Characterizing Finite Subspaces

B. L. Rothschild*

University of California, Los Angeles, California 90024

AND

J. H. van Lint

Technische Hogeschool, Eindhoven

Communicated by A. Glenson

Received August 2, 1972

In this paper we study generalizations of the following question: Is a subspace of a projective or affine space characterized by the cardinalities of intersections with all hyperplanes? In several cases the answer is affirmative.

1. INTRODUCTION

A result which is due to Jessie MacWilliams [4] states that, if the set $S \subseteq \text{PG}(n, q)$, projective n-space over $\text{GF}(q)$, contains $(q^{k+1} - 1)/(q - 1)$ points and if S has the property that every hyperplane contains either all of S or $(q^{k} - 1)/(q - 1)$ points of S, then S is a k-dimensional subspace. In this paper we consider some cases of the general question of characterizing k-dimensional subspaces of an n-dimensional space by the numbers of r-dimensional subspaces they have in common with each of the $(n - j)$-dimensional subspaces. MacWilliams’ result is the case $r = 0$, $j = 1$. We obtain similar results here for the cases $r = 0$ and j arbitrary and $j = 1$, r arbitrary. We consider this problem both for projective and affine spaces, using parallel, but not identical arguments, R. C. Bose and R. C. Burton [2] have results on a related problem.

NOTATION. Throughout the paper we shall use the following notation. If q is fixed we denote by A_n (respectively P_n) n-dimensional affine (projective) space over $\text{GF}(q)$, i.e., $\text{AG}(n, q)$ ($\text{PG}(n, q)$).

* Supported in part by NSF Grant GP-335804.

Copyright © 1974 by Academic Press, Inc.
All rights of reproduction in any form reserved.
\([k] \) denotes the set of all \(k \)-dimensional subspaces of \(A_n \).

\(\{P_n\} \) denotes the set of all \(k \)-dimensional subspaces of \(P_n \).

\(\binom{n}{k}_q \) (respectively, \(\binom{n}{k} \)) denotes the number of such subspaces.

When no confusion arises we shall omit the subscript \(q \). We recall that

\[
\binom{n}{k}_q = \left\{ \begin{array}{ll}
\left(\frac{q^n}{(q^k - 1)(q - 1)} \cdots (q - 1) \right) q^{n-k}, & \text{if } n \geq k > 0, \\
q^n, & \text{if } n \geq k = 0, \\
0, & \text{otherwise},
\end{array} \right.
\]

and

\[
\binom{n}{k} = \left\{ \begin{array}{ll}
\left(\frac{q^{n+1}}{(q^{k+1} - 1)} \cdots (q^{n-k+1} - 1) \right), & \text{if } n \geq k > 0, \\
1, & \text{if } n \geq k = -1, \\
0, & \text{otherwise}.
\end{array} \right.
\]

We shall refer to \(k \)-dimensional spaces and subspaces simply as \(k \)-spaces and \(k \)-subspaces.

Definition. A subset

\[S \subseteq [A_n^k] \]

has property \(A(n, q; k, r, j) \) if the following holds:

(i) \(r \leq k \leq n \) and \(1 \leq j \leq n - 1 \).

(ii) \(1 \leq j \leq n - 1 \).

(iii) \(S \cap [A_{n-j}^k] \subseteq \{0, [k]_q, [k-j]_q, \ldots, [k-j]_q\} \) for every \(A_{n-j} \subseteq A_n \).

Analogously we have

Definition. A subset

\[S \subseteq \{P_n^k\} \]
has property \(P(n, q; k, r, j) \) if the following holds:

(i) \(r \leq k \leq n \) and \(1 \leq j \leq n - 1 \),

(ii) \(|S| = \binom{k}{r} q \),

(iii) \(S \cap \left\{ \binom{P_{n-j}}{r} q \right\} \in \left\{ \binom{k}{r} q, \ldots, \binom{k-j}{r} q \right\} \) for every \(P_{n-j} \subseteq P_n \).

