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Using the modern Kaluza–Klein theory of gravity (or the Induced Matter theory), we study the Dirac
equation for massive neutrinos on a de Sitter background metric from a 5D Riemann-flat (and hence
Ricci-flat) extended de Sitter metric, on which is defined the vacuum for test massless 1/2-spin neutral
fields minimally coupled to gravity and free of any other interactions. We obtain that the effective 4D
masses of the neutrinos can only take three possible values, which are related to the (static) foliation of
the fifth and noncompact extra dimension.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

In models based on supergravity [1], it has been pointed out the
existence of some light particles whose interactions are suppressed
at scales close to M = M P /(8π) � 2.4 × 1018 GeV. Such parti-
cles have nothing to do with the collider experiments, but may
affect the standard scenario of big-bang cosmology [2–4]. The grav-
itino, which is the gauge field associated with local supersymmetry
(SUSY), is one of the weakly interacting particles in supergravity
models, and we expect the mass of the gravitino to be of the or-
der of the typical SUSY-breaking scale. When the gravitino decays
into a neutrino and a sneutrino, the emitted high energy neutrinos
scatter off the background neutrinos and produce charged leptons
(mainly electrons and positrons), which cause an electro-magnetic
cascades and produce many soft photons. Hence, the propagation
of neutrinos should be very important during inflation. Inflationary
cosmology can be recovered from a 5D vacuum [5–7]. The in-
flationary theory is very consistent with current observations of
the temperature anisotropy of the Cosmic Microwave Background
(CMB) [8]. The most popular model of supercooled inflation is
chaotic inflation [9]. In this model the expansion of the universe is
driven by a single scalar field called inflaton. At some initial epoch,
presumably the Planck scale, the scalar field is roughly homoge-
neous and dominates the energy density, which remains almost
constant during all the inflationary epoch.
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On the other hand inflation can be recovered from the Camp-
bell–Magaard theorem [10–14], which serves as a ladder to go
between manifolds whose dimensionality differs by one. This the-
orem, which is valid in any number of dimensions, implies that
every solution of the 4D Einstein equations with arbitrary energy
momentum tensor can be embedded, at least locally, in a solu-
tion of the 5D Einstein field equations in vacuum. Because of this,
the stress-energy may be a 4D manifestation of the embedding
geometry. Physically, the background metric there employed de-
scribes a 5D extension of an usual de Sitter spacetime, which is
the 4D spacetime that describes an inflationary expansion.

In this Letter we study the Dirac equation for 4D massive neu-
trinos in a de Sitter expansion using Modern Kaluza–Klein theory
of gravity (or Induced Matter theory) [15,16]. In this theory the
5D massless 1/2-spin test fields are considered free from interac-
tions and minimally coupled to gravity on a 5D Ricci-flat metric in
which we define the physical vacuum. Our approach is something
different (but complementary) than the studied by Wesson in [17],
because we make a detailed study of the geometrical spinor prop-
erties of 5D vector fields that, once we make a static foliation on
the fifth coordinate, can be considered as 4D massive neutrinos.

2. The 5D Clifford algebra and spinors in 5D

We consider the Ponce de León metric [18]

dS2 =
(

ψ

ψ0

)2[
dt2 − e2t/ψ0 dR2] − dψ2. (1)

The resulting 4D hypersurface after making ψ = ψ0 describes a
de Sitter spacetime. From the relativistic point of view an ob-
server moving with the penta-velocity Uψ = 0, will be moving on
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a spacetime that describes a de Sitter expansion which has a scalar
curvature (4)R = 12/ψ2

0 = 12H2
0, such that the Hubble parameter is

defined by the foliation H0 = ψ−1
0 . If we foliate ψ = ψ0, we get the

effective 4D metric

dS2 → ds2 = dt2 − e2H0t d�R2, (2)

which describes a 3D spatially flat, isotropic and homogeneous de
Sitter expanding universe with a constant Hubble parameter H0.

