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In this article the dynamical behaviour of a beam that behaves according to a Tinkerbell map (i.e.
Tinkerbell beam), within a nonlinear ring phase-conjugated resonator is modelled. The ABCD matrix of
an optical device able to generate a two dimensional Tinkerbell map is found in terms of the map param-
eters, the state variables and the resonator parameters. For the first time to our knowledge the conditions
in order to obtain the dynamics of a beam behaving according to a Tinkerbell map are found within an
optical resonator. Finally some of the main technical problems to build a resonator intracavity element
able to produce Tinkerbell beams are presented.

� 2012 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

In this work the dynamical behaviour of a beam that spatially
behaves according to a Tinkerbell map (i.e. Tinkerbell beam), with-
in a nonlinear ring phase-conjugated resonator is modelled. It is
shown that the behaviour of a beam within a ring optical resonator
may be well described by a Tinkerbell map and the necessary con-
ditions for its occurrence are discussed. The state of the beam, as
well as the iterative map, is determined by its previous state. In
particular, it stands out that the introduction of a specific intracav-
ity element within a ring phase-conjugated resonator may produce
beams described by a Tinkerbell map, which we call from now on
’’Tinkerbell beams’’. The idea of describing chaotic optical resona-
tors through the introduction of map generating elements from a
mathematical viewpoint was already explored elsewhere [1,2].
The approach to the Tinkerbell map is taken into account due to
its experimental viability, the final mathematical description for
the Tinkerbell beam generator makes us think that it can be
physically constructed.

One of the major research areas for nonlinear optics and quan-
tum electronics is optical phase conjugation (OPC). OPC may be
achieved by two coherent optical beams propagating in opposite
directions with a reversed wave front and identical transverse
amplitude distributions. A pair of phase-conjugated beams pos-
sesses the unique feature that the aberration influence imposed
on the forward beam as it goes through an inhomogeneous or
disturbing medium is removed as the backward beam returns
through the same medium. No matter how these beams are
obtained, it is important for the generation of the backward
phase-conjugated beam, the formation of the induced holographic
grating and the subsequent wave-front restoration via a backward
reading beam. OPC research growth shows a renovated momen-
tum because of OPC-associated techniques usefulness in many dif-
ferent application areas: such as high-brightness laser oscillator/
amplifier systems, cavity-less lasing devices, laser target-aiming
systems, aberration correction for coherent-light transmission
and reflection through disturbing media, long distance optical fibre
communications with ultra-high bit-rate, optical phase locking and
coupling systems, and novel optical data storage and processing
systems [3].

One way to improve the output power performance of a phase
conjugated laser oscillator is to use intracavity nonlinear elements
[4,5]. Often, intracavity cells are utilised to compensate optical
aberrations both in the resonator and due to thermal effects in
the active medium, and to obtain a near diffraction limited output
[6], they can also eliminate the need for a conventional Q-switch
since its intensity-dependent reflectivity typically produces nano-
second pulse trains of diffraction limited quality.

OPC also help in the production of short holograms that do not
exhibit in-depth diffraction deformation of the fine speckle pattern
of the recording fields [7,8]. For instance, phase conjugation by
Stimulated Brillouin Scattering (SBS) can help in the power scaling
of fibres and solid-state lasers [9–11].

Several theoretical models have been proposed to describe OPCs
in resonators; usually in SBS conjugated lasers the linear phase
conjugated beam is obtained from the SBS reflection on one of
the cavity mirrors [12]; however ring-phase conjugated resonators
can also be used [13]. While the typical theoretical model of an
OPC laser in transient operation [14] works taking into account
the spatial and temporal dynamics of the input EP(z, t) and the
Stokes ES(z, t) fields as well as the acoustic-wave amplitude Q(z, t)
in the SBS cell, it is known that spatial mode analysis of a laser
may be carried out using transfer matrices, also called ABCD
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matrices. Matrices are a simple way to obtain the final position and
angle of a ray that propagates through a complex optical system,
such as a self-adaptive laser resonator with its oscillator made of
a plane output coupler and an infinite nonlinear FWM medium
in self-intersecting loop geometry [15]. In this article a phase con-
jugate ideal mirror is used as an element of a ring resonator able to
present beam dynamics described by a Tinkerbell map. We believe
that this kind of laser (spatially driven and controlled) can be very
useful as a model instrument with several fine adjustable parame-
ters. These laser systems can be used to model complex macro-
scopic systems (e.g. weather, oceanic currents and brain activity)
as well as in cryptography and secure communication systems.

