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The purpose of this paper is to study 2-complexes, to prove a certain structure
theorem for them, and to present a2 new proof of some results on J.H.C.
Whitehead’s conjecture [7] that a subcomplex of an aspherical 2-complex is itself
aspherical. (Asphericai means that all higher homotopy groups vanish.) Our
constructive result on the Whitehead conjecture is stronger than Cockeroft’s | 2] but
not quite as strong as that of Adams [1] which will be presented here in a slightly
different form, Theorems 1 and 2. The second, slightly weaker, version has & very
different proof, depending on the structure theoram for 2-complexes and is
presented in Section 4. We also prove in Section § a specizal case of Whitchead's
conjecture which does not follow from [1] or [2]. In proving the structure thearem
(Theorem 4) we shall present a proof in Section 2 (due to R.G. Swan) of a very
useful theorem concerning free groups and we propose some conjectures on
aspherical 2-complexes.

First we need to define som. conditions on groups Note that the definitions
contain within them statements of potenitial theorems

Definition 1. A group = satisfies condition (A) if either #* is not free abelian or if
the following always holds: if X is a 2-complex with . X = = and H:X = 0 thea X
is aspherical. ‘

Definition 2. Let # be the class of CW complexes X with H:X =0 and H.X
torsion-free. A group = is conservative if the following always holds: Let » act on
the 2-complex X. If X/7 € P then X € P.

Definition 3. For a group m, let Zx be the integral group-ring, { = (= ~ 1)Z, the
augmentation ideal. 7 satisfies the Nakayama Cendition (NC) if given a left ideal J
with IJ:-—-]’ then J=0. R e ;

Definition 4. A group = is transfinite metabelian (TM) if it contains no perfect
subgroup except the identity.
* Research partially supportsd by the Natioral Science Foundatios.
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Observe that condition (A) and “conservative” are not a priori checkat-le. NC is
a bit more easy to see and TM can be checked reasonably easily.
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The results on the Whitehead conjecture are the following:

Theorem 1. Let K be an aspherical 2-complex, L C K obtained by removing 2-cells
from K. Assume ker(mL — 1K) satisfies condition (A). Then L is aspherical.

Theorem 1 is very simple. The interest comes in locating groups sa:isfying
condition (A).

Theozem 2. If w is TM then = satisfies condition (A).

Note. Since subgroups of TM groups are TM, we now have Whitehead’s Conjec-
ture holding whenever =,L is TM. This takes care of the free and abelian cases of
[2]). The one-relator case is in Section §.

Although not explicitly stated, this result is implicitly proved by Adams. We shall
prove it explicitly. NC is a stronger condition than TM: if o C 7 is perfect, then
J = (o — 1)Z7 has the property that IJ = J. Thus if NC holds J = 0 so o = {1} and
TM holds. Thus

Corollsry. If 7 satisfies NC then w satisfies condition (A).

We shall, however, gve in Section 4 a completely different proof of that fact
using a structure theorem for 2-complexes.

We also propose the possibility of a proof of the Whitehead conjecture along the
following lines:

Conjecture 1. If 7 is torsion-free then = satisfies condition (A).
Conjecture 2. If K is a contractible 2-complex and L C K, then (L) is torsion- free.

These, together with Theorem 1, offer a complete proof of the Whitehead
conjecture:

Let K be a contractible 2-complex and L C K a subcomplex. Let L'=L UK*
where K' is the 1-skeleton of K. By the conjectures, (L) satisfies condition (A).
Since m(L') = ker(m,L'— m K) and K — L' = 2-cells, by Theorem 1, L' is aspheri-
cal. But L' and L differ only by 1-cells hence L is aspherical. For the general case of
K aspherical, lift the problem to the (coatractible) universal cover as in Section 1.