Note that the set of \(r \)-subspaces of a \(k \)-subspace \(A_k \subseteq A \), has property \(A(n, q; k, r, j) \) for \(1 \leq j \leq n - 1 \) (and the same holds in the projective case). The question arises whether other subsets \(S \) can have this property. If this is not the case we say that property \(A(n, q; k, r, j) \) characterizes \(k \)-subspaces of \(A_n \).

We recall the following facts from affine geometry (cf., for instance, [1]). Let \(A_l \) be an \(l \)-subspace of \(A_n \). Then there is an affine \((n-1)\) subspace of \(A_n \) such that for appropriate choices of origin in \(A \), and \(A_{n-1} \) we have \(A = A_l \oplus A_{n-1} \) (direct sum of vector spaces). If we have such a decomposition and \(a \) is a point of \(A_{n-1} \) and \(A \subseteq A_l \) then we use \(a \oplus A, = A_l \oplus a \) to denote the \(m \)-subspace \(\bigcup_{x \in A_m} (a + x) \). In the same way \(A_k \oplus A_l \) is defined for \(A_k \subseteq A_l, A_l \subseteq A_{n-1} \).

We also recall that each \(A_l \subseteq A \), has precisely \(q^{n-l} \) disjoint translates and these are just the subspaces \(A, \oplus A_l \), where \(A \), runs through \(A_{n-1} \).

We shall prove the following theorems:

Theorem 1. \(A(n, q; k, 0, 1) \) characterizes \(k \)-subspaces of \(A_n \).

Theorem 2. If \(r \geq 1 \) then \(A(n, q; k, r, 1) \) characterizes \(k \)-subspaces of \(A_n \).

Theorem 3. If \(r \geq -1 \) then \(P(n, q; k, r, 1) \) characterizes \(k \)-subspaces of \(P_n \).

Theorem 4. If \(j > 1 \) and \((q,j) \neq (2, n-1) \) then \(A(n, q; k, 0, j) \) characterizes \(k \)-subspaces of \(A_n \).

Theorem 5. If \(j > 1 \) then \(P(n, q; k, 0, j) \) characterizes \(k \)-subspaces of \(P_n \).

For \(r > 0, j > 1 \) we have some partial results but no nice theorems. Exceptions and side conditions become necessary.
2. Proof of Theorem I

Let S be a subset of A, satisfying $A(n, q; k, 0, 1)$. We must show that S is a k-dimensional subspace, i.e.,

$$S = \begin{bmatrix} A_k \\ 0 \end{bmatrix} \text{ for some } A_k \subseteq A.$$

We use induction on n. For $n = 2$ the theorem is trivial. Now assume $n > 2$ and that the result holds for $n = 1$. We may assume $1 \leq k < n$ since the theorem is trivial for $k = 0$ and for $k = n$. If, for some $A_{n-1} \subseteq A_n$,

$$|S \cap A_{n-1}| = \begin{bmatrix} k \\ 0 \end{bmatrix},$$

we are done by induction, since we can write $A_1 = A \oplus A_{n-1}$ and then each $A_{n-2} \subseteq A_{n-1}$ must satisfy

$$A_{n-2} \cap A_{n-1} = \{ (A_{n-2} \oplus A_1) \cap S \} I \in \{ 0, \begin{bmatrix} k \\ 0 \end{bmatrix}, \begin{bmatrix} k-1 \\ 1 \end{bmatrix} \}.$$

Therefore it remains to consider the possibility that for each $A_{n-1} \subseteq A_n$, we have $S \cap A_{n-1} = 0$ or q^{k-1}. Now, if $A_{n-1} \cap S = 0$ for some A_{n-1}, then let $A_{n-1}^{(1)}, \ldots, A_{n-1}^{(q-1)}$ be the other $q - 1$ translates of A_{n-1} in A. We would have

$$q^k = S = \sum_{i=1}^{q-1} S \cap A_{n-1}^{(i)} \leq (q - 1) q^{k-1},$$

a contradiction. Hence we may assume that $S \cap A_{n-1} = q^{k-1}$ for every $A_{n-1} \subseteq A_n$. We shall show that this leads to a contradiction.