This paper is organised as follows. Section 2 reviews the ABCD
matrix optic elements that are the starting point of this work,
Section 3 presents some basic features of the nonlinear Tinkerbell
map, Section 4 shows the main characteristics of the map
generation matrix and the Tinkerbell Beams. Section 5 presents
the general case for the Tinkerbell beams in a nonlinear ring
phase-conjugated resonator, Section 6 discusses some of the main
technical problems in order to build an intracavity element to gen-
erate the Tinkerbell beams discussed here, and finally Section 7
presents the conclusions.
2. ABCD matrix optics

A ray beam is described by two parameters, its high and its
angle to an optical axis. When a ray travels through an optical
element, it usually changes its direction. Mathematically the opti-
cal element can be represented by a 2 � 2 matrix, called the ABCD
matrix. Any sequence of linear transformations follows the simple
rules of matrix multiplication and can therefore be used when the
ray travels through a whole optical system. To do so one has to as-
sume cylindrical symmetry around the optical axis, and to define at
a given position z both the perpendicular distance y(z) of any ray to
the optical axis and its angle with the same axis h(z). The paraxial
ray’s transformation can therefore be described by the following
equation [16]

ynþ1

hnþ1

� �
¼

A B

C D

� �
yn

hn

� �
: ð1Þ

All optical passive elements used to reflect, propagate and
transmit light are represented by constant ABCD matrices whose
determinant Det[ABCD] = nb/na, where nb and na are the refraction
indexes before and after the optical element described by the
matrix. Since typically nb and na are the same, it holds that
Det[ABCD] = 1. However, for active or nonlinear optical elements
of the ABCD matrix, elements can be described by functions of
various parameters.

It is important to note that since in the process of phase conju-
gation the incoming ray retraces exactly its incident path [9], the
ideal phase conjugated ABCD matrix is

1 0
0 �1

� �
; ð2Þ

whose determinant is not 1 but �1. As already mentioned, typically
the phase conjugation can be achieved by FWM or by a stimulated
scattering process such as Brillouin. Upon reflection on a stimulated
SBS phase conjugated mirror, the reflected wave has its frequency x
downshifted to x � d = x(1 � d/x) where d is the characteristic
Brillouin downshift frequency of the mirror material (typically
d/x� 1). Taking the downshifting frequency into account the ABCD
matrix reads

1� d
x 0

0 �1

� �
: ð3Þ
The ideal matrix (2) must also be modified considering that in
phase conjugation by SBS a light intensity threshold must be
reached to obtain an exponential amplification of the scattered
light; to model a real SBS phase conjugated mirror one has to in-
clude a Gaussian aperture of radius a at intensity 1/e2 placed before
the ideal phase conjugated mirror, to ensure that only the fraction
of a Gaussian incident beam with intensity above threshold is
phase-conjugated reflected as a Gaussian beam. The specific matrix
for this aperture is

1 0
� ik

pa2 1

 !
; ð4Þ

where the aperture a is given as a function of the radial distribution
of the intensity of the incident light beam. The ABCD matrix ele-
ments of a phase conjugated mirror depend on several parameters
such as the incident light intensity, the wavelength and the Brillou-
in downshifting frequency [17]. For our next calculations we will
use the ideal matrix given by Eq. (2).

3. Tinkerbell map

From an extensive list of dynamic maps [18], Duffing, Hénon
and Tinkerbell are two dimensional nonlinear maps that have pro-
ven to be very useful in physical applications [18,19]. Since these
maps are described by recurrence relations they can be written
as a matrix system such as the one described by Eq. (1), that is

ynþ1 ¼ Ayn þ Bhn; ð5-aÞ
hnþ1 ¼ Cyn þ Dhn: ð5-bÞ

Since the Tinkerbell map [20] is a discrete-time dynamical sys-
tem given by the equations

ynþ1 ¼ y2
n � h2

n þ ayn þ bhn; ð6-aÞ
hnþ1 ¼ 2ynhn þ cyn þ dhn; ð6-bÞ

where yn and hn are the scalar state variables and a,b,c, and d are
the map parameters, in order to write the Tinkerbell map as a ma-
trix system such as Eq. (1) the following values for the coefficients
A,B,C and D must hold

