51)

Similarly we prove that

W ∈ M
(
C∗

r (G) ⊗ A
)
. (52)
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Formula (51) and point 6 of Theorem 1.6 of [19] imply that the natural representation of
C∗

r (G) on L2(G) is in fact an element of Mor(C∗
r (G), Â). Similarly, (52) implies that the nat-

ural representation of Â on L2(G) is an element of Mor(Â,C∗
r (G)). The general properties of

morphisms gives

C∗
r (G)Â = Â,

ÂC∗
r (G) = C∗

r (G).

But C∗
r (G) and Â are closed under the star operation, hence Â = Â∗ = ÂC∗

r (G) = C∗
r (G), which

proves point 1 of our theorem. To prove point 2 we recall that the comultiplication on Â is
implemented by ΣW ∗Σ , hence

	̂
Â
(a) = ΣX∗V ∗Y ∗(I ⊗ a)YV XΣ

= ΣX∗V ∗(I ⊗ a)V XΣ

= (
ΣX∗Σ

)
	̂(a)(ΣXΣ).

Point three follows from Proposition 4.10. �
4.3. Haar measure

Let G be a locally compact group, Γ an abelian subgroup of G and Ψ a 2-cocycle on Γ̂ .
Throughout this section we shall assume that the modular function δ on G restricted to Γ is
identically equal to 1. Let (C∞(G)Ψ̃ ⊗Ψ ,	Ψ ) be the quantum group that we considered previ-
ously. In what follows we will identify C∞(G)Ψ̃ ⊗Ψ with its image in B(L2(G)).

Definition 4.13. Let f ∈ C∞(G) and Rg ∈ B(L2(G)) be the right regular representation of
group G. We say that f is quantizable if there exists ω ∈ B(L2(G))∗ such that f (g) = ω(Rg)

for any g ∈ G. Given a quantizable function f we introduce an operator Q(f ) ∈ C∞(G)Ψ̃ ⊗Ψ ⊂
B(L2(G)) given by:

Q(f ) = (ω ⊗ id)W ∈ C∞(G)Ψ̃ ⊗Ψ .

Note that the equation f (g) = ω(Rg) does not determine ω ∈ B(L2(G))∗. Nevertheless, the
operator Q(f ) does not depend on the choice of the functional that gives rise to f . It is easy to see
that the vector space of quantizable functions equipped with the pointwise multiplication forms
an algebra which in the literature is called the Fourier Algebra. We use the term quantizable func-
tion to stress that with such an f we can associate the operator Q(f ) = (ω ⊗ id)W ∈ B(L2(G)).

Theorem 4.14. Let (C∞(G)Ψ̃ ⊗Ψ ,	Ψ ) be the quantum group with multiplicative unitary W ∈
B(L2(G)⊗L2(G)) considered above. Let f,h ∈ C∞(G) be quantizable functions given by func-
tionals ω ∈ B(L2(G))∗ and μ ∈ B(L2(G))∗ respectively. They yield operators Q(f ), Q(h) ∈
B(L2(G)). Assume that h ∈ L2(G). Then Q(f )h ∈ L2(G) is a quantizable function and

Q
(

Q(f )h
) = Q(f )Q(h). (53)
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Proof. Note that

Q(f )Q(h) = (ω ⊗ id)(W)(μ ⊗ id)W

= (ω ⊗ μ ⊗ id)(W13W23)

= (ω ⊗ μ ⊗ id)
(
W ∗

12W23W12
)
.

The above calculation shows that Q(f )Q(h) is given by the quantization of the function k ∈
C∞(G):

k(g) = (ω ⊗ μ)
(
W ∗(I ⊗ Rg)W

)
.

Using the identity W ∗(I ⊗ Rg)W = X∗(Rg ⊗ Rg)X we get

k(g) = (ω ⊗ μ)
(
X∗(Rg ⊗ Rg)X

)
.

Therefore, to prove formula (53) we need to show that

(ω ⊗ μ)
(
X∗(Rg ⊗ Rg)X

) = [
Q(f )h

]
(g). (54)

In order to do that we compute

(ω ⊗ id)
(
(Rγ1 ⊗ Lγ2)V (Rγ3 ⊗ Rγ4)

)
h(g) = Lγ2f (γ1 · γ3)Rγ4h(g)

= δ
1
2 (γ2)f

(
(γ1 − γ2)gγ3

)
h
(
(−γ2)gγ4

)
.

Using the assumption that δ(γ ) = 1 for any γ ∈ Γ we get

(ω ⊗ id)
(
(Rγ1 ⊗ Lγ2)V (Rγ3 ⊗ Rγ4)

)
h(g) = f

(
(γ1 − γ2)gγ3

)
h
(
(−γ2)gγ4

)
.

The equality h(g) = μ(Rg) implies that(
(ω ⊗ id)

(
(Rγ1 ⊗ Lγ2)V (Rγ3 ⊗ Rγ4)

)
h
)
(g)

= (ω ⊗ μ)
(
(Rγ1−γ2 ⊗ R−γ2)(Rg ⊗ Rg)(Rγ3 ⊗ Rγ4)

)
. (55)

Let ϑ ∈ Aut(C∞(Γ̂ × Γ̂ )) be the automorphism given by

ϑ(f )(γ̂1, γ̂2) = f (γ̂1,−γ̂1 − γ̂2) for all f ∈ C∞(Γ̂ × Γ̂ ).

