
Journal of Pure and Applied Algebra 12 (19%) IUl-lilQ. 
@ North-Holiand Publishing Company 

Communicated by F. Adams 
Received 21 September 1976 

The purpose of this paper is to study Z&corn 
theorem for them, and to present a new 
Whitehead’s conjecture [7] that a subcomplex of 
aspherical. (Aspherical means that aI1 high 
constructive result on the Whitehead conjectu 
not quite as strong as that of Adams [l] wh 
different form, Theorems 1 and 2, The seco 
different proof, depending on the structure t 
presented in Section 4. We also prove in 
conjecture which does not follow from [l] 
(Theorem 4) we shall present a proof in Section 2 (due t 
useful theorem concerning free groups and we prof 
aspherical z-complexes. 

First we need to define somti conditions o 
contain within them statements of potential 

Definition 1. A group 1p satisfies cod&n (A) if eitk 
the following always holds: if X is a &complex w&h 4~ 
is aspherical. 

Deihitim 2. Let 9 be the class of CW complex 
torsion-free. A group T is COIIS~TV&UT if the follows 
the ?-complex X. If X/a E P then X E 

Definition 3. For a group V, let 2% be the int 
augmentation ideal. 7r satisfies the IV 
with IJ = J, then J = 0. 
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Observe that condition (A) and “conservative” are not a priori checka!-Iel NC is 
8 bit more easy to see and TM can be checked reasonably easily. 

The resu3ts an the Whitehead conjecture are the following: 

Thearem 1. Let K be an aspherical 2-complex, L C K obtained by removing 2-c[ells 
from K. Assume ker(r& + wlK) satisges condition (A). I;hen L is aspherical. 

Theorem 1 is very simple. The interest comes in locating groups satisfying 
condition (A). 

Tlhewem 2. Zf r is TM then v satisfies condition (A). 

Note. Since subgroups of TM groups are TM, we now have Whitehead’s Conjec- 
ture holding whrenever n& is TM. This takes care of the free and abelian cases of 
121, The one-re!ator case is in Section 5. 

Although not explicitly stated, this result is implicitly proved by Adams. We shall 
prove it explicitly. NC is a stronger condition than TM: if F C n is perfect, then 
J = ((r - l)Zn has the property that N = .K Thus if NC holds J = Q so u = (1) and 
TM holds. Thus 

Coroky. Zf q satisfies NC then TT satisfies condition (A). 

We shall, however, g.rve in Section 4 a completely different proof of that fact 
using a structure theorem for 2-complexes. 

We also propose the possibility of a proof of the Whitehead conjecture along the 
followrng lines: 

Co~j~tauw 1. Zf 1~ is torsion-free then w satisfies condition (A). 

Conjecture 2. Zf K is a contractible 2-complex and L C K, then al(L) is torsion-free. 

These, together with Theorem 1, offer a complete proof of the Whitehead 
conjecture: 

Let K be a contractible 2-complex and L C K a subcomplex. Let L’ = L U K’ 
where IC’ is the l-skeleton of K. By the conjectures, rrr(L’) satisfies condition (A). 
Since v*(L’) = ker(?rJ+‘-l, wlK) and K - L’ = 2-cells, by Theorem 1, L’ is aspheri- 
etai. But E’ and L differ only by l-cells hence L is aspherical, For the general case of 

rical, lift the problem to the (contractible) universal cover as in Section 1. 
not hold for arbitrary groups: Le be Paincare’s homology 

Sa is the ordinary I&sphere an the binary icosahedral 
et 120. Let X be the 2-skeleton of hlf. Thus X = 
&iniv~rs~~ cover of is S3, x = S” b l_,#yI e:, e: b 



Thus H&C)= P9 so Z is not contr 
k&X = HtX = 0. This example was pointed out by 

This shows that I) does not satisfy condition (A), of c 
trivially since 9~’ s Z2. ” 

1. Proof of Theorems 1 and 2 

First for Theorem E. 
Let p : g + K be the un?~ersal cover of iy, 

Z-ceils, IZ, L 3 w1 K is onto so L ’ is a connect 
inclusion R 0 ?rrL where rr = lcer(rrlL * w,K). 
doubly indexed by nIK and the cells of K - L. 
H&, L’) is a free Z[ntK]-module on the celb 
since K is aspherical, thus from the long am% h 
that H2L’ = 0 and rra -HIL’=H@,L’)isPreea 
condition (A), L’ is aspherical. Since L ’ ctw 
the proof of Theorem 1. 