Aðyn;aÞ ¼ yn þ a; ð7Þ
Bðhn;bÞ ¼ �hn þ b; ð8Þ
Cðhn; cÞ ¼ 2hn þ c; ð9Þ
DðdÞ ¼ d: ð10Þ

To do so, the matrix coefficients have to depend on the previous
state variables yn and hn, so they are not constants anymore. They
also depend on the Tinkerbell map parameters a,b,c, and d. With
these considerations the ABCD Tinkerbell matrix system becomes

ynþ1

hnþ1

� �
¼

yn þ a �hn þ b

2hn þ c d

� �
yn

hn

� �
: ð11Þ
4. Ring phase-conjugated resonator with Tinkerbell dynamics

This section presents an optical resonator that produces beams
following the Tinkerbell map dynamics; these beams will be called
‘‘Tinkerbell beams’’. Fig. 1 shows a ring phase-conjugated resonator
consisting of two ideal mirrors, an ideal phase conjugated mirror
and a yet unknown optical element described by an ABCD matrix

a b
c d

� �
. The phase conjugated mirror (PCM) is separated by a

distance l from each plane mirror M, while the Tinkerbell device
is located between the two mirrors at a distance l/2 from each
other. To calculate the full resonator matrix one has to take into
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Fig. 1. Ring phase conjugated laser resonator with a chaos generating element.
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Fig. 2. Computer calculation of the magnitude of matrix element b of the Tinkerbell
map generating device for a resonator with l = 1 and Tinkerbell parameters a = 0,
b = �0.6, c = 0 and d = �1 for the first 100 round trips.
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account the identity matrix: 1 0
0 1

� �
for the plane mirrors

M;
1 0
0 �1

� �
for the ideal phase conjugated mirror PCM,

1 l
0 1

� �
and 1 l=2

0 1

� �
for an l and l/2 translations, and the un-

known Tinkerbell map generating device matrix represented by
a b
c d

� �
. Therefore, the total transformation ABCD matrix for a

complete round trip is calculated as

A B

C D

� �
¼

1 0
0 �1

� �
1 l
0 1

� �
1 0
0 1

� �
1 l=2
0 1

� �
a b
c d

� �

�
1 l=2
0 1

� �
1 0
0 1

� �
1 l

0 1

� �
: ð12Þ

The resulting matrix is

A B

C D

� �
¼

aþ 3cl
2 bþ 3l

4 ð2aþ 3clþ 2dÞ
�c � dþ 3cl

2

� �
 !

: ð13Þ

If one does want a particular map to be reproduced by a ray in
the optical resonator, each round trip described by (yn,hn), has to be
considered as an iteration of the selected map. In order to obtain
Tinkerbell beams, Eq. (11) must be equated to Eq. (13), that is

aþ 3cl
2
¼ aþ yn; ð14Þ

bþ 3l
4
ð2aþ 3clþ 2dÞ ¼ b� hn; ð15Þ

c ¼ �c� 2hn; ð16Þ

dþ 3cl
2
¼ �d: ð17Þ

Eqs. (14)–(17) define a system for the matrix elements a; b; c;d, that
guarantees a Tinkerbell map behaviour for a given ray (yn,hn) or a
Tinkerbell beam i.e. the generation of a beam that behaves on (yn, -
hn) according to a Tinkerbell map. These elements can be written in
terms of the map parameters (a,b,c and d), the resonator’s main
parameter l and the ray state variables yn and hn as