Let χ_A denote the characteristic function of A. Then we have

$$\sum_{A_{n-1} \subseteq A_n} |S \cap A_{n-1}|^2 = \sum_{A_{n-1} \subseteq A_n} \left(\sum_{a \in S} \chi_{A_{n-1}}(a) \right)^2$$

$$= \sum_{a \in S} \sum_{b \in S} \sum_{A_{n-1} \subseteq A_n} \chi_{A_{n-1}}(a) \chi_{A_{n-1}}(b)$$

$$= |S| \frac{q^n - 1}{q - 1} + |S|(|S| - 1) \frac{q^{n-1} - 1}{q - 1}.$$

Now, substituting $|S \cap A_{n-1}| = q^{k-1}$ and $S = q^k$ we find

$$(q - 1)(q^{n-1} - q^{k-1}) = 0,$$

a contradiction.
3. **Proof of Theorem 2**

Let $r \geq 1$ and let

$$S \subseteq \begin{bmatrix} A_r \end{bmatrix}$$

satisfy $A(n, q; k, r, 1)$. To prove that

$$S = \begin{bmatrix} A_k \end{bmatrix}$$

for some $A_k \subseteq A$, we use induction on n. The theorem is trivial for $k = r$. So we assume $n \geq k > r$, and that the result holds for $n - 1$. As in the proof of Theorem 1 we are finished if

$$S \cap \begin{bmatrix} A_{n-1} \end{bmatrix} = \begin{bmatrix} k \end{bmatrix}$$

for some A, \ldots.

So we may also assume that

$$|S \cap \begin{bmatrix} A_{n-1} \end{bmatrix}| = 0 \text{ or } \begin{bmatrix} k - 1 \end{bmatrix} \text{ for all subspaces } A_{n-1}.$$

We shall show that this implies $n = k$, in which case the theorem is again trivial. We consider all A, \ldots in A, and let a be the number of these for which

$$|S \cap \begin{bmatrix} A_{n-1} \end{bmatrix}| = \begin{bmatrix} k - 1 \end{bmatrix}$$

and b be the number of A_{n-1} for which

$$S \cap \begin{bmatrix} A_{n-1} \end{bmatrix} = 0.$$

Then

$$a + b = \begin{bmatrix} n \end{bmatrix}, \quad a \geq 0, \ b \geq 0. \quad (5)$$

We now count the number of pairs (A, n, A_{n-1}) with

$$A_r \in S \cap \begin{bmatrix} A_{n-1} \end{bmatrix}.$$

On the one hand this number is $a \begin{bmatrix} k - 1 \end{bmatrix}$ by definition of a. On the other hand S contains $\begin{bmatrix} k \end{bmatrix}$ subspaces A, each of which is contained in...
\((q^{n-r} - 1)/(q - 1) \) hyperplanes \(A_{n-1} \). Equating the two formulas we find

\[
a \begin{bmatrix} k - 1 \\ r \end{bmatrix} = \begin{bmatrix} k \end{bmatrix} \frac{q^{n-r} - 1}{q - 1}, \tag{6}
\]

From (5) and (6) we get

\[
a = \frac{q^{n-r} - 1}{q - 1} \cdot \frac{q^k - 1}{q^{k-r} - 1} q \leq \frac{q^n - 1}{q - 1} q. \tag{7}
\]

Since \(r > 0 \) and \(n \geq k \) the inequality (7) can only hold if \(n = k \). This completes the proof.