Condition (A) cannot hold for arbitrary groups: Let M be Poincaré’s homology
3-cphere S°/D where S* is the ordinary 3-sphere and D the binary icosahedral
group of order 120. Let X be the 2-skeleton of M. Thus X = M — e?, ¢° a 3-cell.
Since M, the universal cover of M, is $°, X = §°= U2, e}, e} being disjoint 3-cells.
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Thus Hy(X)=Z" so X is not contractible, whence X is not aspherical. But
H.X = H\X =0. This example was pointed out by William Beckmann.

This shows that D does not satlsfy condmon (A), of cwm Bnt ” H@Z« ﬁws
trivially since n*=2Z,. = = = : - :

1. Proof of Theorems 1 and 2

First for Theorem 1.

Let p:K— K be the universal cover of K. Let L'=p~'(L). Smﬂe K L is
2-cells, L — m,K is onto so L’ is a connected cover of L and corresponds to the
inclusion 7 < m,L where 7 = ker(mL — mK). Now K — L' is a union of 2-cells
doubly indexed by m,K and the cells of K — L. Thus H,(K,L")=0 for i# 2 and
H(K,L') is a free Z[m,K]-module op the cells of K — L. Now K is cor-tractible
since K is aspherical, thus from the long exact homology sequence of (K, L) we see
that H.L' =0 and 7° = H,L'= HyK, L’) is free abelian. Since =,L’'= = satisfies
condition (A), L' is aspherical. Since L 'covers L, L is aspherical. This completes
the proof of Theorem 1.

We now prove Theorem 2 using the following fa:is proved by Adams |1}:

(A1) Torsion-free abelian grours are conservative.

(A2) An inverse limit of conservative groups is conservative.

(A3) An extension of a conservative group by a conservative group is
conservative.

So now let X be a 2-complex with 7 = m, X a TM jroup. Assume H, X is free
abelian and H,X =0. Let X be the universal cover of X. If we show that  is
conservative then H,X = 0. But since X is a simp'y-connected 2-complex, this
implies X is contractible, whence X is aspherical a.\d we are done.

Let I' be the set of all normal subgroups ¢ < siich that w/o is conservative.
Let 7 = N, er0. w/r = lim /o so by (A2) w/r is conservative. So it will suffice to
show that 7 is trivial. Since # is TM it will suffice to show that 7 is perfect; i.e. that

= [r, 7]. Thus we are done if we can show that ' € I'. But by the exactness of
1 - 'rlr'--> wl/t' =/t —1, (A1) and (A3) complete the proof if we prove v/’ is
torsion-free. ' ‘

Let X'— X be the cover corresponding to r < w. Then =/r acts on X' with
quotient X. But =/r is conservative and )& € 3 Tlms X 'E ? % ng T
torsmn-free But smce mX ==1', HaX‘Wflr Thus rem 2 is complet

Actually we ge: a bxt more fmm ﬂw p
7 ={),ero with I' as above. Then correspons ;» :
X' X with X'& . As above, 1 is perfect. Thm H;X*mﬁ mw&eﬁ% as H A =
Thus every complex in 9 is wvmd by an acyclic complex. If we could prove that
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for torsion-free fundamental group, acyclic implies aspherical, we would have a
proof of Conjecture 1. Thus

Proposition. Conjecture 1 is implied by the following: if X is an acyclic 2-complex
and X is torsion-free then X is aspherical.

Equivalent to this last statement is this: Torsion-free perfect groups satisfy
condition (A).

2. Automorphisms of free groups

We present here a proof due to R.G. Swan of a result conjectured in the
preliminary version of this paper. It concerns the automorphisms of a free group F
and its abelianization F“:

Lifting Theorem. The abelianization map Aut F — Aut F* is onto.

Remarks. 1) This is the same as saying that any basis for F* can be lifted to a basis
for F.

2) The result is well-known in the finitely generated case [5, p. 145].

3) Throughout this discussion we will let y,y. € F* represent the image of
X, X, € F.