To define a 5D vacuum we shall consider a Lagrangian for a
massless 5D spinor field minimally coupled to gravity (we shall
consider h̄ = c = 1)

L = 1

2

[
Ψ̄ γ A(∇AΨ ) − (∇AΨ̄ )γ AΨ

] + R

2K̄
, (3)

where K̄ = 8πG and γ A are the Dirac matrices which satisfy{
γ A, γ B} = 2g AB

I, (4)

such that the covariant derivative of the spinor Ψ on (1) is defined
in the following form:

∇AΨ = (∂A + ΓA)Ψ, (5)

and the spin connection is given by

ΓA = 1

8

[
γ b, γ c]eB

b∇A[ecB ], (6)

being ∇A[ecB ] = ∂AecB − Γ D
AB ecD the covariant derivative of the

five-bein ec
B (the symbol ∂A denotes the partial derivative with

respect to xA and ηab = g AB e A
a eB

b denotes the 5D Minkowski space-
time in Cartesian coordinates), which relates the extended 5D de
Sitter metric (1) with the 5D Minkowski spacetime written in
Cartesian coordinates: dS2 = dt2 − (dx2 + dy2 + dz2) − dψ2

ec
B =

⎛
⎜⎜⎜⎜⎜⎝

(
ψ
ψ0

) 0 0 0 0

0 (
ψ
ψ0

)et/ψ0 0 0 0

0 0 (
ψ
ψ0

)et/ψ0 0

0 0 0 (
ψ
ψ0

)et/ψ0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ . (7)

The Dirac matrices γ a are represented in an Euclidean space
instead of a Lorentzian space, and are described by the alge-
bra [19,20]: {γ a, γ b} = 2ηab

I

γ 0 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ =

(
I 0
0 I

)
,

γ 1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎠ =

(
0 σ 1

−σ 1 0

)
,

γ 2 =

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞
⎟⎟⎠ =

(
0 σ 2

−σ 2 0

)
,

γ 3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ =

(
0 σ 3

−σ 3 0

)
, (8)

such that γ 4 = γ 0γ 1γ 2γ 3, and the σ i
σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
, (9)

are the Pauli matrices.

2.1. Variables separation for the Dirac equation in 5D

Finally, using the fact that γ A = e A
a γ a , we obtain the Dirac

equation on the metric (1)

iγ A∇AΨ = 0, (10)

where we shall use (5) and (6) and Cartesian coordinates to de-
scribe the 3D Euclidean hypersurface. The Dirac equation (13) can
be written as

iγ ae A
a∂AΨ + i

8
γ a[γ b, γ c]e A

a eB
b gD B

(
∂AeD

c + Γ D
E AeE

c

)
Ψ = 0. (11)

The relevant second kind Christoffel symbols are

Γ 0
04 = 1

ψ
, Γ 0

11 = Γ 0
22 = Γ 0

33 = e
2 t

ψ0

ψ0
,

Γ 1
01 = Γ 2

02 = Γ 3
03 = 1

ψ0
,

Γ 1
14 = Γ 2

24 = Γ 3
34 = 1

ψ
, Γ 4

00 = ψ

ψ2
0

,

Γ 4
11 = Γ 4

22 = Γ 4
33 = −e

2 t
ψ0 ψ

ψ2
0

. (12)

Hence, the Dirac equation on the 5D Riemann-flat metric (1) re-
sults to be

i

{
γ 0

[(
ψ0

ψ

)
∂

∂t
+ 3

2ψ

]
+

(
ψ0

ψ

)
e
− t

ψ0 [ �γ · �∇]

+ γ 4
[

∂

∂ψ
+ 2

ψ

]}
Ψ = 0. (13)

In order to make separation of variables we shall use the method
introduced in [21]. After some algebraic manipulation, Eq. (13) can
be rewritten as

(K̂04 + K̂123)Φ = 0, (14)

where K̂04Φ = kΦ = −K̂123Φ and Φ = γ 0γ 4Ψ [by making
det |kΦ + K̂123Φ| = 0, we can evaluate the variable separation
constant: k = |�k|]. The operators of separation K̂04 and K̂123 are
given by

K̂04 =
[
γ 0et/ψ0

(
∂

∂t
+ 3

2ψ0

)

+ 1

ψ0
γ 4et/ψ0

(
ψ

∂

∂ψ
+ 2

)]
γ 0γ 4, (15)

K̂123 =
[
γ 1 ∂

∂x
+ γ 2 ∂

∂ y
+ γ 3 ∂

∂z

]
γ 0γ 4, (16)

where the condition [K̂04, K̂123] = 0 must be fulfilled. Since the
metric (1) is 3D spatially isotropic, one obtains that the 3D spatial
solutions can be expanded in term of harmonic functions, so that
one can write

Φ(t, x, y, z,ψ) ∼ Φ0(t,ψ)ei�k·�x, (17)

such that �k is the wavenumber of propagation on the 3D isotropic
and homogeneous Euclidean space. Furthermore, one obtains
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K̂04Φ0(t,ψ) = kΦ0(t,ψ). (18)