By continuity, (55) extends to[
(ω ⊗ id)

((
πR ⊗ πL

)
(f1)V

(
πR ⊗ πR

)
(f2)

)]
h(g)

= (ω ⊗ μ)
((

πR ⊗ πR
)
ϑ(f1)(Rg ⊗ Rg)

(
πR ⊗ πR

)
(f2)

)
for any f1, f2 ∈ Cb(Γ̂ ⊗ Γ̂ ). Taking f1 = Ψ � and f2 = Ψ we obtain ϑ(Ψ �) = Ψ and
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[
(ω ⊗ id)(YV X)

]
h(g) = (ω ⊗ μ)

(
X∗(Rg ⊗ Rg)X

)
where X and Y were introduced in (38). Recall that W = YV X, hence

Q(f )h(g) = (ω ⊗ μ)
(
X∗(Rg ⊗ Rg)X

) = k(g).

This proves formula (54) and ends the proof of our theorem. �
Let f ∈ C∞(G) be a quantizable function i.e. f (g) = ω(Rg) for some ω ∈ B(L2(G))∗. Sup-

pose that Q(f ) = 0. This means that (ω ⊗ id)W = 0 which together with Theorem 4.12 shows
that ω(Rg) = 0 for all g ∈ G. Hence f (g) = 0 for any g ∈ G, which shows that the quantization
map Q is injective and its inverse is well defined. We shall show that the closure of this inverse
is the GNS map for a Haar measure of (C∞(G)Ψ̃ ⊗Ψ ,	Ψ ). Let us introduce N0 ⊂ C∞(G)Ψ̃ ⊗Ψ :

N0 = {
Q(f ): f -quantizable and f ∈ L2(G)

}
.

For all Q(f ) ∈ N0 we set η0(Q(f )) = f . This defines a map η0 : N0 → L2(G).

Proposition 4.15. Let η0 be the map defined above. Then this is a densely defined, closable map
from C∞(G)Ψ̃ ⊗Ψ to L2(G).

Proof. Let Ψ Σ be a 2-cocycle obtained from Ψ by a flip of variables: Ψ Σ(γ̂1, γ̂2) = Ψ (γ̂2, γ̂1).
Let QΣ be the quantization map related to Ψ Σ . Using the equality

(ω ⊗ μ)
(
X∗(Rg ⊗ Rg)X

) = (μ ⊗ ω)
(
ΣX∗Σ(Rg ⊗ Rg)ΣXΣ

)
and Theorem 4.14 we see that for quantizable, square integrable functions h,h′ ∈ L2(G) we have

Q(h)h′ = QΣ(h′)h. (56)

Let us assume that limn→∞ Q(fn) = 0 and limn→∞ η0(Q(fn)) = f . Using Eq. (56) we see that:

QΣ(h)f = lim
n→∞ QΣ(h)fn = lim

n→∞ Q(fn)h = 0 (57)

for all quantizable functions h ∈ L2(G). To conclude that f is 0 we have to show that the set of
operators

{
QΣ(h): h is quantizable and h ∈ L2(G)

} ⊂ B
(
L2(G)

)
separates elements of L2(G). In order to do that we introduce a multiplicative unitary WΣ related
to the 2-cocycle Ψ Σ . The C∗-algebra obtained by the slices of the first leg of WΣ will be denoted
by AΨ Σ

. By point 1 of Theorem 1.5 of [19], AΨ Σ
separates elements of L2(G), hence it is enough

to note that:



1318 P. Kasprzak / Journal of Functional Analysis 257 (2009) 1288–1332
AΨ Σ = {
(ω ⊗ id)WΣ : ω ∈ B

(
L2(G)

)}cls

= {
(ωx,y ⊗ id)WΣ : x, y are of compact support

}cls

⊂ {
QΣ(h): h is quantizable and h ∈ L2(G)

}cls
.

The last inclusion follows from the fact that, when x and y are of compact support, then the
function f defined by f (g) = ωx,y(Rg) is also of compact support. �

The closure of the map η0 will be denoted by η and its domain will be denoted by N.

Proposition 4.16. Let η : N �→ L2(G) be the map introduced above. Then N is a left ideal in
C∞(G)Ψ̃ ⊗Ψ and η(ab) = aη(b) for all a ∈ C∞(G)Ψ̃ ⊗Ψ and b ∈ N.

Proof. Let b ∈ N and a ∈ C∞(G)Ψ̃ ⊗Ψ . Let us fix a sequence of quantizable functions fn such
that a = limn→∞ Q(fn). Map η is the closure of η0, therefore there exists a sequence hm ∈
C∞(G) of quantizable functions such that:

lim
m→∞ Q(hm) = b and lim

m→∞η
(

Q(hm)
) = η(b).

Using Theorem 4.14 we get Q(fn)η(Q(hm)) = η(Q(fn)Q(hm)) and

aη
(

Q(hm)
) = lim

n→∞ Q(fn)η
(

Q(hm)
) = lim

n→∞η
(

Q(fn)Q(hm)
)
.

The closedness of the map η implies that

aQ(hm) ∈ N and η
(
aQ(hm)

) = aη
(

Q(hm)
)
.