Proof. We call ¢ € Aut F° triangular if there is a well-ordered basis {x..} for F such
that if ¢ (y.) = Z a.eys then a,z =0 for B > a and a.. = 1. Assume ¢ is triangular.
Then define f : F— F by f(x.) = wx g with the product taken in the same order, so
that f(x.) = x, [Ig<.x . Clearly f is an automorphism and f* = ¢. Thus

Lemms 1. If ¢ is triangular ¢ can be lifted.

Assume we have proved the result for countably generated free groups. Let F be
free on an arbitrary basis {x.}. and let ¢(y.)= 2 a.sys be an arbitrary automor-
phism. Assume ¢ '(y.) =2 aJsys. For each a, let M, = {B | a.,#0 or als # 0}.
Then let M= M,, M = Ugcpyx M, and S., = Uj_o M~ Since M, is finite, S, is
countable. We now choose any a; € A and let A, = S,,. Inductively if we have
A EA let Ay,y=S,— A, where a €EA-A, If A is a limit ordinal and
U,cA, GAletA, =S, - U, A, wherea€ A -U,_, A,. Then A =114, a
disioint union of countable sets. Let F, be the free group on the x.,a € A,.
F = =F,, the free product of the F, and F* = @, F2,

Now ¢(F)US(F)CP.<F: by choice. Writing ¢ = ((¢..)) where
¢ : Fi— Fj we have ¢, =0 for A < u. Thus ¢,, is an isomorphism. Assuming
the countable case, ¢,, may be lifted to h, € Aut F,. Define h = *#h, € Aut F. Then
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h°® agrees with ¢ on all the components except for uw <A. Thus ¢(h*)™" is
triangular, hence lifts by Lemma 1 to some k € Aut F. Then (kh)* = ¢ so ¢ lifts to
kh. Thus we need only prove the countable case. We assume now that F has {x,}; as
a basis, I the positive integers.

Let E C Aut F° be the subgroup generated by all triangular automorphisms. By
Lemma 1 we will be done once we prove ‘

Lemma 2. E = Aut F.
Notation. For J C [, let (J) be the subgroup of F° generated by {y;};, We need

Lemma 3. Assume ¢ € Aut F° is such that ¢(y:) =y for infinitely many i, then
6 €EE.

We prove first the following special case:

Lemma 4. Let I = I'flIlI” where I" is infinite. Assume that ¢({I')) C{I'Y and ¢ | (I")
is the identity. Then ¢ € E.

Lemma 4 implies Lemma 3: Let I" = {i | ¢(y:;) = y:}. We shall let 1 represent an
identity automorphism wherever it appears. If I" is i1 finite, let I’ = I — I" and write
¢=(C 1) as an automorphism of (I')@(I"). Then g is an isomorphism so
n=( 1)€Aut((I"@®{I"). By Lémma 4, n € E. But ¢n " is triangular to ¢ € E.

Proof of Lemma 4. Let M = F*, N =(I'). Since I" is countably infinite (I") =
NeN@---, a countable sum of copies of N (excent in the trivial case where
N=0 and so ¢=1). Define hkEAutM=, wt(NeNo--) by h=
DL DEDE D, k=10gDg ' @gD - waere g€ AutN is ¢ [(I".
Then ¢ = hk. But

sect=(§ 2)=6 476 06 I )

Thus & and k can each be written as the product of four triangular automor-
phisms. So ¢ € E. (This proof is influenced by tricks of J.H.C. Whitechead and S.
Eilenberg.) This proves Lemma 4.

Finally given an arbitrary ¢ € Aut F*, wefilter I as@ = I, CJoCI,CJ,C - with
n € I,. Each I,J. will be finite iaitial segments; i.e. of the form {1,2,...,t}. We
define them inductively: Given I,-, choose J.-; so that (L) U @<L} C{Jucs).
Consider ¢: (I-)) @ (I = L.} (Ja-)) ® (I = Jo-s). Choose any i, € I - J,, and let
a, € (I — I,_,) be such that ¢(0, a,) = (b, y,). Write a, = 2. c.y;, ¢.# 0. Then let L.
contain n, i, and all the j.. :

