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Liking studies are designed to ascertain consumers likes and dislikes on a variety of products. However, it
can be undesirable to construct liking studies where each panelist evaluates every target product. In such
cases, an incomplete-block design, where each panelist evaluates only a subset of the target products, can
be used. These incomplete blocks are often balanced, so that all pairs occur the same number of times.
While desirable in many situations, balanced incomplete blocks have the disadvantage that, by their
nature, they cannot favor placing dissimilar products next to one another. A novel incomplete-block
design is introduced that utilizes the target product’s sensory profile to allocate products to each panelist
so that they are, in general, as dissimilar as possible while also ensuring position balance. The resulting
design is called a sensory informed design (SID). Herein, details on the formulation of SIDs are given. Data
arising from these SIDs are analyzed using a simultaneous clustering and imputation approach, and the
results are discussed.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Experimental design is the cornerstone of sensory analysis. The
development of Latin square and complete-block designs for
sensory and consumer evaluation date back at least as far as
Ferris (1957). However, the majority of literary contributions in
this area are based on the earlier work of Williams (1949) and
the more recent paper by MacFie et al. (1989). Since MacFie et al.
(1989), work on developing other types of experimental designs
for sensory analysis has flourished. Wakeling and MacFie (1995)
extended the results of Williams (1949) to situations where only
a subset of treatments can be provided to each experimental unit.
Ball (1997) developed incomplete-block designs that are balanced
for carry-over effects. Deppe et al. (2001) provided a procedure for
constructing nested incomplete-block designs. Kunert and Sailer
(2007) discussed the development of generalized Youden designs,
where the experimental units are randomized.

In sensory analysis, the experimental units are either con-
sumers or sensory assessors and the treatments are food products.
Evaluating consumer preference, i.e., likes and dislikes, is done
through a liking study. Formally, liking studies are comprised of
p products and n panelists who are asked to rate each product
using either a hedonic or line scale. Ofttimes, due to limited
resources, time constraints, or to prevent the onset of fatigue,
researchers do not ask the panelists to rate the entire set of prod-
ucts. Instead, they present each panelist a subset of k target
products.

There are a number of papers discussing the analysis of liking
studies that are either complete or incomplete-block designs (see
Bastian et al., 2010; Bower and Whitten, 2000; Gilbert et al.,
1996; Harker et al., 2008; Lange et al., 2002; Voorpostel et al.,
2014, for examples). In a complete-block design, all treatments
are applied to every experimental unit the same number of times.
Therefore, when the number of target products is too large, a liking
study in the form of a complete-block design arises when one
subset of k products is assigned to each panelist. An incomplete-
block design also utilizes subsets of the target products; however,
these subsets change for each panelist. In a balanced incomplete-
block design, all products appear the same number of times and
all pairs of products appear the same number of times.

Researchers typically desire that one, or each, subset be ‘‘repre-
sentative’’ of the set of all target products. As such, they usually
rely on the recommendation of trained assessors (see Hersleth
et al., 2005, for example). However, it is possible that the assessors
could be unintentionally subjective and struggle to agree on what
qualifies as a truly representative subset. Herein, we say a subset of
products is representative of the set of all target products if its
elements are as dissimilar as possible, where dissimilarity is
determined using the Euclidean distance measure. Formally, using
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their sensory profile, we calculate the Euclidean distance between
each target product and argue that the subset of k > 1 target prod-
ucts that maximize the Euclidean distance best represents the set
of all target products. We form a sensory informed design (SID)
by maximizing distance between each target product while also
maintaining overall position balance, so that each product occurs
the same number of times in each position (or as close to the same
number of times as the total number of panelists allows). Of
course, we also require that no product is presented to the same
panelist more than once.