4. **Proof of Theorem 3**

Let

\[
s \subseteq \binom{P_n}{r}
\]

satisfy \(P(n, q; k, r, 1) \). To prove that

\[
s = \binom{P_k}{r}
\]

for some \(P_k \subseteq P_n \)

we again use induction on \(n \). For \(k = r, n = k \), or \(n = 2 \) the theorem is trivial. So assume \(n > k > r \) and that the theorem holds for \(n - 1 \). If

\[
s \cap \binom{P_{n-1}}{r}
\]

we are done by induction. So we assume

\[
\left| s \cap \binom{P_{n-1}}{r} \right| = \binom{k}{r}
\]

for every \(P_{n-1} \subseteq P_n \).

Each of the \(\binom{k}{r} \) elements of \(s \) is in \(\binom{n-r-1}{r} \) hyperplanes of \(P_n \). On the other hand, each of the \(\binom{n}{n-1} \) hyperplanes contains \(\binom{k-1}{r} \) elements of \(s \). Hence

\[
\binom{k-1}{r} n \left| (n - 1) = \binom{k}{r} (n - r - 2) \right.,
\]

i.e., \((q^n - q^k)(q = q^{-r}) = 0 \). This can only hold if \(n = k \) or \(r = -1 \) and in either case the theorem is trivial.
5. Proof of Theorem 4

Let \(S \subseteq A \), satisfy \(A(n, q; k, 0, j) \) where \(j \geq 1 \) and let \((q, j) \neq (2, n - 1) \). We shall prove that \(S \) is a \(k \)-subspace. By Theorems 1 and 2 the theorem holds for \(j = 1 \) and hence for \(n = 2 \). So assume \(n > 2 \), \(j \geq 2 \), and that the theorem holds for \(n - 1 \). We use induction on \(n \). As in the previous proofs we have:

If \(S \subseteq A_{n-1} \) for some \(A_{n-1} \subseteq A \), then we are finished. \((8)\)

Hence, from now on we may assume \(S \) is not contained in any \(A_{n-1} \). \((8')\)

As the next step we prove the following assertion:

For all \(A_{n-j-1} \subseteq A \), if \(|S \cap A_{n-j-1}| > q^{k-i} \) and \(2 \leq i \leq j \), then \(S \cap A_{n-j-1} \supseteq q^{k-i+1} \). \((9)\)

To prove this assume \(S \cap A_{n-j-1} = q^{k-i} + x \), \(x > 0 \), \(2 \leq i \leq j \). Choose \(A_{i+1} \) in such a way that \(A_{n-j-1} \oplus A_{i+1} = A \). Consider all \((n-j)\)-subspaces \(A_{n-j-1} \oplus A \), with \(A, C A_{j+1} \). There are \((q^{i+1}-1)/(q-1) \) of these which contain \(A_{n-j-1} \). Since these are \((n-j)\)-subspaces they contain \(q^{k-i+1}, q^{k-i+2}, \ldots, q^{k-1} \) or \(q^k \) points of \(S \) by property \(A(n, q; k, 0, j) \). By (8’) we may assume none contains \(q^k \) points of \(S \). For \(1 \leq m \leq i - 1 \) let \(x_m \) be the number of these \((n-j)\)-subspaces which contain \(q^k \) points of \(S \).

We have

\[
x_1 + x_2 + \cdots + x_{i-1} = (q^{i+1} - 1)/(q - 1).
\]

Now we count the elements of \(S \) as follows. Each of the subspaces \(A_{n-j-1} \oplus A \), counted by \(x_m \) has \((q^{k-m} - q^{k-i} - x) \) elements of \(S \) which are not in \(A_{n-j-1} \). Since these \((n-j)\)-subspaces pairwise have only \(A_{n-j-1} \) as intersection we get

\[
\sum_{m=1}^{i-1} x_m(q^{k-m} - q^{k-i} - x) = q^k - q^{k-i} - x.
\]

By considering equation (11) mod \(q^{k-i+1} \) and using (10) we find

\[
xq(q^{l+1} + q^{l-2} + \cdots + 1) \equiv 0 \pmod{q^{k-i+1}},
\]

i.e., \(q^{k-i} + x = \lambda q^{k-i} \). We substitute this in (11) and then we get (again using (10)):

\[
\lambda = \frac{\sum_{m=1}^{l-1} x_m q^{l-m} - q^l}{q^{l+1} + \cdots + q} \geq \frac{q(q^{l+1} + \cdots + 1) - q^l}{q^{l+1} + \cdots + q} = q - \frac{q^{l-1} - 1}{q^{l+1} + \cdots + 1}.
\]
Since \(\lambda \) is an integer we find that \(\lambda \geq q \), thus proving (9). (For a similar argument cf. [3, Lemma A. 1.31.])