Let H,={I,-I,-)). F*=H @H.® -- and a, € H,. Since ¢(a.)=bh.+y, is
not divisible by any integer, the same is true of a., hence a, is part of a basis for H,,
so there is some automorphism h, of H, with h.(y,)=a. Then let k=
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@ h. € Aut F°. Notice that ¢h(y., )= b, +y,, where b, is a linear combination of
y:.’s for i <i, Thus

Yis j# any i,
k(y)) =
bn + yb j = i"

is triangular. Observe that k~'¢h(y,)=y, so by Lemma 3, k™ '¢h EE.
Thus ¢dh €E. But h=h'oh” where h'=(h®l1®h:Plp--+), h"=
(1h:®d1®his@®---)so by Lemma 4, h € E. Thus ¢ € E. This proves Lemma 2
which proves the Theorem.

Remark. This proof actually shows that if M is an infinitely generated free module
(over any PID R) then Aut M is generated by triangular automorphisms (triangular
with respect to a fixed basis, but any ordering). Furthermore in the countable case
each automorphism can be written as a composition of 26 triangular automor-
phisms. In the general case, of 27 triangular automorphisms. I suspect, that both of
these numbers are crude and can be reduced, but it is interesting that there is a
bound to the number required. This is not true for F finitely generated.

3. Structures of 2-complexes

Notation. Throughout this section we will be using subscripts to denote the
members of some unnamed indexing sets. For example, F, is the free group on
generators x, (Fg free on {y;s}, etc.), W, is the one point union (or wedge) of circles
indexed by the a’s. Thus 7, W, = 7(W,, *) (* the union point) can be naturaliy
identified with F,. Furt 1ermore, H,(W, ) is F2 and &, may be taken as the Hurewicz
map. A homomophism F,. — F; can be represented uniquely (up to homotopy) by a
map W, — W, )

Let ? ={x.|r,} be a presentation of a group G(?)= G = (x, [re). That is,
G = F,/Ng where N; i the normal subgroup generated by the elements r; € F,.
Corresponding to %, there is a homomorphism r : F; — F, given by ys » rs, and
hence a map r: Wy — W, which is well-defined up to homotopy given a specific
basis of F,. If we are changing basis we will have to be more careful and state r as a
word w in the specific basis. The mapping cone of r is denoted by X (). That is,
X () has one 0-cell, 1-cells indexed by the a’s and 2-cells indexed by the B’s and
attached by rs € F, = n(W,, *). mX(P)= G(P).

Conversely given any connected 2-complex X, X = X' a 2-complex with a single
0-cell and for some presentation ? of 7,(X), X' = X(P).

Let ? = {x, I 1s} be a presentation of a group. Let 8 be an automorphism of F,.
Let x.= 6(x.). The x. form a new basis for F, so each r; which is some word
Ws (X is also a word ss = w i(x[). As elements of F, r; = s; but 8(ss) = ws(xL). Let
0(P)={x.|ss} clearly a different presentation of the same group. If F. is a free
group on new generators {z,}, let @ *F, ={x,,z, |rs2,}, G(?*F,)= G(P).
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Finally if ¢ is an automorphism of F; then if {b} = {B}, & (ye) is some word T (y,)
so ts = Tg(r,) are new words in the x, generating the same normal subgroup as the
rs 50 P ={x. |15} is a new presentation of G ().

Definition. Equivalence of presentations is ihe equivalence relation ~ generated
by P ~ 6P, P ~ P, P ~ P *F,.

Notation. =, will represent simple homotopy equivalence. Cf. [0] for a full
discussion.

Proposition. If P ~ P’ then X(P)=, X(P').

Proof. We shall prove X(?)=,X(0P)=,X(Pd)=.X(P *F,).