The remainder of the paper is outlined as follows. In Section 2,
we formulate an SID. In Section 3, we review a model-based
approach developed for analyzing data with missing values. In
Section 4, we apply this model-based approach to two SIDs
collected at Compusense Inc., and we conclude with a summary
and suggestions for future work (Section 5).
40 50 60 70

1

Color Intensity of Crust (Whole Loaf)

Fig. 1. Color intensity of crumb versus color intensity of crust (whole loaf) for 12
white breads (A,. . .,L).
2. The sensory informed design

An SID assumes that consumers have more difficultly dis-
criminating between similar products compared to dissimilar
products and requires a sensory profile for the target products.
A sensory profile is a d� p matrix, where d is the number of
attributes, constructed by trained assessors who objectively
measure each product’s attributes using an unstructured line
scale at ‘‘0’’ and ‘‘100’’. A score of ‘0’ indicates low intensity
and a score of ‘100’ indicates high intensity. Typically, each pro-
duct will be evaluated multiple times. As such, we use the
average attribute scores. Table 1 displays the average scores
(i.e., the sensory profile) for the first ten attributes and five
products of twelve white breads, denoted A; . . . ; L (cf. Browne
et al., 2013). Note that there were 42 attributes in total.

The sensory profile allows us to place each product into a
‘‘product space.’’ For an SID, the product space is defined by
the Euclidean distance measure. Consider the space constructed
by calculating the Euclidean distance between two of the twelve
white bread’s attributes: color intensity of crust (whole loaf) and
color intensity of crumb (Fig. 1). The pair of products with the
largest Euclidean distance are considered the most dissimilar,
whereas the pair of products with the smallest Euclidean
distance are considered the most similar. In Fig. 1, products J
and K are the most dissimilar, and products F and I are the most
similar.

In an SID, each panelist is given products so that consecutive
products are as dissimilar as possible. Fig. 2 illustrates a ‘‘greedy’’
product selection process for one panelist. In this example, four
out of twelve white breads are being selected, creating a
12-present-4 design, denoted 12P4. The first step in constructing
an SID is to randomly assign one of the products to a panelist.
Table 1
Mean scores for the first ten attributes and five products resulting from a sensory
analysis of a white bread data set.

Attribute Product

A B C D E

Color Intensity of Crust (Whole Loaf) 57 58 63 48 71
Glossiness of Crust (Whole Loaf) 9 14 15 15 15
Visual Roughness of Crust (Whole Loaf) 9 17 27 15 16
Color Intensity of Crumb 18 28 21 20 21
Cell Uniformity (Crumb) 61 67 71 66 68
Cell Size 20 17 12 14 13
Overall Aroma 30 35 33 31 35
Grain Aroma 8 12 7 8 11
White Flour Aroma 17 16 17 16 16
Yeasty Fermented Aroma 8 12 7 8 11
Panel 1 of Fig. 2 shows that product A is randomly selected as
the first product this panelist will evaluate. Product J is then
selected because it is the most dissimilar to product A (Panel 2).
Now, because there are at least two products selected (A and J), a
centroid is calculated. Product K is then selected as it is the most
dissimilar from the centroid of products A and J (Panel 3). Finally,
product H is selected as it is most dissimilar from the centroid of
products A; J and K (Panel 4). Panel 5 gives the shape formed by
the selected products, and Panel 6 gives the order that each
product will appear to the panelist.

Fig. 2 illustrates a ‘‘greedy’’ selection process that would
always be made if the SID was not constructed to adhere to
position balance. For example, suppose there are n ¼ 396 pan-
elists and we wish to construct a 12P6 design. To ensure position
balance, we require that each product appears r ¼ 33 times
(where r ¼ n=p) in each position, while not letting any panelist
rate any one product more than once. Note that, in practice, it
will not always be the case that an SID is perfectly balanced.
Misuse of the rating apparatus, a non-divisible sample size or
neglect on behalf of the panelists are a few of the possible
scenarios that could lead to some products being evaluated more
than others.

2.1. Formulation

Consider an n� k matrix where the rows correspond to pan-
elists and the columns represent the order that each product is
evaluated (Table 2). From a set of p products, we want to find n
subsets of k products such that every subset contains unique
elements and, between all subsets, every product appears the same
number of times. We allocate products in a column-wise fashion,
i.e., we will assign n products to the first position, then we will
assign n products to the second position, and so on until all
positions are filled.