If for some \(A_{n-j-1} \) we would have \(S \cap A_{n-j-1} \geq q^{k-1} \), then any \(A_{n-j} \) containing \(A_{n-j-1} \) and any other point of \(S \) would contain all of \(S \), contradicting \((8')\).

Thus far we have established that in our proof we may use: For each \(A_{n-j-1} \subset S \)

\[
S \cap A_{n-j-1} = \begin{cases} q^{k-i} & \text{with } 2 \leq i \leq j \\ < q^{k-j} & \end{cases}
\]
(12)

We now consider those \(A_{n-j-1} \), if any, for which \(S \cap A_{n-j-1} = q^{k-j+y} \)
with \(0 \leq y \leq j \) and we choose one for which \(y \) is maximal. Again we write \(A \) as \(A_{n-j-1} \oplus A_{j+1} \). Since \(A_{n-j-1} \) does not contain all of \(S \) there is a point \(a \in A_{j+1} \), not the origin of \(A_{j+1} \), such that \(S \cap (A_{n-j-1} \oplus a) \neq \emptyset \).

Let \(A \) be the line through the origin of \(A_{j+1} \) and the point \(a \). Since \(A_{n-j-1} \oplus A \) is the disjoint union of \(q \) (parallel) subspaces of dimension \(n-j \), and since \(y \) was maximal, we have

\[
q^{k-j+y} < S \cap (A_{n-j-1} \oplus A) \leq q^{k-j+y+1}.
\]
(13)

By \(A(q, n; k, 0, j) \) we must have equality on the right in (13) and then by the maximality of \(y \) and (12) we find that the following statement holds: All translates of \(A_{n-j-1} \) having any points of \(S \) must have exactly \(q^{k-j+y} \)
points of \(S \) and furthermore, if \(A \) is a line in \(A_{j+1} \) containing two points \(a \) and \(b \) for which \(S \cap (A_{n-j-1} \oplus a) = S \cap (A_{n-j-1} \oplus b) = q^{k-j+y} \), then this equality holds for all points of \(A \). We refer to this statement as (14).

In order to complete the proof we must now consider the following cases:

Case I. \(S \cap A_{n-j-1} < q^{k-j} \) for every \(A_{n-j-1} \subset S \).

Case IIa. (14) holds for some \(A_{n-j-1} \) specified by maximality of \(y, q > 2 \).

Case IIb. as IIa but with \(q = 2, j \neq n-1 \).

We complete the proof as follows:

Case I. Since \(S \cap A_{n-j-1} < q^{k-j} \) for every \(A_{n-j-1} \) it follows from \(A(n, q; k, 0, j) \) that \(S \cap A_{n-j} = 0 \) or \(q^{k-j} \) for every \(A_{n-j} \subset S \).

But for every \(A_{n-j} \) we can write \(A_{n-j} \oplus A_{j} \) which can be interpreted as splitting \(A_{n-j} \) into \(q^j \) parallel \((n-j)\)-spaces. This shows that
S \cap A_{n-j} = q^{k-j}$ for every A_{n-j} and hence $S \cap A_{n-1} = q^{k-1}$ for every A_{n-1} C A. Now the theorem follows from Theorem 1.

Case IIa. Now (14) holds and $q > 2$. Let T be the set of points t in A_{j+1} for which $S \cap (A_{n-j-1} \oplus t) = q^{k-j+y}$. We saw above that $S \subset A_{n-1} \oplus T$ and that if a, b are two points of T then the line through a and b is in T. This implies that T is a subspace (of dimension $\neg y$) in A_{j+1}. Hence S is contained in a subspace of dimension $n \neg 1$, contradicting ($8'$).