X (02) is the mapping cone of a map corresponding to w': Fs—> F, where

w'(ys) = wi(x.), whereas X (&) is the mapping cone corresponding to w : Fg — F,
where w(yz) = wg(x.). But Owp(x,)=wa(x2)=ss =1 = wa(x.). Thus w ~ 8w’
where 0 : W, — W, is the simple homotopy equivalence corresponding to 6 on F.,.
Thus the cones on w and w' are simple homotopy equivalent, X(9°)=,X(6%).
Similarly we get X(P)=.X(P¢). X(P=*F,) is the mapping cone of
wvu:WevW,—»>W,v W, where w is as above and u is the identity. Thus
X(? *F,)=X(P)v C where C is the cone on u, but the cone on an identity is
collapsible so X(%? * F,) =, X ().

0:W,— W, is a simple homotopy equivalence because m,(W,) is free.

Definition. Given a presentation 2 ={x, | rs} the map r:Fs— F, induces
r* :Fg— Fi. Let Hi® = cokr® and H,® = kerr°.

Since r® is the induced map H,W,--» H,W,., hke long exact mapping cone
sequence yields H; (?) = HX(®), i = 1,2. In parti-alar, H,®? = G(P)".

Theorem 3. Let P be a presentation with H\® a dir-:ct sum of cyclic groups. Then
P~P ={Xa ¥g I Y &S by } where the s; and t, are commutators and thus H\® =
[Xas ¥e l nefis)], H.® =[1t,].

Remarks. 1) By commutators we mean that sz and t, cce in the commutator
subgroup of (x., ys).

2) We use the notation [g. lhp] to mean the quotient of the free abelian group
on symbols g, modulo the subgroup generated by the words h, in the g..

Proof. Let P =1{u, l w.}. Letting I be the image of w®:F:—F; we get
0— I — F¢— H,P? — 0 exact. By the stacked bases theorem [3], we can find a basis
{%., ¥} for F3 and a basis {ngys} for I where the ng are integers.
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Since I is free abelian F2— I splits so we can find a basis {7, §,} with
w*(Fs) = ngys. By the lifting theorem these new bases can be lifted to bases {x,, ys}
for F; and {rs, q,} for F.. Let ?' = 0P¢ = {x., ys l w(rg), w(g,)}. P~ P’ and we
note that w(rs) = yg°ss, w(q,)=1 where sz and ¢, are commutators. Clearly
H\P' =%, Vs | neys] and H>®P' = [t.] hence the full result. (9 and ¢ above are the
automorphisms of F; and F. corresponding to these newly found bases.)

As an immediate corollary, we get the following:

Theorem 4. Let X be a connecied 2-complex with H.X a direct sum of cyclics. Then
X =, X(P) where P = {X, ys ] Y #se, by} With sg and t, commutators so that H\ X =
[%e, 5 | nofis] and HX =[1,].

4. Using the Structure Theorem to study asphericity

For the statement and use of the proposition below, we need to recall the Fox
derivative [4]: a derivation 4 : G— M is a function from a group G to a left
G-module M such that d(xy) = dx + xdy. If F is free on a basis {x;} there is a
unique derivation 9; : F = ZF such that 3;(x;) = 8;, the Kronecker delta. For the
induced map we also write d; : F — ZG, if G is a quotient of F. From the derivation
property, it follows immediately that 31 =0, dx'= —x"'dx, and I[G,G]C IM
where I is the augmentation ideal of ZG, d any derivation.

Recall that a 2-complex X is aspherical if and only if 7.X =0. Thus it is
important to understand how to calculate 7.X from information about # where
X = X (). Let ? ={x, | rs} be a presentation of G = G(P). For each a and 8
consider d,rs as an elerient of ZG. Then the matrix ((d.rs)) may be considered a
ZG-morphism 9 : PpZ2G - P.ZG.

Proposition. 7,X = ker J.

Proof. We look at X, the universal cover of X. Since X is 1-connected 7.X = H.X,
but 7.X = ,X. Thus it is sufficient to prove that H,X = ker 4. This is immediate
because C, X, the CW-chains of X, have the following form: CoX = ZG (since
CoX =2),C:X =@.2ZG (C.X =P.Z)and C.X = P ZG (C:X = P Z) where
d, sends the ath generator to x, — 1 and d, is precisely 3 as above. Since C:X =0,
H,X =kerd,=ker .