Taking limits with respect to m and using the closedness of η once again we conclude that ab ∈ N

and η(ab) = aη(b). �
The above proposition shows that the map η : N �→ L2(G) is a GNS map. To show that η

corresponds to the Haar measure of (C∞(G)Ψ̃ ⊗Ψ ,	Ψ ) we shall need the following

Proposition 4.17. Let η : N �→ L2(G) be the map introduced above. For a ∈ N and ϕ ∈
(C∞(G)Ψ̃ ⊗Ψ )∗ let us consider their convolution ϕ ∗ a = (id ⊗ ϕ)	(a) ∈ C∞(G)Ψ̃ ⊗Ψ . Then
ϕ ∗ a is an element of N and

η(ϕ ∗ a) = [
(id ⊗ ϕ)W

]
η(a). (58)

Proof. Recall that with any normal functional ω ∈ B(L2(G))∗ we can associate a function fω ∈
C∞(G) where fω(g) = ω(Rg). Assume that a = Q(fω) for some fω ∈ L2(G). In particular
a ∈ N and η(a) = fω. We compute
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ϕ ∗ a = (id ⊗ ϕ)
(
W ∗(a ⊗ 1)W

)
= (id ⊗ ϕ)

(
W ∗((ω ⊗ id)(W) ⊗ 1

)
W

)
= (ω ⊗ id ⊗ ϕ)

(
W ∗

23W12W23
)

= (ω ⊗ id ⊗ ϕ)(W12W13)

= (b · ω ⊗ id)W (59)

where b = (id ⊗ϕ)W ∈ M(C∗
r (G)). Therefore to prove that ϕ ∗ a is an element of N it is enough

to show that fb ·ω ∈ L2(G) for all b ∈ M(C∗
r (G)). First we check it for b = Rg . Note that

fb·ω(g′) = b · ω(Rg) = ω
(
R′

gRg

) = ω(Rg′g)

= fω(g′g) = (Rgfω)(g′) = (bfω)(g′)

for any g,g′ ∈ G, therefore fb·ω = bfω. By linearity this equality is satisfied for any b ∈
span{Rg: g ∈ G}. We extend it using a continuity argument. There exists a net of operators
bi ∈ lin-span{Rg: g ∈ G} strongly convergent to b ∈ M(C∗

r (G)). Functional ω is strongly contin-
uous hence limi bi · ω = b · ω in the norm sense. Therefore limi fbi ·ω = fb·ω where limi is taken
in the uniform sense. At the same time limi bifω = bfω in the L2-norm, hence

fb·ω(g) = lim
i

fbi ·ω(g) = lim
i

bifω(g) = bfω(g)

for almost all g ∈ G. This shows that fb ·ω ∈ L2(G) and

fb·ω = bfω (60)

for any b ∈ M(C∗
r (G)). Using (59) and (60) we get the following sequence of equalities:

η(ϕ ∗ a) = fb·ω = bfω

= bη(a) = [
(id ⊗ ϕ)W

]
η(a)

which proves (58) for a = Q(fω). But the set{
a = (ω ⊗ id)W : fω ∈ L2(G)

}
is a core for η, hence Eq. (58) is satisfied for any a ∈ N. �
Remark 4.18. Let πR,πL ∈ Rep(C∗(Γ ),L2(G)) be representations that send generators uγ ∈
M(C∗(Γ )) to Rγ and Lγ ∈ B(L2(G)) respectively. Let f, f̃ ∈ M(C∗(Γ )) and ω ∈ B(L2(G))∗
be such that fω ∈ L2(G). Then using a method similar to the one used in the proof of Proposi-
tion 4.17 we can show that

f
πR(f )·ω·πR(f̃ )

= πR(f )πL
(
κ(f̃ )

)
(fω) (61)

where κ is the coinverse on C∗(Γ ).
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With GNS-map η : N → L2(G) we can associate a weight hΨ : C∞(G)Ψ̃ ⊗Ψ+ �→ R+:
hΨ (a∗a) = (η(a)|η(a)).

Proposition 4.19. Let hΨ be the weight on C∞(G)Ψ̃ ⊗Ψ introduced above. Then it is a faithful
trace. In particular it is strictly faithful.

Proof. Let u ∈ M(C∗(Γ )) be the unitary element which appears in formula (42). From the above
remark and Proposition 4.10 it follows that

η
((

(ωx,y ⊗ id)W
)∗) = η

((
πR(u) · ωx̄,ȳ · πR(u) ⊗ id

)
W

)
= πR(u)πL

(
κ(u)

)
η
(
(ωx̄,ȳ ⊗ id)W

)
= πR(u)πL

(
κ(u)

)
η
(
(ωx,y ⊗ id)W

)
.

The set

{
a = (ω ⊗ id)W : fω ∈ L2(G)

}
is a core for η, hence we have

η
(
a∗) = πR(u)πL

(
κ(u)

)
η(a)

for any a ∈ N. Now we can prove the trace property:

hΨ
(
a∗a

) = (
η(a)|η(a)

) = (
η(a)|η(a)

)
= (

πL
(
κ(u)

)∗
πR(u)∗η

(
a∗)|πL

(
κ(u)

)∗
πR(u)∗η

(
a∗))

= (
η
(
a∗)|η(

a∗)) = hΨ
(
aa∗).

Let us prove the faithfulness of hΨ . Assume that hΨ (a∗a) = 0. Then

hΨ
(
a∗c∗ca

) = 0 = hΨ
(
caa∗c∗)

hence η(a∗c∗) = a∗η(c∗) = 0. The set of elements of the form η(c∗) is dense in L2(G), hence
a = 0. The notion of strict faithfulness was introduced in [9]. It can be shown that a faithful trace
is automatically strictly faithful. This ends our proof. �

Using Propositions 4.17 and 4.19 one can check that the assumptions of Theorem 3.9 of [9]
are satisfied. Hence we get

Theorem 4.20. Let (C∞(G)Ψ̃ ⊗Ψ ,	Ψ ) be the quantum group with the multiplicative unitary W

and the weight hΨ considered above. Then hΨ is a Haar measure for (C∞(G)Ψ̃ ⊗Ψ ,	Ψ ) and W

is the canonical multiplicative unitary.
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5. An example of quantization of SL(2,C)

In this section we use the Rieffel deformation to quantize the special linear group:

SL(2,C) =
{(

α β

γ δ

)
: α,β, γ, δ ∈ C, αδ − βγ = 1

}
.