The construction of an SID is as follows. In the first position,
randomly allocate one product to each panelist such that every
product appears the same number of times. In the second posi-
tion, randomly select a panelist such that priority is given to a
panelists whose first position contains a product that is very simi-
lar to the other products. Assign the randomly selected panelist a
second product, j, that belongs to the set of remaining products,
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Fig. 2. A demonstration of the SID’s product selection process for one panelist. The symbol marks the centroid of the selected points and the broken red line segment
connects a selected product (or products’ centroid) to the most dissimilar product. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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which is as dissimilar as possible to the product in the selected
panelist’s first position. Repeat this step n times until every pan-
elist’s second position is filled. Again, each product is allocated
such that it appears the same number of times in the second
position. Then, for each position k P 3, randomly select a panelist
(with priority given to the panelist’s whose first k� 1 positions
contain products that are similar) and assign a product to their
kth position that is as dissimilar as possible to the centroid of
the first k products assigned to them. This procedure can be
summarized, via pseudo-code, as follows:
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Initialization:
1. Assign each product a number from 1 to p, where p is the
total number of products
2. Compute the Euclidean distance between each target
product using their sensory profile.
Note: Herein we will refer to this matrix as dist.

Construction:
Create a vector of length p where element is equal to r
Note: Herein we will refer to this vector as ct.prod

for l in 1:k
for i in 1:n

if l ¼ 1 Randomly assign panelist i one product such
that position l is position balanced.

if l P 2 {
Step 1. Randomly select a panelist, with priority

given to a panelist whose first position contains a product
that is very similar to the other products.

Step 2. Use dist to determine which product, j, is
the most dissimilar to the product in position 1, or to the
centroid of positions 1:l � 1 if l > 2, of the panelist selected
in Step 1.

Step 3. Assign product, j, found in Step 2 to position
l of the panelist selected in Step 1.

g
Subtract 1 from element j of ct.prod where j

corresponds to the chosen product.
if any element of ct.prod equals 0, no longer assign

that product.
end for i in 1 : n

end for l in 1 : k
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3. Analyzing the resulting data

3.1. Imputation then cluster analysis

SIDs will contain missing values by design. Little and Rubin
(2002) discuss a number of procedures suitable for analyzing data
with missing values. These procedures can be categorized accord-
ing to whether they perform single or multiple imputation (Rubin,
1978). Formally, single imputation procedures replace each miss-
ing observation with a single value whereas multiple imputation
procedures replace each missing observation with m P 2 values.
Notably, multiple imputation shares the same advantages as single
imputation while rectifying its shortcomings (Little and Rubin,
2002). After imputation has been carried out, the data can be
clustered.

3.2. Simultaneous imputation and cluster analysis

Another approach to analyzing data with missing observations
is given in Browne et al. (2013). In this paper, the authors expand
Table 2
A hypothetical position matrix for the white bread data where each row corresponds
to a panelist and the columns represent the order that he or she will evaluate their
subset of products.

Panelist Position

1 2 3 4 5 6

1 A J M L B H
2 C K J B D A

..

. ..
. ..

. ..
. ..

. ..
. ..

.

n D E J F M I
upon the work of Ghahramani and Hinton (1997) and McNicholas
and Murphy (2008) to develop a Gaussian mixture model-based
approach that simultaneously performs imputation and cluster
analysis. Formally, a Gaussian mixture model has density

f xj#ð Þ ¼
XG

g¼1

pg/p xjlg ;Rg

� �
; ð1Þ

where pg > 0 are the mixing proportions, subject to
PG

g¼1pg ¼ 1,

and /p xjlg ;Rg

� �
is the density of the p-dimensional multivariate

Gaussian distribution with mean lg and covariance Rg . It is clear
from (1) that a GMM is a convex linear combination of multivariate
Gaussian densities and, accordingly, is well suited for performing
cluster analysis (see Bouveyron and Brunet, 2012; Bouveyron
et al., 2007; Celeux and Govaert, 1995; Fraley and Raftery, 2002;
McLachlan and Basford, 1988; McNicholas et al., 2010, for exam-
ples). Note that the use of a mixture model for cluster analysis is
known as model-based clustering.