Case IIb. Again (14) holds and now $q = 2$, $j \neq n - 1$. Choose any A_{n-j-2} in A_{n-j-1} and write $A_0 = A_{n-j-2} \oplus A_{j+2}$. Let a, b, c be three points in A_{j+2} such that $S \cap (A_{n-j-2} \oplus t) > 0$ for $t = a, b, c$. Let d be the fourth point in the plane in A_{j+2} determined by a, b, c. Consider the three subspaces $(A_{n-j-2} \oplus t)$, $t = a, b, c$. Any two form an $(n - j - 1)$-subspace. If one of these is a translate of A_{n-j-1}, then the other one together with $A_{n-j-2} \oplus d$ also is. All four together must thus have $2k^{j+y+1}$ points of S. Since any two form an $(n - j - 1)$-subspace, by maximality of y no two can have more than $2k^{j+y}$ together. The only way this can occur is for all four to have exactly $2k^{j+y-1}$.

On the other hand suppose no two of $A_{n-j-2} \oplus t$ where $t = a, b, c$ form a translate of A_{n-j-1}. In this case let a', b', c', d' be points such that $A_{n-j-2} \oplus t$ and $A_{n-j-2} \oplus t'$ form translates of A_{n-j-1}, $t = a, b, c, d$. Since those translates corresponding to $t = a, b, c$ and d have some points of S in them, all three have precisely $2k^{j+y}$. By the reasoning in the previous paragraph, this can only occur for each of the six spaces $A_{n-j-2} \oplus u$, $u = a, b, c, d$, having exactly $2k^{j+y-1}$ points of S in them. Now consider the four spaces $A_{n-j-2} \oplus u, u = a, b', c', d$. Now a, b', c', d form a plane in A_{j+2} and $A_{n-j-2} \oplus a$ and $A_{n-j-2} \oplus b'$ together form an $(n - j - 1)$-subspace with a maximal number $2k^{j+y}$ of points of S. By (14) any translate of such a space has either no points of S or $2k^{j+y}$ of them. Thus the translate consisting of $(A_{n-j-2} \oplus c')$ and $(A_{n-j-2} \oplus d)$ has $2k^{j+y}$ points of S, and hence $A_{n-j-2} \oplus d$ has $2k^{j+y-1}$ of them.

In either situation we saw that, if a, b, c are three points of A_{j+2} with $S \cap (A_{n-j-2} \oplus t) > 0$ for $t = a, b, c$, then $S \cap (A_{n-j-2} \oplus d) > 0$ where d is the fourth point of the plane determined by a, b, c and furthermore all four intersections consist of $2k^{j+y-1}$ points. It follows that, if T is the set of points t in A_{j+2} for which $S \cap (A_{n-j-2} \oplus t) > 0$, then T is a subspace of dimension $\neg y + 1$. Hence $S \subset A_{n-j-2} \oplus T$, a subspace of dimension $\leq n \neg 1$, contradicting ($8'$). Now the proof is complete.

We remark that Theorem 4 is false when $q = 2$ and $j \neq n - 1$. For then any set of $2k$ points of A, satisfies $A(n, 2; k, 0, n \neg 1)$. The analogous problem does not arise, however, in the proof of Theorem 5, which is the projective analog of Theorem 4.
6. Proof of Theorem 5

In the proof of Theorem 5 we need some facts about projective and affine spaces (see [1], for example).