We now prove Theorem 2 using the followin 
(Al) Torsion-free abelian group are con 
(A2) An inverse limit of conservative groups 
(A3) An extension of a conservative group by 

conservative. 

So now let X be a 2-camplex tith 
abelian and H2X = 0. Let 2 

conservative then I&X = 0. But 
implies X is contractible, when 

Let I’ be the set of all: normal subg 
Let r = nafper. v/r = lim n/u so by 
show that T is trivial, Sik’7t is TM it 
7=:7 @ = [T, T]. Thus we are done if we can 
l+ r/r’--, 7t /T’+ w/7 --+ 1, (A 
torsion-free. 

Let XL’-+ X be the cover corresj~~~~ 
quotient X. But w/r is ~on~~~ti~~ 
torsion-free. But since ~n$‘= *# E&X” m 9 
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for torsion-free fundamental group, acyclic implies aspherical, we would have a 
proof of Conjecture 1. Thus 

o&ion. Conjecture 1 is implied by the following : if X is an acyclic 2-complex 
and vlX is torsion-free then X is aspherical. 

Equivalent to this last statement is this: Torsion-free perfect i;‘roups satisfy 
condition (A). 

We present here a roof due to R.G. Swan of a result conjectured in the 
preliminary version of this paper. It concerns the automorphisms of a free group F 
and its abelianization F”: 

Lifting Theorem. The abelianization map Aut F + Aut F” is onto. 

s. 1) This is the same as saying that any basis for F” can be lifted to a basis 
for F. 

2) The result is well-known in the finitely generated case [5, p. 1451. 
3) Throughott this discussion we will let y, y, E F” represent the image of 

x,x, E F. 

. We call 4 E Aut F” triangular if there is a well-ordered basis (x~} for F such 
that if 4(yo) = I] acrsyp t 4en a,@ = 0 for p > cy and a,, = 1. Assume 4 is triangular. 
Then define f : F 3 F by f (Q = 1rx2~ with the product taken in the same order, so 
that f(x,) = x, n @<a xzd. Clearly f is an automorphism and f a = 4. Thus 

ia 1. If C-/J is triangular 0 can be lifted. 

Assume we have proved the result for countably generated free groups. Let F be 
free on an arbitrary basis {x,), and let +(ya) = 2 a,@yP be an arbitrary automor- 
phism. Assume #-‘(ye) = x &yp. For each q let A& = (p 1 a,p # 0 or a&# 0). 
Then let MO, = M,, 2+’ = UpEMt~B, and S, = UL=, M& Since Ma is finite, & is 

now choose any cyl E A and let A1 = Sal. Inductively if we have 
If A is a limit ordinal and 
- U,,, A,. Then A =IfiiA, a 

free group on the x,, ca! E Ah. 
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h” agrees with 4 on all the components except for ‘I4 11”’ is 
triangular, hence lifts by Lemma 1 to some k E Aut R Then (kh)” = 4 so 4 lifts to 
kh. Thus we need only prove the countable case. We assume now that F*has {x,~}~ as 
a basis, I the positive integers. 

Let 1E C Aut F” be the subgroup generated by all triangular automorphiscns. 
Lemma 1 we will be done once we prove 

Le a 2. E = Aut F“. 

Notation. For J C r, let (J) be the subgroup of F” generated by {yi},, We need 

Lemma 3. Assume 4 E Aut F” is such that d(yi) = yi for infinitely many i, th,n 
b, E E. 

We prove first the following special case: 

Lemma 4. Let I = I’~II~.P where I” is infinite. Assume that +((I‘)) C (I’) and (#J 1 (I”) 
is the identity. Z&en Q E E. 