The model in (1) has Gpðpþ 1Þ=2 free parameters in the covari-
ance matrices alone. Therefore, it becomes highly parameterized as
p grows, even for relatively small values of p (see Fig. 3). To over-
come this issue, constraints can be imposed on the component
covariance matrices Rg to introduce parsimony. Another way to
introduce parsimony is to consider a mixture of factor analyzers
model, which assumes that each component can be represented
in an underlying low-dimensional (q� p) latent factor space (see
Ghahramani and Hinton, 1997). McNicholas and Murphy (2008)
combined these two approaches by constraining the covariance
matrices in a mixture of factor analyzers model. Browne et al.
(2013) use one of the models introduced by McNicholas and
Murphy (2008); this model uses a mixture of factor analyzers
model with common factor loadings and its density is

f xj#ð Þ ¼
XG

g¼1

pg/p xjlg ;KK0 þWg

� �
; ð2Þ

where K is a p� q matrix of factor loadings and Wg is a p� p diago-
nal matrix with positive diagonal entries (cf. McNicholas and
Murphy, 2008, 2010). Browne et al. (2013) extend this model to
0
10

0

Number of Variables (p)

N
u

2 5 10 15 20 25

Fig. 3. The number of free parameters in the covariance structure of a two-
component Gaussian mixture model (GMM; black line) and a CUU model with q ¼ 1
(red line), q ¼ 2 (green line), and q = 3 (blue line) latent factors for different values
of p. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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account for missing data, developing a partial expectation–maxi-
mization (PEM) algorithm specifically for the sort of data that will
arise from an SID. Details on the model, the algorithm, and its com-
putational efficiency, are given by Browne et al., 2013.

From a practical viewpoint, the model in (2) lets components
share covariances while allowing variances to differ from compo-
nent to component. For our purposes, a component can be consid-
ered synonymous with a cluster. Furthermore, the model in (2) has
a mere pq� qðq� 1Þ=2þ Gp parameters in its component covari-
ance matrices (see Fig. 3). Following McNicholas and Murphy
(2008), we refer to the model in (2) as the CUU model.

Since the work of Dasgupta and Raftery (1998), it has been com-
mon practice to use the Bayesian Information Criterion (BIC;
Schwarz, 1978) to choose the number of components G and, if
applicable, the number of latent factors q. The BIC is given by

BIC ¼ 2lðxj#̂Þ � q log n;

where l xj#̂
� �

is the log-likelihood, #̂ is the MLE of #;q is the

number of free parameters, and n is the number of observations.
We use the BIC to chose the values of G and q in our analyses, noting
that is has previously been used for the models of McNicholas and
Murphy (2008).
4. Applications

4.1. Two SIDs

We consider two liking studies, undertaken by Compusense
Inc., where SIDs were used: one for twelve white breads and one
for sixteen brown breads. Based on an SID, panelists rated the
products using the nine-point Hedonic scale where a score of (1)
indicates an extreme dislike, a score of (5) indicates no preference,
and a score (9) indicates an extreme liking. In Sections 4.2 and 4.3,
we discuss the data and present results obtained from fitting the
CUU model to each SID. The parameters of the CUU model are esti-
mated using the PEM algorithm and the BIC is used to select the
numbers of components and factors. Note that the CUU model
was fitted using the CUUimpute function, available in the sensory
package (Franczak et al., 2014) for R (Core Team, 2014).

4.2. White bread data

In total, 420 panelists rated six white breads in a 12P6 SID; for
illustration, Table 3 displays the liking scores given by the first
Table 3
The first six rows of the white bread data.

Panelist Product

A B C D E F G H I J K L

1 9 8 6 9 4 8
2 3 8 7 8 7 8
3 8 6 7 6 9 7
4 5 4 6 4 3 6
5 7 7 8 7 6 8
6 8 3 4 8 7 7

Table 4
The BIC values for each CUU model fitted to the white bread data, with the largest value

# of components # of latent factors

1 2 3

1 �5273:09 �5312:00 �53
2 �5080:66 �5129:73 �51
3 �5113:55 �5159:21 �52
4 �5153:24 �5227:30 �52
six panelists. We fitted the CUU model to the white bread data
for G ¼ 1; . . . ;4 components and q ¼ 1; . . . ;6 latent factors.
Table 4 gives the BIC values for each CUU model fitted to the white
bread data. The CUU model with G ¼ 2 components and q ¼ 1
latent factor (BIC ¼ �5080:66) was selected as the best fitting
model.