a ¼ aþ 3
2
clþ 3lhn þ yn; ð18Þ

b ¼ 1
4
ð4b� 6alþ 6dl� 9cl2 � 4hn � 18l2hn � 6lynÞ; ð19Þ

c ¼ �2hn � c; ð20Þ

d ¼ �dþ 3
2

lðcþ 2hnÞ: ð21Þ

The introduction of the above values for the a b
c d

� �
matrix in

Eq. (13) enables us to obtain Eq. (11). For any transfer matrix, ele-
ments A and D describe the lateral magnification while C depicts
the focal length, whereas the device’s optical thickness is given
by B = L/n, where L is its length and n its refractive index. From
Eqs. (18)–(21) it must be noted that the upper elements (a and
b) of the device matrix depend on both state variables (yn and hn)
while the lower elements (c and d) only on the state variable hn.
The study of the stability and chaos of the Tinkerbell map in terms
of its parameters is a well-known topic [21,22]. In particular the
behaviour of element b is very important from a practical point
of view; Fig. 2 shows a computer calculation for the first 100 round
trips of matrix element b of the Tinkerbell map generating device
for a resonator of unitary length (l = 1) and map parameters
a = 0, b = �0.6, c = 0 and d = �1, these parameters were found using
brute force calculations and they were selected due to the matrix-
element b behaviour (i.e. we were looking for the behaviour able to
be achievable in experiments). As can be seen, the optical length of
the map generating device (i.e. element b) varies on each round
trip in a periodic form, this would require that the physical length
of the device, its refractive index -or a combination of both- change
in time. The actual design of a physical Tinkerbell map generating
device for a unitary ring resonator must satisfy Eqs. (18)–(21), to
do so its elements (a,b,c and d) must vary accordingly. The ob-
tained matrix can be regarded as the matrix of a dynamic general
lens.

5. Tinkerbell beams: general case

To obtain the Eqs. (18)–(21) b, the thickness of the Tinkerbell
device, has to be very small (close to zero), so the translations be-
fore and after the device can be over the same distance l/2. In the
previous numeric simulation b takes values up to 0.2, so the gen-
eral case where the map generating element b is not assumed to
be small must be studied. Eq. (12) then becomes

A B

C D

� �
¼

1 0
0 �1

� �
1 l

0 1

� �
1 0
0 1

� �
1 l�b

2

0 1

 !

�
a b

c d

� �
1 l�b

2

0 1

 !
1 0
0 1

� �
1 l

0 1

� �
; ð22Þ

where 0 < b < l. Therefore the round trip total transformation matrix
is now written as

a� c
2 ðb� 3lÞ 1

4 ½b
2c � 2bð�2þ aþ 3clþ dÞ þ 3lð2aþ 3clþ 2dÞ�

�c 1
2 ðbc � 3cl� 2dÞ

 !
:

ð23Þ

From Eqs. (11) and (23) we obtain the following system of equa-
tions for the matrix elements a,b,c and d
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a� c
2
ðb� 3lÞ ¼ aþ yn; ð24Þ

1
4
ðb2c � 2bð�2þ aþ 3clþ dÞ þ 3lð2aþ 3clþ 2dÞÞ ¼ b� hn; ð25Þ

� c ¼ cþ 2hn; ð26Þ
bc � 3cl� 2d

2
¼ d: ð27Þ

The solution to this new system is written as
a ¼ aþ 3
2
clþ 3lhn þ yn þ

1
2cþ 4hn

�

cð2� aþ d� 3cl� 12lhn � ynÞ
þhnð4� 2aþ 2d� 12lhn � 2ynÞ

� � c
2� hn

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � Q

q
0
BB@

1
CCA; ð28Þ

b ¼ 1
cþ 2hn

�2þ a� dþ 3clþ 6lhn þ yn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � Q

q
2

0
@

1
A; ð29Þ

c ¼ �c� 2hn; ð30Þ

d ¼ dþ 3
2
clþ 3lhn þ

1
2cþ 4hn

�

cð2� aþ d� 3cl� 12lhn � ynÞ
þhnð4� 2aþ 2d� 12lhn � 2ynÞ

� � c
2� hn

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � Q

q
0
BB@

1
CCA; ð31Þ
where
P ¼ 4� 2aþ 2d� 6cl� 12lhn � 2yn and

Q ¼ ð4cþ 8hnÞð�4bþ 6cl� 6dlþ 9cl2 þ 4hn þ 18l2hn þ 6lynÞ:

It should be noted that if one takes into account the thickness of
the map generating element, the equation complexity is substan-
tially increased. Now only c has a simple relation with hn and c,
on the other hand a, b and d are dependent on both state variables,
on all Tinkerbell parameters, as well as on the resonator length.
When the calculation is performed for this new matrix with the
following map parameters: a = 0.4, b = �0.4, c = �0.3 and
d = 0.225, Fig. 3 is obtained. The behaviour observed in Fig. 3 for
the matrix-element b can be obtained for several different param-
eters’ combinations, as well as other dynamical regimes with a lack
of relevance to our work. One can note that after a few iterations
the device’s optical thickness is small and constant, this should
make easier the physical implementation of this device.
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Fig. 3. Computer calculation of the magnitude of matrix element b of the Tinkerbell
map generating device for a resonator with l = 1 and Tinkerbell parameters a = 0.4,
b = �0.4, c = �0.3 and d = 0.225 for the first 100 round trips.
6. A practical Tinkerbell map generating device