Lemma. Let P_{n-1} be an $(n - 1)$-subspace of P_n. Then we can write $P_n = P_{n-1} \cup (A_{n-1} \oplus P_{l-1})$, a disjoint union, where A_{n-1} is an affine $(n - 1)$-space, P_{l-1} a projective $(l - 1)$-space, and \oplus indicates Cartesian product as sets. Further, let P_s be an s-subspace of P_n, and assume $P_s \cap P_{n-1} = P_i$, an i-subspace, $1 \leq i \leq n - 1$. Then P_s must be one of the s-subspaces $P_i \cup (A_{m} \oplus P_{s-i-1})$, where A_{i+1} is an affine $(i + 1)$-subspace of A_{n-1}, and P_{s-i-1} is a projective $(s - i - 1)$-subspace of P_{i-1}.

We shall prove Theorem 5 by induction on n, the cases $n = 2, n = k$, $k = 0$ being trivial. Let $S \subseteq P_n$ satisfy $P(n, q; k, 0, j)$. We may assume $n > k > 0$ and that the theorem holds for $n - 1$. We also assume $j \geq 2$ since $j = 1$ is the case covered by Theorem 3. We claim the following holds for every P_{n-j-1} in P_n:

Either $S \cap P_{n-j-1} = \{k - j + y\}$ for some $0 \leq y \leq j$, (15)

or else $S \cap P_{n-j-1} \subset \{k \cdot j\}$.

The proof of (15) is similar to our proof of (9). It is sufficient to show that, if

$$S \cap P_{n-j-1} > \{k - j + y\},$$

then

$$|S \cap P_{n-j-1}| \geq \{k - j + y + 1\}.$$

If $y = j - 1$, this follows from $P(n, q; k, 0, j)$, since then every P_{n-j} containing P_{n-j-1} must contain all of S. So we may assume $y < j - 1$.

Let

$$|S \cap P_{n-j-1}| = \{k - j + y\} + x, \quad x > 0, 0 \leq y < j - 1.$$

Consider all P_{n-j} containing P_{n-j-1}. By $P(n, q; k, 0, j)$, these must have $S \cap P_{n-j}$ equal to one of $\{k-j+y+2\}, \ldots, \{k\}$. Let x_m be the number of these
(n - j)-subspaces which contain \(\{k-j+y+m\} \) points of \(S \), \(1 \leq m \leq j - y \). Then we have

\[
\sum_{m=1}^{3^v} x_m = \binom{j}{0}.
\]

(16)

By counting the elements of \(S \) in \(P_{n-j} \setminus P_{n-j-1} \) for each \(P_{n-j} \) and adding, we get

\[
\sum_{m=1}^{j-y} x_m \left[\binom{k-j+y+m}{0} - \binom{k-j+y}{0} - x \right]
\]

\[
= \binom{k}{0} - \binom{k-j+y}{0} - x.
\]

(17)

By reducing (17) mod \(q^{k-j+y+1} \) we find

\[-x \sum_{m=1}^{j-y} x_m \equiv -x \pmod{q^{k-j+y+1}},\]

and using (16) this yields

\[q(q^{i-1} + \cdots + 1)x \equiv 0 \pmod{q^{k-j+y+1}}.\]

Hence we can write \(x = \lambda q^{k-j+y}, \lambda > 0 \). By substituting this in (17), dividing by \(q^{k-j+y} \), and using (16) we find

\[
\sum_{m=1}^{j-v} x_m(q^m + q^{m-1} + \cdots + q) = (q^{i-v} + \cdots + q) = \lambda(q^i + \cdots + q).
\]

Therefore

\[
\lambda \geq \left[\sum_{m=1}^{j-v} x_m \right] (q^{i-v-1} + \cdots + 1) (q^{i-1} + \cdots + q)^{-1}
\]

\[
= q - \frac{q^{i-v-1} + \cdots + q}{q^{i-1} + \cdots + 1} > q - 1.
\]

As \(\lambda \) is an integer, we get \(\lambda \geq q \) and

\[
|S \cap P_{n-j-1}| \geq \binom{k-j+y}{0} + q^{k-j+y+1} = \binom{k-j+y+1}{0}.
\]