(In what follows SL(2,C) will be denoted by G.) The resulting quantum group is the C∗-
algebraic version of one of the ∗-Hopf algebras introduced by S.L. Woronowicz and S. Za-
krzewski in paper [17]. As a ∗-algebra it is generated by four elements α̂, β̂, γ̂ , δ̂, satisfying the
following commutation relations:

α̂β̂ = β̂α̂,

α̂δ̂ = δ̂α̂,

α̂γ̂ = γ̂ α̂,

β̂γ̂ = γ̂ β̂,

β̂δ̂ = δ̂β̂,

γ̂ δ̂ = δ̂γ̂ ,

α̂δ̂ = 1 + β̂γ̂ ,

α̂α̂∗ = α̂∗α̂,

α̂β̂∗ = t β̂∗α̂, β̂β̂∗ = β̂∗β̂,

α̂γ̂ ∗ = t−1γ̂ ∗α̂, β̂γ̂ ∗ = γ̂ ∗β̂, γ̂ γ̂ ∗ = γ̂ ∗γ̂ ,

α̂δ̂∗ = δ̂∗α̂, β̂δ̂∗ = t−1δ̂∗β̂, γ̂ δ̂∗ = t δ̂∗γ̂ , δ̂δ̂∗ = δ̂∗δ̂, (62)

where t is a nonzero real parameter. The comultiplication, coinverse and counit act on them in
the standard way:

	(α̂) = α̂ ⊗ α̂ + β̂ ⊗ γ̂ ,

	(β̂) = α̂ ⊗ β̂ + β̂ ⊗ δ̂,

	(γ̂ ) = γ̂ ⊗ α̂ + δ̂ ⊗ γ̂ ,

	(δ̂) = γ̂ ⊗ β̂ + δ̂ ⊗ δ̂,

κ(α̂) = δ̂,

κ(β̂) = −β̂,

κ(γ̂ ) = −γ̂ ,

κ(δ̂) = α̂,

ε(α̂) = 1,

ε(β̂) = 0,

ε(γ̂ ) = 0,

ε(δ̂) = 1. (63)

The deformation procedure in our example is based on the abelian subgroup Γ ⊂ G of diag-
onal matrices:

Γ =
{(

w 0
0 w−1

)
: w ∈ C∗

}
.
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To simplify some calculations we pull back the action of Γ 2 on C∞(G) to the action of C
2 on

C∞(G). The resulting action is denoted by ρ:

(ρz1,z2f )(g) = f

((
e−z1 0

0 ez1

)
g

(
ez2 0
0 e−z2

))
. (64)

Let us fix a 2-cocycle on the dual group. The additive group (C,+) is self-dual, with the duality
given by:

C
2 � (z1, z2) �→ exp

(
i Im(z1z2)

) ∈ T.

Let s ∈ R. For any z1, z2 ∈ C we set

Ψ (z1, z2) = exp
(
is Im(z1z̄2)

)
.

It is clear, that Ψ ∈ Cb(C
2) satisfies the 2-cocycle condition. Using results of Section 4 we

deform the standard C
2-product structure on C∞(G)�ρ C

2 to (C∞(G)�ρ C
2, λ, ρ̂Ψ̃ ⊗Ψ ). In our

case Ψ̃ is just the complex conjugate of Ψ and the deformed action of the dual group is given by

ρ̂Ψ̃ ⊗Ψ
z1,z2

(b) = λ−sz̄1,sz̄2 ρ̂z1,z2(b)λ∗−sz̄1,sz̄2

for any b ∈ C∞(G) �ρ C
2. The Landstad algebra A of the deformed C

2-product carries the
structure of a quantum group. Our aim is to show that this quantum group is the C∗-algebraic
version of the Hopf ∗-algebra described above. The relation between parameters s, t ∈ R is t =
exp(−2s).

5.1. C∗-algebra structure

In this section we will construct four affiliated elements α̂, β̂, γ̂ , δ̂ ηA and show that they
generate C∗-algebra A.

Let Tr, Tl ∈ C∗(C2)η ⊂ (C∞(G) �ρ C
2)η be infinitesimal generators of the left and right

shifts. By definition Tl and Tr are normal elements satisfying:

λz1,z2 = exp
(
i Im(z1Tl)

)
exp

(
i Im(z2Tr)

)
(65)

for any z1, z2 ∈ C. Let α,β, γ, δ be coordinate functions on G:

α,β, γ, δ ∈ C(G) = (
C∞(G)

)η ⊂ (
C∞(G) �ρ C

2)η
.

Consider also a unitary element:

U = exp
(
is Im

(
T ∗

r Tl

)) ∈ M
(
C∗(

C
2)) ⊂ M

(
C∞(G) �ρ C

2). (66)

We use it to define four normal elements affiliated with C∞(G) �ρ C
2:
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α̂ = UαU∗, β̂ = U∗βU,

γ̂ = U∗γU, δ̂ = UδU∗. (67)

In the next lemma we present different formulas for α̂, β̂, γ̂ , δ̂ which will be needed later.

Lemma 5.1. Let α,β, γ, δ ∈ C∞(G)η ⊂ (C∞(G) �ρ C
2)η be coordinate functions on G. Let

Tl, Tr be infinitesimal generators defined by (65) and let

α̂, β̂, γ̂ , δ̂ ∈ (
C∞(G) �ρ C

2)η

be normal elements (67). Then⎧⎪⎪⎪⎨⎪⎪⎪⎩
1. α and Tl + Tr strongly commute and α̂ = exp

(−s
(
T ∗

l + T ∗
r

))
α;

2. β and Tl − Tr strongly commute and β̂ = exp
(
s
(
T ∗

l − T ∗
r

))
β;

3. γ and Tl − Tr strongly commute and γ̂ = exp
(
s
(
T ∗

r − T ∗
l

))
γ ;

4. δ and Tl + Tr strongly commute and δ̂ = exp
(
s
(
T ∗

l + T ∗
r

))
δ.