As we have seen, in order to generate an ABCD matrix system
such as (11) it is essential to introduce an intra-cavity element
which will be responsible for taking into account the hysteresis
and non-linearity of the dynamic system. The intra-cavity map
generating device is described by a 2 � 2 matrix, where its ele-
ments are given by Eqs. (18)–(21). The equations describing the
intracavity element are

youtput ¼ ayinput þ bhinput; ð32-aÞ
houtput ¼ cyinput þ ehinput : ð32-bÞ

The practical implementation of an intra-cavity element is techni-
cally a complex task due to the fact that the actual intra-cavity ma-
trix is a dynamic one, its value depends not only on the map
constants but also on the previous round-trip yn and hn values. In
particular it is required for the intra-cavity element a system able
to detect and measure the position and angle of incidence of the in-
put beam parameters, i.e. yinput and hinput, this information should be
optically or electronically processed (according to Eqs. (18)–(21)) in
order to produce and generate the required output beam with new
parameters i.e. youtput and houtput. A general intra-cavity element
does not exists yet.

The measurement of the impinging angle of a light beam can be
implemented by several techniques, such as the use of collimators
or interferometers. However, when the spatial coordinates are also
of interest, as in this case, there is not a straightforward solution. A
possible solution is the use of a matrix of photosensors mounted on
a PZT-driven stage. As shown in Fig. 4, a projected spot results from
the projection of the beam onto the plane of the photosensors. The
angle can be obtained by measuring the spatial coordinates of the
spot for two different positions. To obtain measurement speeds on
the order of milliseconds it is necessary that the PZT stage be dri-
ven at relatively high speeds, e.g. the M-663 stage from Physik
Instruments can reach displacement speeds of up to 400 mm/s
(travel range of 19 mm with 100-nm resolution). A matrix of pho-
tosensor such as that offered by Centronic, i.e. 12 � 12 elements,
each element of 1.4 � 1.4 mm, can be used as a first approxima-
tion. In this case, by considering the travel range of the stage, the
maximum transverse displacement of the beam spot, at the sensor
plane, would be 3 pix, where one pixel corresponds to one sensor
element; for this computation it was assumed that ray angles are
Fig. 4. A photosensor array (PS) is translated by a PZT stage (S) a distance D. This
produces a displacement of the beam spot from P to Q, dx and dy. The incidence
angles of the ray are given by hx = tan�1(dx/D) and hy = tan�1(dx/D). The light beam
is indicated by the red line.



Fig. 5. Beam steering by a SLM. The beam impinges on the SLM from the right.
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less than 15�. This arrangement would yield measurements with
low accuracy. To increase the accuracy of the measurement, the
separation between neighbouring elements should be decreased.
This can be achieved by using a camera sensor, where the pitch
may be as small as 4 lm at the maximum angle, the distance
between the two positions of the beam spot can be as large as
hundreds of pixels. However, in this case the complexity of the
arrangement is increased.

On the other hand beam steering may be done by non-mechan-
ical array devices, which provide high-speed pointing, see Fig. 5.
Among these types of devices we can mention those based on
liquid-crystal displays (spatial light modulators, SLM) and those
on microelectromechanical systems (MEMS) [23]. In the former,
the phase of each element of the matrix is changed by application
of a low-voltage signal. In the devices based on MEMS, each
element of the array consists of a micromirror, which generates tilt
to steer the beam. Steering time is on the order of milliseconds.

7. Conclusions

This article shows how Tinkerbell beams can be produced if a
particular device is introduced in a ring optical phase-conjugated
resonator. The difference equations of the Tinkerbell map are
explicitly introduced in an ABCD transfer matrix to control the
beam behaviour. The matrix elements a,b,c and d of a map gener-
ating device are found in terms of the map parameters (a,b,c and
d), the state variables (yn and hn) and the resonator length. The
mathematical characteristics of an optical device inside an optical
resonator capable to produce Tinkerbell beams are found. In the
general case a device with fixed size was obtained, opening the
possibility of continuance of this work; that is the actual building
of an optical device with these a,b,c and d matrix elements accord-
ing to the description given and the experimental observation of
Tinkerbell beams. Finally the discussion of some of the main tech-
nical problems in order to build an intracavity device able to pro-
duce Tinkerbell beams is also presented.
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