After some algebra, we obtain that

(K̂0 + K̂4)Υ (t,ψ) = 0, (19)

such that

K̂4Υ = MΥ = −K̂0Υ, (20)

where we have used that Υ (t,ψ) = (γ 0)−1Φ0(t,ψ), and

K̂0 =
[
γ 4

(
∂

∂t
+ 3

2ψ0

)
− Ike−t/ψ0

]
γ 0, (21)

K̂4 =
[
γ 0 1

ψ0

(
ψ

∂

∂ψ
+ 2

)]
γ 0, (22)

that comply with [K̂0, K̂4] = 0. Using the first equation in (20),
with the variables separation

Υ (t,ψ) = Υ0(t)Λ(ψ), (23)

we obtain the differential equation for Λ(ψ)

ψ

ψ0

∂Λ

∂ψ
+ 2

ψ0
Λ = MΛ, (24)

which is the same differential equation obtained in [22], but in a
different framework. The solution for this equation is

Λ(ψ) = Λ0

(
ψ

ψ0

)M0−2

, (25)

where Λ0 is a constant of integration and M = M0/ψ0 is a sep-
aration constant. For M0 < 2 the function Λ(ψ) tends to 0 for
ψ → ±∞, but is divergent for ψ → 0. In order for the func-
tion Λ(ψ) to be real, we must ask M0 to take integer values:
M0 = . . . ,2,1,0,−1,−2, . . . . An interesting property is that for
even |M0| values the function Λ(ψ) is even but for odd |M0| val-
ues the function is also odd.

3. Effective 4D Dirac equation for massive neutrinos in a de Sitter
spacetime

We assume a static foliation of the 5D spacetime on the
4D hypersurface Σ0, on which the 4D energy momentum ten-
sor is described by a perfect fluid T̄αβ = e A

αeB
β T AB |ψ0 = (ρ +

P )uαuβ − Phαβ , where ρ(t, r,ψ0) and P (t, r,ψ0) are the energy
density and pressure of the induced matter, respectively. The 4-
velocities uα are related to the 5-velocities U A by ua = e A

αU A , and
hαβ = e A

αeB
β g AB are the components of the metric tensor in (2).

The Campbell–Magaard theorem, which is valid in any number of
dimensions, implies that every solution of the 4D Einstein equa-
tions with arbitrary energy momentum tensor can be embedded,
at least locally, in a solution of the 5D Einstein field equations in
vacuum. Because of this, the tensor T̄μν is induced as a 4D mani-
festation of the embedding geometry.

If we take a constant foliation ψ = ψ0 	= 0 [to avoid a possible
divergence of Λ(ψ = ψ0 = 1/H0)] on the metric (1) we obtain the
metric (2), and the second equation in (20) takes the form[
γ 4γ 0

(
∂

∂t
+ 3H0

2

)
− γ 0ke−H0t

]
Υ0(t) = MΥ0(t), (26)

where M = M0/ψ0 = M0 H0 is the induced mass of the neutrinos
on the de Sitter spacetime (2). If we consider

Υ0(t) =
(

Υ
↑
M(t)
↓

)
, (27)
ΥM(t)
such that Υ
↑
M(t) and Υ

↓
M(t) comply with the coupled differential

equations

i

c

(
∂

∂t
+ 3H0

2

)
Υ

↓
M + (

M − ke−H0t)Υ ↑
M = 0, (28)

− i

c

(
∂

∂t
+ 3H0

2

)
Υ

↑
M + (

M + ke−H0t)Υ ↓
M = 0. (29)

One can work with both coupled Eqs. (28) and (29) in order to de-
couple Υ

↑
M(t) and Υ

↓
M(t), and obtain two decoupled second order

differential equations

∂2Υ
↑
M

∂t2
+ H0(9M + 11ke−H0t)

2(M + ke−H0t)

∂Υ
↑
M

∂t
+

[
3H2

0ke−H0t

2(M + ke−H0t)

+ 9H2
0

2
− (

M − k2e−H0t)(M + ke−H0t)]Υ
↑
M = 0, (30)

∂2Υ
↓
M

∂t2
+ H0(9M − 11ke−H0t)

2(M − ke−H0t)

∂Υ
↓
M

∂t
−

[
3H2

0ke−H0t

2(M − ke−H0t)

− 9H2
0

2
+ (

M + k2e−H0t)(M − ke−H0t)]Υ
↓
M = 0. (31)

The general solutions of Eqs. (30) and (31), are1,2

Υ
(↑,↓)
M (t) = e

∓ i
H0

k3/2e−H0t {
C1e

−[
9+

√
16 M2

H2
0

+9
] H0

4 t

×HeunC
[
a1,a2,a3,a4,a5,∓x(t)