At convergence, the component membership probabilities ẑig

are used to calculate the maximum a posteriori (MAP) probabilities
of group membership for each panelist. Specifically, MAP ẑig

� �
¼ 1

if maxg ẑig
� �

occurs in component g and MAP ẑig
� �

¼ 0 otherwise.
We calculate the mean liking scores for each product based on
the MAP probabilities (Fig. 4). While bread J, the only ciabatta-style
bread in this study, seems to polarize the two groups, they could be
largely interpreted as high scorers and low scorers (Fig. 4). The
problem of different panelists using the scale in different ways will
be discussed further in Section 5.

When constructing the 12P6 SID for the white bread data, we
nested 12P3 and 12P4 designs within it. This allows for some
validation of the clustering results obtained for the 12P6 design.
The nested designs are not difficult to produce because of the
SID’s column-wise allocation feature (cf. Section 2.1), which
ensures that each nested design is position balanced. Note that
column-wise allocation effectively means that we will have nested
pPk SIDs for k P 2.

For both the 12P3 and 12P4 designs, the best-fitting CUU models
(BIC ¼ �2506:67 and BIC ¼ �3405:32, respectively) have G ¼ 2
components and q ¼ 1 latent factor. Comparing the classification
rates between the 12P3; 12P4, and 12P6 SIDs (Table 5) — the
classification rate is the number of classification agreements
divided by the number of observations — the results indicate
agreement between the classifications obtained for each design
based on the CUU model, and a closer inspection of each
comparison is given in Table 6.

When we use classification rates to compare two classification
procedures, it is instructive to consider the nature of the points
that are classified into different groups by the two procedures.
Model-based clustering approaches, like the CUU model, facilitate
this by way of the a posteriori probabilities of component member-
ship ẑig . Specifically, if ẑig ¼ 1 then there is certainty, under the fit-
ted model, that the ith panelist belongs to the gth component (or
cluster). A value ẑig � 0:5, in a G ¼ 2 component model, indicates
that component membership is effectively a coin toss for observa-
tion i under the fitted model. In a G ¼ 2 component model, we can
think of a point moving nearer to a boundary between the two
components as values of ẑig decrease from 1 towards 0.5 under
the fitted model.

Table 6 shows that 80 observations were misclassified between
the MAP probabilities obtained for the 12P3 and 12P4 designs. Of
these 80 observations, 48 (60%) had ẑig 2 ½0:5; 0:9Þ. Of the other
340 observations, just 108 (31.76%) had probabilities of group
membership in this range. Therefore, observations classified into
different components under the 12P3 and 12P4 designs are roughly
twice as likely to be near component boundaries.

For the 12P3 vs. 12P6 comparison, of the 111 misclassified obser-
vations, 63 (56.76%) had ẑig 2 ½0:5;0:9Þ. Of the other 309
highlighted in bold face.

4 5 6

51:97 �5395:05 �5430:51 �5461:38
75:32 �5214:10 �5252:54 �5286:03
06:01 �5242:94 �5280:20 �5312:35
08:32 �5300:32 �5348:52 �5359:25
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Fig. 4. The average liking scores (left) and box plots (right) for the two clusters of panelists found by the best CUU model for the white bread SID. Note that color code given in
Panel 1 is consistent for both plots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Classification rates between the MAP classifications obtained from the best-fitting
CUU mixture for each white bread SID.

12P3 vs. 12P4 12P3 vs. 12P6 12P4 vs. 12P6

0.810 0.736 0.831

Table 6
Cross-tabulation of true versus predicted (i.e., MAP) classifications for the three pairs
of white bread SIDs.

12P3 vs. 12P4 12P3 vs. 12P6 12P4 vs. 12P6

A B A B A B

A 136 44 136 44 197 51
B 36 204 67 173 20 152

Table 7
The first six rows of the brown bread data. Each panelist evaluated six brown breads
using the nine-point Hedonic scale.

Panelist Product

A B C D E F G H I J K L M N O P

1 8 6 4 4 6 9
2 8 9 6 7 7 5
3 7 7 6 8 8 7
4 9 9 6 4 4 8
5 7 6 3 5 8 8
6 9 8 7 8 7 8
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observations, 79 (25.57%) had ẑig values in that range. For the 12P4

vs. 12P6 comparison, 42 of 71 (51.15%) misclassified observations
had ẑig 2 ½0:5;0:9Þ. In all, 87 of the other 349 (24.93%) observations
had ẑig 2 ½0:5; 0:9Þ. Therefore, for both the 12P3 and 12P6 and 12P4

and 12P6 designs, observations classified into different components
are more than twice as likely to be near component boundaries.
This, taken together with the result of the 12P3 and 12P6 compar-
ison, provides a nice validation of our clustering results based on
the 12P6 SID. Furthermore, they suggest that we could have
obtained very similar results had a 12P3 or 12P4 SID been used.
That three of 12 breads might well have sufficed here is, in itself,
an interesting result.