Lemma 4 implies Lemma 3: Let I” = {i 1 +(yi) = yl}. We shall let 1 represent an 
identity automorphism wherever it appears. If I” is it&rite, let I’ = I - I a and write 
#5 = (7 3 as an automorphism of (I’)@(Y). Then g is an isomorphism so 
v = (i 1”) E Aut ((I‘) @ (I”)). By Lemma 4, q E E. But 4s -’ is triangular to t#5 c: E. 

Proof of Lemma 4. Let M = F”, N = (I’). Since I” is countably infinite (:I@) 
N@N@**-, a countable sum of copies of N (exce!:)t in the trivial case where 
N=O and so 4=1). Define h,kcAutM=,kut(N@N@**a) 
g@g-‘$g$g-‘@***, k = l$g$g”l@g@*** Y:rere g EAutN is 
Then 4 = hk. But 

,w=(,g ;‘) =(i “;‘)(i ;)(; “-;-‘)(_‘, !)- 
Thus h and k can each be written as the product of four triangular auto 

phisms. So 4 E E. (This proof is influenced by tricks of JHC. Whit~:he~d a 
Eilenberg.) This proves Lemma 3. 

Finally given an arbitrary 4 E Aut F”, we filter I as fl = I0 C Jo C It C S, C l - 4 

n E I,,. Each Ik, Jk will be finite initial segments; i.e. of the form (l? 
define them inductively: Given I n-I choase JII-1 so that (In+) 
Consider q!~ : (L-J @ (I - &,_,)+ (.L) @ (I - JR-J. Choose any in 
a, E (I - I”-$ be such that (b(0, a,,) = (b,, yin). n z 

so there is some automorphism h, of 
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@ h, E Aut F”. Notice that #r (y:J = b, + yin where b, is a linear combination of 
yi ‘S for i C i,. Thus 

Yj7 j# any in 
UYi) 5 

b,, + yjy j = in 

is triangular. Observe that k-‘+h(yJ = yin SO by Lemma 3, k-‘4h tZ E. 

Thus c#& E E. But h = h’oh” where h’=(h&l@h,@l$~*), h”= 

(l@hz@l$h&~+ so by Lemma 4, h E E. Thus 4 E E. This proves Lemma 2 
which proves the Theorem. 

emark. This proof actually shows that if M is an infinitely generated free module 
(over any PID R ) then Aut A1 is generated by triangular automorphisms (triangular 
with respect to a fixed basis, but any ordering). Furthermore in the countable case 
each automorphism can be written as a composition of 26 triangular automor- 
phisms. In the general case, of 27 triangular automorphisms. I suspect, that both of 
these numbers are crude and can be reduced, but it is interesting that there is a 
bound to the number required. This is not true for F finitely generated. 

3. Structures of 2-complexes 

Notation. Throughout this section we will be using subscripts to denote the 
members of some unnamed indexing sets. For example, Fp is the free group on 
generators x, (FB free on {yb}, etc.), W, is the one point union (or wedge) of circles 
indexed by the cy ‘s. Tl us rl Wa = T,( W& *) (* the union point) can be naturally 
identified with F,. Furt lermore, H1( We) is FE and 50 may be taken as the Hurewicz 
map. A homomophism F, -+ F, can be represented uniquely (up to homotopy) by a 
map Wa -+ Ws. 

Let g=(xul~} b e a presentation of a group G(9) = G = (x, 1 ra). That is, 
G = F,/N, where Np i ; the normal subgroup generated by the elements r, E F,. 

Corresponding to 9, there is a homomorphism t : F, -+ F, given by ya H rs, and 
hence a map r : Wp --, Wd which is well-defined up to homotopy given a specific 
basis of F*. If we are changing basis we will have to be more careful and state t as a 
word w in the specific basis. The mapping cone of r is denoted by X(p). That is, 
X(9) has one O-cell, l-cells indexed by the CB! ‘s and 2-cells indexed by the p’s and 
attached by r, E F, = ?I$ , *). mX(tq = G(P). 

Conversely given any c ected 2-complex X, X = X’ a 2-complex with a single 
O-cell and for some presentation 9 of wl(X), X’= X(9). 

be a presentation of a group. Let 8 be an automorphism of Fa. 

a new basis for F, so each which is some word 
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Finally if 4 is an automorphism of FB then if (b) =f {p}, #%(y@) is SO 
so t/g = Ts (rb) are new words in the xc, generating the same normal subgroup a;s 
r, so St@ = {x, 1 ta} is a new presentation of G(P). 