This establishes (15).
As the next step we show that it is impossible that the second possibility in (15),

\[|S \cap P_{n-j-1}| < \binom{k-j}{0}, \]

holds for all \(P_{n-j-1} \) in \(P_n \). Suppose, on the contrary, that this were true. Consider any \(P_{n-j} \). Since each of the \(\binom{n-j}{k-j} \)-subspaces of \(P_{n-j} \) has fewer than \(\binom{k-j}{n-j-1} \) points of \(S \), and each point of \(S \) in \(P_{n-j} \) is in \(\binom{n-j-1}{0} \) \((n-j-1) \)-subspaces of \(P_{n-j} \), we have

\[|S \cap P_{n-j}| < \binom{n-j}{0} \binom{k-j}{0} \binom{n-j-1}{0} \leq \binom{k-j+1}{0}. \]

By \(P(n, q; k, 0, j) \), this implies that now

\[|S \cap P_{n-j}| = \binom{k-j}{0} \]

for every \((n-j) \)-subspace of \(P_n \). Each of the \(\binom{k}{0} \) points of \(S \) is in \(\binom{n-j-1}{0} \) \((n-j) \)-subspaces of \(P_n \). It follows that

\[\binom{n}{k-j} \binom{n-j}{0} = \binom{k}{n-1} \binom{n-1}{0} \binom{n-j-1}{0}, \]

i.e., \(n = k \), a contradiction.

Thus, for some \(P_{n-j-1} \) in \(P_n \) and some \(y, 0 \leq y < j - 1 \), we must have

\[|S \cap P_{n-j-1}| = \binom{k-j+y}{0}. \]

Choose \(P'_{n-j-1} \) in \(P_n \) so that \(y \) is maximal. Consider a \(P_{n-j} \) in \(P_n \). By the same reasoning as used for (18) we find

\[|S \cap P_{n-j}| < \binom{n-j}{0} \binom{k-j+y}{0} \binom{n-j-1}{0} \leq \binom{k-j+y+1}{0}. \]

We apply the argument used for (18) and (19) to all the \((n-j-2)\)-
subspaces contained in P'_{n-j-1}. It follows that at least one of these, say P'_{n-j-2}, has
\[
| S \cap P'_{n-j-2} | = \frac{(n-j-2)(k-j+y)}{\begin{vmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{vmatrix}} \geq \{ k-j+y-1 \}.
\] (20)

At this point we use the lemma. Write
\[P_n = P'_{n-j-2} \cup (A_{n-j-1} \oplus P_{j+1}). \]
Let T be the set of points t in P_{j+1} such that $S \cap \{ t \oplus A_{n-j-1} \} > 0$. If
\[| S \cap P'_{n-j-2} | = \alpha > \{ k-j+y-1 \}, \]
then, by maximality of α, $T = P_{j+1}$ and
\[S \cap (t \oplus A_{n-j-1}) = \{ k-j+y \} \ominus \alpha \text{ for every } t \in T. \]
This implies
\[\alpha + \{ j + 1 \} \ominus \{ k-j+y \} \ominus \alpha = \{ k \}, \]
i.e.,
\[\alpha = \{ k-j+y \} - q^{k-j+y} \frac{q^{j+y} - 1}{q^{j+1} - 1}, \]
which is not an integer! Hence
\[\alpha = \{ k-j+y-1 \}. \]

Again, by maximality of α, it follows that
\[| T | = \{ j-y \}. \]

If $a \in T$, $b \in T$, and P_1 is the line through a and b, then $P'_{n-j-2} \cup (P_1 \oplus A_{n-j-1})$ is an $(n-j)$-subspace which contains more than $\{ k-j+y \}$ points of S. By (19) this implies that this $(n-j)$-subspace contains exactly $\{ k-j+y+1 \}$ points of S which is possible only if every point of P_1
is in T. Hence T is a $(j - y)$-subspace of P_{j+1} and therefore $S \subseteq P_{n-j-2} \cup (T \oplus A_{n-j-1})$, which by the lemma is a subspace of dimension $n - y - 1 \leq n - 1$. Now the theorem follows by induction.

References