(68)

Proof. The fact that Tl + Tr and α strongly commute follows from the identity

exp
(
i Im

(
z(Tl + Tr)

))
α exp

(−i Im
(
z(Tl + Tr)

)) = α.

We check it below:

exp
(
i Im

(
z(Tl + Tr)

))
α exp

(−i Im
(
z(Tl + Tr)

)) = λz,zαλ∗
z,z = exp(−z + z)α = α.

To prove the equality α̂ = exp(−s(T ∗
l + T ∗

r ))α note that

α̂ = exp
(
is Im

(
T ∗

r Tl

))
α exp

(−is Im
(
T ∗

r Tl

))
= exp

(
is Im

(
(Tl + Tr)

∗Tl

))
α exp

(−is Im
(
(Tl + Tr)

∗Tl

))
, (69)

where we used the fact that exp(is Im(T ∗
l Tl)) = 1. Using the strong commutativity of Tl + Tr

and α and the following identity:

exp
(
is Im(wTl)

)
α exp

(−is Im(wTl)
) = exp(−sw)α,

we get α̂ = exp(−s(T ∗
l + T ∗

r ))α. This ends the proof of point 1 of (68). Using the same tech-
niques we prove points 2, 3, 4. �

Our objective is to show that α̂, β̂, γ̂ , δ̂ are generators of C∗-algebra A. In particular we have
to show that they are affiliated with A. The following proposition is the first step toward the proof
of this fact.

Proposition 5.2. Let (C∞(G) �ρ C
2, λ, ρ̂Ψ̃ ⊗Ψ ) be the deformed C

2-product, A its Landstad
algebra and α̂ ∈ (C∞(G) �ρ C

2)η the normal element defined in (67). Then f (α̂) ∈ M(A) for
any f ∈ C∞(C).
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Proof. Let us first prove the invariance of f (α̂) under the action ρ̂Ψ̃ ⊗Ψ . It is enough to check
that α̂ is invariant. In order to do that we calculate

λz1,z2αλ∗
z1,z2

= ρz1,z2(α) = exp(−z1 + z2)α. (70)

Furthermore

ρ̂Ψ̃ ⊗Ψ
z1,z2

(α̂) = ρ̂Ψ̃ ⊗Ψ
z1,z2

(
UαU∗)

= ρ̂Ψ̃ ⊗Ψ
z1,z2

(U)ρ̂Ψ̃ ⊗Ψ
z1,z2

(α)ρ̂Ψ̃ ⊗Ψ
z1,z2

(U)∗.

We compute ρ̂Ψ̃ ⊗Ψ
z1,z2

(U) and ρ̂Ψ̃ ⊗Ψ
z1,z2

(α) separately:

ρ̂Ψ̃ ⊗Ψ
z1,z2

(α) = λ−sz̄1,sz̄2 ρ̂z1,z2(α)λ∗−sz̄1,sz̄2

= λ−sz̄1,sz̄2αλ∗−sz̄1,sz̄2

= exp(sz̄1 + sz̄2)α,

ρ̂Ψ̃ ⊗Ψ
z1,z2

(U) = ρ̂Ψ̃ ⊗Ψ
z1,z2

(
exp

(
is Im

(
T ∗

r Tl

)))
= ρ̂z1,z2

(
exp

(
is Im

(
T ∗

r Tl

)))
= exp

(
is Im

((
T ∗

r + z̄2
)
(Tl + z1)

))
= Uλsz̄2,−sz̄1Ψ (z1, z2).

Using (70) we get

ρ̂Ψ̃ ⊗Ψ
z1,z2

(α̂) = exp(sz̄1 + sz̄2)Uλsz̄2,−sz̄1αλ∗−sz̄2,sz̄1
U∗

= exp(sz̄1 + sz̄2) exp(−sz̄1 − sz̄2)UαU∗ = α̂.

Let us now check that the map

C
2 � (z1, z2) �→ λz1,z2f (α̂)λ∗

z1,z2
∈ M

(
C∞(G) � C

2) (71)

is norm continuous. For this note that:

λz1,z2f (α̂)λ∗
z1,z2

= Uλz1,z2f (α)λ∗
z1,z2

U∗

= Uf
(
e−z1+z2α

)
U∗.

Function f is continuous and vanishes at infinity, hence we get norm continuity (71). This shows
that f (α̂) satisfies the first and second Landstad condition of (3) which is enough to be an element
of M(A). �

To prove that α̂ is affiliated to A we need one more
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Proposition 5.3. The set

I = {
f (α̂)A: f ∈ C∞(C)

}
is linearly dense in A.