Equivalence of presentations is t”he equivalence relation -’ generated 
by P-M’, @-9+j5, S-S*F,. 

zs will represent simple homotopy equivalence. Cf. [O] for a 

Proposition. If P - 9 then X(9) -SX(S’). 

Proof. We shall prove X(9) =,X(tEP) =sX(94) =,X(9 * F7). 
X(&Y) is the mapping cone of a map corresponding to w ’ : Fp -9 F, where 

w ‘(y@) = w ;J(x,), whereas X(8) is the mapping cone corresponding to w : F. =+ F, 
where w (y@) = ws (~4) I3ut i3wb(xa) = wk(x&) = ss = rfi = w&=). ‘Thus w a-9 8wr’ 
where 8 : W, + Wp is the simple homotopy equivalence corresponding to 0 on F,. 
Thus the cones on w and w’ are simple homotopy equivalent, X(P)=.W’($ 
Similarly we get X(S)==lX(@+). X(9 * Fy) is the mapping cone of 
w v p : Ws v WY -+ Wa v WV where w is as above and p is the identity. 
X(gP * Fy) = X(P) v C where C is the cone on cc, but the cone on an identity is 
collapsible so X(S * Fy) zsX(9). 

8 : Wa + W, is a simple homotopy equivalence because mt( W=) b free. 

Definition. Given a presentation P = {;rc, 1 r@} the map r : Fe --) Fm induces 
r4 : F;f+ Fz. Let E&P = cokr” and H# = kerr”. 

Since ra is the induced map H1 We -+ HI W4, %e long exact 
sequence yields Hi (9) = HX(8), i = 1,2. In parti&ar, H@ = 

Theorem 3. Let 9 be a presentation witht H&P Q divxt sum of cyclic 
9 - 9’ y {xp, yB 1 y&@, t,} where the sa and tr are commutators and 
[%,j& 1 n,&], M,9 =[c]- 

s, 1) By commutators we mean that sa and t,, :ce in the corn 
subgroup of (xa, ya). 

2) We use the notation [g, 1 hP] to mean the quotient o 
on symbols gc modulo the subgroup generated by the w 
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Since I is free abelian Fz+ I splits so we can find a basis { 70, &} with 
w o (&) = Q&+ By the iifting theorem these new bases can be lifted to bases {x,, yp} 

for Fs and (rP, qv} for FE. Let 9’ = i?P+ = {x,, y, 1 w(r,), w(4y)). 9 - 9’ and we 

note that w (rs) = yF+, w (qY) = tv where ss and tr are commutators. Clearly 
H,B’~[~~,~~In,~~]andH2B’~ [i*] hence the full result. (0 and 4 above are the 
automorphisms of Fs and F, corresponding to these newly found bases.) 

As an immediate corollary, we get the follMng: 

Let X be a connected 2-complex with I&X a direct sum of cSyclics. Then 
X zSX(9) where 9 = {xp, yp 1 y;;8ss, tY} with ss and tv commutators so that HIX = 

[%, j& 1 npjsp] and HZ = [t,]. 

sing the Structure 

For the statement and use of the proposition below, we need to recall the Fox 
derivative [4]: a d eiivation 2 : G -9 lb2 is a function from a group G to a left 
G-module M such that 2(xy) = 2x + x2y. If F is free on a basis {Xi} there is a 
unique derivation 2i : F * ZF such that 2i (xi) = &j, the Kronecker delta. For the 
induced map we also write 2i : F + ZG, if G is a quotient of F. From the derivation 
property, it follows immediately that 2 1 = 0, 2x-l = - x-lax, and 2 [G, G] c IM 
where I is the augmentation ideal of ZG, 2 any derivation. 