]
+ C2e

−[
9−

√
16 M2

H2
0

+9
] H0

4 t

×HeunC
[
a1,−a2,a3,a4,a5,∓x(t)

]}
, (33)

where HeunC[a1,a2,a3,a4,a5,∓x(t)] are the Heun functions with
arguments ∓x(t) = ∓ke−H0t , and parameters as (s = 1, . . . ,5)

a1 = 2i
M

H0
k1/2, a2 = 1

2

√
16

M2

H2
0

+ 9, (34)

a3 = −2, a4 = − M2

H2
0

(k − 1), a5 = 1

4
+ M2

H2
0

(k − 1). (35)

Notice that for late times the arguments in the Heun functions
become zero: x(t)|H0t
1 → 0, so that one obtains

HeunC
[
a1,±a2,a3,a4,a5,∓x(t)

]∣∣
H0t
1 → 1. (36)

Furthermore, in this situation one obtains that

e
∓ i

H0
k3/2e−H0t ∣∣

H0t
1 → 1, (37)

e
−[9+

√
16 M2

H2
0

+9] H0
4 t∣∣

H0t
1 → 0. (38)

In order for the spinors Υ
(↑,↓)
M to be well behaved for late times

of inflation, the argument
[
9 −

√
16 M2

H2
0

+ 9
]

of the exponential

1 In the case of M = 0, both solutions Υ
(↑,↓)
M=0 (t), are equal and the general solu-

tion takes the particular form

Υ
(↑,↓)
M=0 (t) = e− 11

4 H0t
{

C1J−5/4

[
k3/2

H0
e−H0t

]
+ C2Y−5/4

[
k3/2

H0
e−H0t

]}
. (32)

2 From the structure of Eq. (13) one can see that Υ
(↑,↓)
M are not Pauli spinors.
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e
−[

9−
√

16 M2

H2
0

+9
] H0

4 t
must be positive or zero. This requires that

16 M2

H2
0

� 72, so that (for positive M), there are three possible values

of mass, which are

M1 = 0, M2 = 3√
2

H0, M3 = 3
√

2H0. (39)

This is a very strong result. Notice that if we make the extrapola-
tion to present day values of the Hubble parameter, H̄0 � 10−33 H0,
one would obtain that the present day masses of the neutrinos are

M̄1 = 0, M̄2 = 3√
2

H̄0 � 3√
2

× 10−12 eV,

M̄3 = 3
√

2H̄0 � 3
√

2 × 10−12 eV, (40)

where we have taken H0 � 10−9G−1/2. These results are in agree-
ment with evidence [23].

Finally, for very large times the solution (33) can be approxi-
mated to

Υ
(↑,↓)
M (t)

∣∣
H0t
1 � C2e

∓ i
H0

k3/2e−H0t

e
−[

9−
√

16 M2

H2
0

+9
] H0

4 t
, (41)

where the spinors are normalized by 〈Ψ |Ψ 〉 = 1.

4. Final remarks

We have studied the Dirac equation and solutions for effec-
tive 4D massive neutrinos on a de Sitter expansion, from a 5D
Riemann-flat (and hence Ricci-flat), extended de Sitter metric.
On this metric we have defined a 5D vacuum to test massless non-
interacting fermion fields which are minimally coupled to gravity.
After making a static foliation these fermions acquire an induced
mass on the effective 4D curved de Sitter spacetime. However,
the mass of the neutrinos can take only three possible values
(M1 = 0, M2 = 3√

2
H0 = 3√

2ψ0
and M3 = 3

√
2/ψ0). If we consider

present day values of the Hubble parameter the bigger mass M̄2
should be close to ∼ 3

√
2 × 10−12 eV. This is a very strong result

which assures that the effective 4D masses of the neutrinos are in-
versely proportional to the foliation, ψ = ψ0, and shows how the
mass of the neutrinos on a 4D de Sitter spacetime can be induced
from a free massless 5D test spinors on a extended Riemann-flat
(and hence Ricci-flat) metric which has non-zero connections Γ a

bc .
But more strong is the result that the masses of cosmological neu-
trinos should be dependent on the energy scale of the universe
because they are dependent on the Hubble parameter. However,
these results must be taken carefully because we have neglected
any kind of interactions of the spinor fields with other fields.
(These results are only valid for free 4D neutrinos that propagate
freely in a 4D de Sitter background.) A more complete treatment
will be studied in a future work.
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