Proof. Recall that ρΨ̃ ⊗Ψ is the action of C
2 on A implemented by unitary elements λz1,z2 . It is

easy to see that I is invariant under ρΨ̃ ⊗Ψ . Let g ∈ C∞(C) be a function given by the formula
g(z) = (1 + z̄z)−1. Then g(α̂) = U(1 + α∗α)U∗ and we have:

(
C∗(

C
2)g(α̂)AC∗(

C
2))cls = (

C∗(
C

2)(1 + α∗α
)−1

U∗AC∗(
C

2))cls

⊂ (
C∗(

C
2)I C∗(

C
2))cls (72)

where we used the equality C∗(C2)U = C∗(C2). Note that the set U∗AC∗(C2) is linearly dense
in C∞(G) �ρ C

2. Using the fact that α is affiliated with C∞(G) �ρ C
2 we see that the set

C∗(C2)(1 + α∗α)−1U∗AC∗(C2) is linearly dense in C∞(G) �ρ C
2. Hence by (72) the set

C∗(C2)I C∗(C2) is linearly dense in C∞(G) �ρ C
2. Using Lemma 2.6 we get the linear den-

sity of I in A. �
Let us define the homomorphism of C∗-algebras:

C∞(C) � f �→ π(f ) = f (α̂) ∈ M(A).

Theorem 5.4. Let π be the homomorphism defined above. π is a morphism of C∗-algebras:
π ∈ Mor(C∞(C);A). In particular α̂ is the normal element affiliated with A.

Proof. By Proposition 5.3 we have π(C∞(C))A‖·‖ = A which shows that π ∈ Mor(C∞(C);A).
Let id ∈ C∞(C)η be the identity function: id(z) = z for all z ∈ C. Applying morphism π to
id ∈ C∞(C)η we get π(id) = id(α̂) = α̂ ∈ Aη. �

Using the same techniques we show that β̂, γ̂ , δ̂ ηA. In the next theorem we prove that they
are in fact generators of A.

Theorem 5.5. Let α̂, β̂, γ̂ , δ̂ η A be affiliated elements introduced in (67). Let us consider the set:

V = {
f1(α̂)f2(β̂)f3(γ̂ )f4(δ̂): f1, f2, f3, f4 ∈ C∞(C)

} ⊂ M(A).

Then V is a subset of A and V cls = A. In particular A is generated by elements α̂, β̂, γ̂ , δ̂ ∈ Aη.

Proof. Let us start with a proof that V ⊂ A. Mimicking the proof of Theorem 5.2 we show that
elements of V satisfy the first and the second Landstad condition (3). To check that they also
satisfy the third one, we need to show that

xf1(α̂)f2(β̂)f3(γ̂ )f4(δ̂)y ∈ C∞(G) �ρ C
2 (73)
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for any x, y ∈ C∗(C2). Let us consider the set

W = {
xf1(α̂)f2(β̂)f3(γ̂ )f4(δ̂)y: f1, f2, f3, f4 ∈ C∞(C), x, y ∈ C∗(

C
2)}cls

.

Note that W = (C∗(C2)V C∗(C2))cls. We will show that:

W = C∞(G) �ρ C
2

which is a stronger property than (73). Using (67) we get

W = {
xUf1(α)U∗2

f2(β)f3(γ )U2f4(δ)U
∗y: f1, f2, f3, f4 ∈ C∞(C), x, y ∈ C∗(

C
2)}cls

.

By unitarity of U we can substitute x with xU∗ and y with Uy not changing W :

W = {
xf1(α)U∗2

f2(β)f3(γ )U2f4(δ)y: f1, f2, f3, f4 ∈ C∞(C), x, y ∈ C∗(
C

2)}cls
.

The map

C
2 � (z1, z2) �→ ρz1,z2

(
f (α)

) = f
(
exp(−z1 + z2)α

)
is norm continuous, hence:

{
f (α)x: f ∈ C∞(C), x ∈ C∗(

C
2)}cls = {

xf (α): f ∈ C∞(C), x ∈ C∗(
C

2)}cls
.

In particular

W = {
f1(α)xU∗2

f2(β)f3(γ )U2f4(δ)y: f1, f2, f3, f4 ∈ C∞(C), x, y ∈ C∗(
C

2)}cls
.

Similarly, we commute f4(δ) and y:

W = {
f1(α)xU∗2

f2(β)f3(γ )U2yf4(δ): f1, f2, f3, f4 ∈ C∞(C), x, y ∈ C∗(
C

2)}cls
.

Substituting x with xU2 and y with U∗2y we get

W = {
f1(α)xf2(β)f3(γ )yf4(δ): f1, f2, f3, f4 ∈ C∞(C), x, y ∈ C∗(

C
2)}cls

.

Commuting back f1(α) (f4(δ) resp.) and x (y resp.) we obtain

W = {
xf1(α)f2(β)f3(γ )f4(δ)y: f1, f2, f3, f4 ∈ C∞(C), x, y ∈ C∗(

C
2)}cls

.

The last set is obviously the whole C∞(G) �ρ C
2. Therefore we conclude that elements of

V satisfies the Landstad conditions and V ⊂ A. Moreover V is ρΨ̃ ⊗Ψ -invariant and the set
C∗(C2)V C∗(C2) is linearly dense in C∞(G) �ρ C

2. Using Lemma 2.6 we see that V cls = A.
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In particular α̂, β̂, γ̂ , δ̂ separate representations of A and

(
1 + α̂∗α̂

)−1(1 + β̂∗β̂
)−1(1 + γ̂ ∗γ̂

)−1(1 + δ̂∗δ̂
)−1 ∈ A.

By Theorem 3.3 of [18] we see that A is generated by α̂, β̂, γ̂ , δ̂. �
5.2. Commutation relations

The aim of this section is to show that generators α̂, β̂, γ̂ , δ̂ satisfy relations (62). Note that
in general it is impossible to multiply affiliated elements, so we have to give a precise meaning
to (62). We start with considering a more general type of relations. Let p,q be real, strictly
positive numbers and (R,S) a pair of normal operators acting on H . The precise meaning of the
relations

RS = pSR,

RS∗ = qS∗R

was given in [16]:

Definition 5.6. Let (R,S) be a pair of normal operators acting on a Hilbert space H . We say that
(R,S) is a (p, q)-commuting pair if:

1. |R| and |S| strongly commute.
2. (PhaseR)(PhaseS) = (PhaseS)(PhaseR).
3. On kerR⊥ we have

(PhaseR)|S|(PhaseR)∗ = √
pq |S|.