We now show how to use Theorem 3 to prove that NC groups satisfy condition
(A). Of course, this fact follows from Theorem 2, but the method of proof may shed
some light on how one could further study the problem.

Assume H,X is free abelian and H,X = 0. Then X =, X (%) where by Theorem
4, P = {x., ys , yaSs} with the s, commutators. Now if s is a commutator ds € I, the
augmentation ideal of ZG for any derivation d. Thus letting {y}={a}U{B},
9 = ((3y(yeSe)))- 9y (YeSe) = Bys + Y50, 5s.
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Now 7. X = ker 3. Assume dA = 0, A = {Ag). Then for each y,0 = 244, (ys55)As =
2p8,8Ap + 25(ysdy5e)As. In particular, then, if y is one of the B’s, this
says A, = — 23Ys(8,8)As. Thus if J is the left ideal of ZG generated by the A,, we
get J=1J. If G satisfies the Nakayaria condition, then J =0 whence A =0,
m,X =0 and X is aspherical.

This gives an entirely different proof of the Corollary to Theorem 2. The hope is
that the tools used in this method can be further exploited in the study of
2-complexes.

5. A special case of Whithead’s conjecture

Theorem 3. Let K be a finite aspherical 2-complex and L C K. Assume that there is
a finite aspherical 3-complex X with m X =m,L =o and H;X =0. Then L is
aspherical.

Note. In particular this covers the cases of = finitely generated free (X a
1-complex) or 7 a torsion-free finitely one relator group (X a 2-complex) which are
in [2]. Thus of Cockcroft’s results we omit only the case of a one relator group with
torsion.

Proof. First we need to prove the following lemma which appears implicitly in [2].
The result is due independently to several authors, the first probably H. Hopf.

Lemma 3. Let K be an aspherical 2-complex and L C K. Then H,L = Hy{w,L}.

Proof. Add n-cells to L for n =3 to form M an asph¢rical space. Then H,(M) =
Hy(m,L). Look at the exact diagram

coio> M > M, L) = L > mM — (M, L)—> - +-

L L A

+++— H;M — Hy(M, L) H.L > H:M -> (M, L) — - - -

where the arrows down are the Hurewicz maps.

By the construction of M, Hy(M, L) = 0 so a is onto. By the Hurewicz theorem a
is an epimorphism. Since m;M = 7,M =0, 3 is an isomorphism. Thus im 3’ = im b,
so to prove a an isomorphism it will suffice to show that b =0.

Look at the following exact diagram:

mi(K, L)—"') L — m,K

N L

Hy(K,L)—> H,L - H,K.
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Now H4(K,L)=0so B is 1-1. m,K =0 so Bb =0. Thus b =0, and the lemma is
proved.

Now look at the following exact sequences
(1) 0->CX>CX>CX->CX—>Z—-0
(2) 0— mL = C.L = C,\L = CoL. - Z - 0.

These are exact since X is contractible and H,L = m,L. Now, by the Schanuel
Lemma, since C,L and C,X are all free Zm-modules, we get

(3) CXpCLaCXaCL=mLaC:XaCLoCX

The ranks of C,X and C,L as free Zw-modules are the same as C.XRznZ =
C,X and C,L ®:.Z =C,L as free abelian groups. Now H,L = Z = H,X,
H\L =7°=H,X, H,L = H,X by Lemma 3, and H;L = H,X since they are both
). Since H L = H, X the alternating sums of the ranks over Z of C,L and C, X
are the same. Thus the same is true of C,L and C,X over Zw Thus
CX®CLeC,XdCL=CXaCLeCX =M, some finitely generated free
Zm-module. Then (3) becomes M = 7,L ® M. By Kaplansky’s Theorem [6],
m.L =0 so L is aspherical.
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