Recall that a 2-complex X is aspherical if and only if 7rnzX = 0. Thus it is 
important to understand how to calculate nzX from information about 9) where 
X = X(P). Let 9 = {x, 1 rp} be a presentation of G = G(9). For each a! and p 
consider d,r, as an eler lent of ZG. Then the matrix ((&rs)) may be considered a 
ZG-morphism 2 : fBp 2 G + @a ZG. 

ositiom. rr2X = ker 2. 

roof. We look at X, the universal cover of X. Since X is l-connected & s H$, 
but n2X = nzX. Thus it is sufficient to prove that H2X = ker 2. This is immediate 
because C,x, the CW-chains of X, have the following form: CC,% = ZG (since 
C,X = Z), C,X = $= ZG (C,X = @a 2) and C,X = $@ ZG (C2X = $@ 2) where 
d, sends the cy th generator to x, - 1 and dZ is precisely 2 as above. Since C,X = 0, 
E&X = ker d2 = ker 2. 

We now show how to use Theorem 3 to prove that N&r groups satisfy condition 
(A). Of course, this fact follows rom Theorem 2, but the method of proof may shed 

ow one could further study the problem. 
is free abelian and E&X = 0. en X ==sX($P) where by Theorem 

4, 9 = {xe, yp 1 ypsg} wit sp commutators. ow if s is a commutator ds f I, the 
augmentation idea {y} = {a} u {P}, 

2 = ((27 (YB% )))* 2, 
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Now n2X = ker d. Assume i?h = 0, A = (A,). 
IQ!&& + &(yBd,ss) A+. In particular, then, if “y is one 
says .& = - xp y, (il,sp)Ap. Thus if J is the left ideal of ZG generated by the ,lal we 
get J = IJ. If C satisfies the Nakayama condition, then J = 0 whence )f, = 0, 
v2X = 0 and X is aspherical. 

This gives an entirely diRerent proof of the Corollary to Theorem 2. The hop-ale is 
that the tools used in this method can be further exploited in the study of 
%-complexes. 

Theorem 3. Let K be a finite aspherical 2-complex and! L C K. r4ssume that there is 

case of 

a finite aspherical 3-complex X with TQX E ‘K~L = 9~ and HSX = 0. 77zen L is 
aspherical. 

Fdote. In particular this covers the cases of w finitely generated free (X a 
l-complex) or 7r a torsion-free finitely one relator group (X a 2-complex) which are 
in [2]. Thus of Co&croft’s results we omit only the case of a one relator group with 
torsion. 

Proof. First we need to prove the following lemma which appears implicitly in 121. 
The result is due independently to several authors,, the first probably H. Hopf. 

Lemma 3. Let K be an aspherical 2-complex and L C K. Then H2L Z= W&rn L ). 

Proof. Add n-cells to L for n 3 3 to form MT an asph erical space. Then 
Hz(rlL). Eook at the exact diagram 

where the arrows down are the Hurewicz maps. 
By the construction of M, H*(M, L) = 0 so a is onto. By the Hurewicz theore 

is an epimorphism. Since m3M = QM = 0, 8 is an isomorphism. Thus im 8” =: i 
so to prove a! an isomorphism it will suffice fo show that b = 0. 

Look at the following exact diagram: 
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Now H,(K, L) = 0 so /3 is l-l. IT& = 0 so ,i3b = 0. Thus b = 0, and the lem 
proved. 

Now look at the following exact sequences 

(1) o~c,r;:~c,~~c,~-,C~~~z-,o 

(2) o~~~L~C~~~c~~~co~~z~o. 

These are exact since r?- is contractible and Ir,k! s ?r2L. Now, by the Schanuel 
Lemma, since C,L and C,X are all free &-modules, we get 

The ranks of C,z and C,L as free &r-modules are the same as C,X&Z = 
C,X and C,L @,,Z = C,L as free abelian groups. Now HoL s 2 ss HoX, 
Pf,L E no z IfIX, H2L = H,X by Lemma 3, and H3L = H3X since they are both 
0. Since I-I& = H,X the alternating sums of the ranks over Z of C,L and C,X 
are the same. Thus the same is true of C,z a.nd C,X over 2%. Thus 
CJX @ C,I! $ C,X @ C( L’ =z C2x @ CIE @ CO% = M, some finitely generated free 
&r-module. Then (3) becomes A4 = nzL @A4 By Kaplansky’s Theorem [6], 
IT?L = 0 so L is aspherical. 
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