4. On kerS⊥ we have

(PhaseS)|R|(PhaseS)∗ = √
q/p |R|.

The set of all (p, q)-commuting pairs of normal operators acting on a Hilbert space H is denoted
by Dp,q(H). Note that (1,1)-commuting pair of normal operators is just a strongly commuting
pair of operators.

We need a version of the above definition which is suitable for a pair of normal elements
affiliated with a C∗-algebra. In what follows we shall use the symbol z(T ) to denote the z-

transform of an element T : z(T ) = T (1 + T ∗T )− 1
2 .

Definition 5.7. Let A be a C∗-algebra and (R,S) a pair of normal elements affiliated with A. We
say that (R,S) is a (p, q)-commuting pair if

1. z(R)z(S∗) = z(
√

pq S∗)z(
√

q/p R),
2. z(

√
q/p R)z(S) = z(

√
pq S)z(R).
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The set of all (p, q)-commuting pairs of normal elements affiliated with a C∗-algebra A is de-
noted by Dp,q(A).

It turns out that Definitions 5.6 and 5.7 are in a sense equivalent. Namely we have:

Proposition 5.8. Let (R,S) be a pair of normal operators acting on H . It is a (p, q)-commuting
pair in the sense of Definition 5.6 if and only if{

z(R)z
(
S∗) = z

(√
pq S∗)z(√q/p R),

z(
√

q/p R)z(S) = z(
√

pq S)z(R).
(74)

Proof. It is easy to see that a pair (R,S) of (p, q)-commuting operators satisfies (74). We will
prove the opposite implication. Using (74) we get:

z(
√

q/p R)z(S)z(S)∗ = z(
√

pq S)z(R)z(S)∗

= z(
√

pq S)z(
√

pq S)∗z(
√

q/p R). (75)

Hence

z(
√

q/p R)∗z(
√

q/p R)z(S)z(S)∗

= z(
√

q/p R)∗z(√pq S)z(
√

pq S)∗z(
√

q/p R)

= z(S)z(S)∗z(
√

q/p R)∗z(
√

q/p R). (76)

T is a normal operator, hence z∗
T zT = zT z∗

T = z2|T | and we get

(
z
(√

q/p |R|))2
z
(|S|)2 = z

(|S|)2(
z
(√

q/p |R|))2
.

This shows that (|R|, |S|) is a pair of strongly commuting operators.
Using the polar decomposition of normal operators R and S we rewrite the second equation

of (74):

Phase(R)z
(√

q/p |R|)z(|S|)Phase(S) = Phase(S)z
(√

pq |S|)z(|R|)Phase(R).

Strong commutativity of |R| and |S| and identities

Phase(S)Phase(S)∗z
(|S|) = z

(|S|),
Phase(R)Phase(R)∗z

(|R|) = z
(|R|)

gives

Phase(R)Phase(S)Phase(S)∗z
(|S|)z(√q/p |R|)Phase(S)

= Phase(S)Phase(R)Phase(R)∗z
(|R|)z(√pq |S|)Phase(R).
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Uniqueness of the polar decomposition implies that phases of R and S commute:

Phase(R)Phase(S) = Phase(S)Phase(R).

Using Eq. (75) we get

Phase(R)z
(√

q/p |R|)z(|S|) = z
(√

pq |S|)Phase(R)z
(√

q/p |R|).
We already know that |R| and |S| strongly commute, hence

Phase(R)z
(|S|)z(√q/p |R|) = z

(√
pq |S|)Phase(R)z

(√
q/p |R|).

This shows that on kerR⊥ we have

Phase(R)|S|Phase(R)∗ = √
pq |S|.

Similarly, one can prove that Phase(S)|R|Phase(S)∗ = √
q/p |R| on kerS⊥. �

The next theorem shows that α̂, β̂, γ̂ , δ̂ ηA satisfy relations (62) in the sense of Definition 5.7.

Theorem 5.9. Let α̂, β̂, γ̂ , δ̂ ηA be elements given by (67). Then

1. (α̂, δ̂), (β̂, γ̂ ) ∈ D1,1(A),
2. (α̂, β̂), (γ̂ , δ̂) ∈ D1,t (A),
3. (α̂, γ̂ ), (β̂, δ̂) ∈ D1,t−1(A),

where t = exp(−2s). Consider normal elements α̂δ̂, β̂γ̂ ηA (a product of two strongly commut-
ing normal elements is well defined). Then (α̂δ̂, β̂γ̂ ) ∈ D1,1(A) and

α̂δ̂ − β̂γ̂ = 1.

Proof. Directly from (67) it follows that (α̂, δ̂) ∈ D1,1(A) and (β̂, γ̂ ) ∈ D1,1(A). Note that the af-
filiated element αδ ηC∞(G) is ρ-invariant: ρz1,z2(αδ) = αδ where ρ is the action defined by (64).
Therefore, at the level of the crossed product, αδ commutes with C∗(C2). Using the fact that
U ∈ M(C∗(C2)) we get

α̂δ̂ = UαδU∗ = αδ.

Similar reasoning shows that β̂γ̂ = βγ . Therefore (α̂δ̂, β̂γ̂ ) ∈ D1,1(A) and

α̂δ̂ − β̂γ̂ = αδ − βγ = 1.

Now let us prove that (α̂, β̂) ∈ D1,t (A). Using the faithful representation πcan of A on L2(G)

we can treat generators α̂, β̂ as normal operators acting on L2(G). We will show that (α̂, β̂) ∈
D1,t (L

2(G)) which by Proposition 5.8 is equivalent with the containment (α̂, β̂) ∈ D1,t (A).
Using Lemma 5.1 we get:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
Phase(α̂) = exp

(
is Im(Tl + Tr)

)
Phase(α),

|α̂| = exp
(−s Re(Tl + Tr)

)|α|,
Phase(β̂) = exp

(−is Im(Tl − Tr)
)

Phase(β),

|β̂| = exp
(
s Re(Tl − Tr)

)|β|.
(77)

Moreover, it is easy to check that⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(
is Im(Tl + Tr)

)
β exp

(−is Im(Tl + Tr)
) = exp(−2s)β,

exp
(
is Im(Tl − Tr)

)
α exp

(−is Im(Tl − Tr)
) = exp(−2s)α,

exp
(−is Re(Tl + Tr)

)|β| exp
(
is Re(Tl + Tr)

) = ∣∣exp(2is)β
∣∣ = |β|,

exp
(−is Re(Tl − Tr)

)|α| exp
(
is Re(Tl − Tr)

) = ∣∣exp(2is)α
∣∣ = |α|.

(78)

Eqs. (77) and (78) show together that:

1. Phase(α̂)Phase(β̂) = Phase(β̂)Phase(α̂),

2. Phase(α̂)|β̂|Phase(α̂)∗ = exp(−2s)|β̂|,
3. Phase(β̂)|α̂|Phase(β̂)∗ = exp(−2s)|α̂|,
4. |α̂| and |β̂| strongly commute.

Note that ker α̂ = ker β̂ = {0} hence (α̂, β̂) ∈ D1,t (L
2(G)). Using the same techniques we prove

all other assertions of our theorem. �
5.3. Comultiplication

Let 	Ψ ∈ Mor(A;A ⊗ A) be the comultiplication on A. As was shown in Theorem 4.11, it is
given by:

	Ψ (a) = Υ 	(a)Υ ∗, (79)

where 	 ∈ Mor(C∞(G) � C
2;C∞(G) � C

2 ⊗ C∞(G) � C
2) is uniquely characterized by two

properties:

• 	(Tl) = Tl ⊗ I , 	(Tr) = I ⊗ Tr ;
• 	 restricted to C∞(G) coincides with the comultiplication on C∞(G).

In our case the unitary element Υ is of the following form:

Υ = exp
(
is Im

(
T ∗

r ⊗ Tl

))
. (80)

Theorem 5.10. Let (A,	Ψ ) be the quantum group considered above and let α̂, β̂, γ̂ , δ̂ be the
generators of A given by (67). Comultiplication 	Ψ acts on generators in the standard way:

	Ψ (α̂) = α̂ ⊗ α̂ + β̂ ⊗ γ̂ , 	Ψ (β̂) = α̂ ⊗ β̂ + β̂ ⊗ δ̂,

	Ψ (γ̂ ) = γ̂ ⊗ α̂ + δ̂ ⊗ γ̂ , 	Ψ (δ̂) = δ̂ ⊗ δ̂ + γ̂ ⊗ β̂. (81)
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Remark 5.11. The action of 	Ψ in the formula above is given by the sum of affiliated elements.
In general it is not a well-defined operation. But in our case (as will be shown) this is a sum of
two normal strongly commuting elements of (A ⊗ A)η . This operation is well defined and gives
a normal element affiliated with (A ⊗ A)η .

Proof. Applying morphism 	 to U ∈ M(C∗(Γ 2)) (see (66)) we get:

	(U) = exp
(
is Im

(
Tl ⊗ T ∗

r

))
. (82)

Let R be a unitary element given by the formula:

R = exp
(
is Im

(
T ∗

r ⊗ Tl

))
exp

(
is Im

(
Tl ⊗ T ∗

r

))
.

Using (79), (80) and (82) we get:

	Ψ (α̂) = R(α ⊗ α + β ⊗ γ )R∗

= R(α ⊗ α)R∗ + R(β ⊗ γ )R∗. (83)

Note that

(
U∗ ⊗ U∗)R = exp

(
is Im

(
T ∗

r ⊗ I − I ⊗ T ∗
r

)
(I ⊗ Tl − Tl ⊗ I )

)
. (84)

It is easy to check that elements (Tr ⊗ I − I ⊗ Tr) and (I ⊗ Tl − Tl ⊗ I ) strongly commute with
α ⊗ α. Hence by identity (84), (U∗ ⊗ U∗)R commutes with α ⊗ α. Similarly, we check that the
unitary element (U ⊗ U)R commutes with β ⊗ γ . Using these two facts we get

R(α ⊗ α)R∗ = (U ⊗ U)
(
U∗ ⊗ U∗)R(α ⊗ α)R∗(U ⊗ U)

(
U∗ ⊗ U∗)

= (U ⊗ U)(α ⊗ α)
(
U∗ ⊗ U∗) = α̂ ⊗ α̂ (85)

and

R(β ⊗ γ )R∗ = (
U∗ ⊗ U∗)(U ⊗ U)R(β ⊗ γ )R∗(U∗ ⊗ U∗)(U ⊗ U)

= (
U∗ ⊗ U∗)(β ⊗ γ )(U ⊗ U) = β̂ ⊗ γ̂ . (86)

Eqs. (83), (85), (86) give:

	Ψ (α̂) = α̂ ⊗ α̂ + β̂ ⊗ γ̂ .

All other assertions of our theorem are proven using the same techniques. �
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