4.3. Brown bread data

The brown bread data are larger than the white bread data:
there are more panelists and more breads. Specifically, we have
an SID where 570 panelists evaluated 6 brown breads in a 16P6

design. While the total number of breads has increased from 12
to 16, the number presented has remained the same so that
62.5% of the values are missing by design. For illustration,
Table 7 shows the liking scores given by the first six panelists.
The CUU model was fitted to the brown bread SID data for
G ¼ 1; . . . ;4 components and q ¼ 1; . . . ;6 latent factors. The best
fitting CUU model (BIC: �7735.94) had G ¼ 2 components and
q ¼ 1 latent factor. The average liking scores for each product for
each of the two components, as determined by MAP classifications,
are displayed in Fig. 5.
This time, the identified components do not appear to repre-
sent either high or low scorers. There is a noticeable contrast in
the liking scores between bread B, which was a very seedy bread.
Bread N, a hearth bread, is also clearly polarizing. There are
also some breads that neither group of panelists particularly
liked, e.g., bread D, and others that both groups liked similarly,
e.g., bread C. Perhaps the most convincing argument, however,
that these results do not reflect usage of the scale is that the
average scores for the two clusters are very close (5.75 vs. 5.56).

Again, we consider nested 16P3 and 16P4 SIDs. The CUU model
was fitted to each nested design for G ¼ 1; . . . ;4 components and
q ¼ 1; . . . ;6 latent factors. In both cases, the best fitting CUU mod-
els have G ¼ 2 components and q ¼ 1 latent factor, with BIC values
of �3915:65 and �5307:41, respectively. The classification rates
between the MAP classifications obtained from the best fitting
CUU models for all three designs are given in Table 8. There
appears to be good agreement between the classifications for the

16P4 and 16P6 designs—looking at the a posteriori ẑig values for the
classification disagreements will shed further light on this.
However, comparisons involving the 16P3 designs do not indicate
as good a classification agreement. A cross tabulation of the three
classification comparisons is given in Table 9.

For the 16P4 vs. 16P6 comparison, 94 of 156 ð60:26%Þ mis-
classified panelists had ẑig 2 ½0:5;0:9Þ. Of the other 414 panelists,
only 128 (30.92%) had ẑig values in that range. Therefore, observa-
tions classified into different components under the 12P4 and 12P6

designs are roughly twice as likely to be near component bound-
aries. This suggests that we do indeed have good classification
agreement between the 16P4 and 16P6 SIDs for the brown bread
data. Furthermore, this also tells us that we could have obtained
similar results had a 16P4 SID been used for these data.
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Fig. 5. The average liking scores (left) and box plots (right) for the two clusters of panelists found by the best CUU model for the brown bread SID. Note that the color code
given in Panel 1 is consistent for both plots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 8
Classification rates between the MAP classifications obtained from the best-fitting
CUU mixture for each brown bread SID.

16P3 vs. 16P4 16P3 vs. 16P6 16P4 vs. 16P6

0.595 0.595 0.726

Table 9
Cross-tabulation of true versus predicted (i.e., MAP) classifications for the three pairs
of brown bread SIDs.

16P3 vs. 16P4 16P3 vs. 16P6 16P4 vs. 16P6

A B A B A B

A 92 51 120 23 192 106
B 180 247 208 219 50 222
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Comparing the 16P3 vs. 16P4 and the 16P3 vs. 16P6 SIDs tells a
different story. For the 16P3 vs. 16P4 comparison, 107 of the 231
ð46:32%Þ panelists had ẑig 2 ½0:5;0:9Þ. Of the other 339 observa-
tions, 159 ð46:90%Þ had a probability of group membership in this
range. Therefore, misclassified observations are no more likely to
be near the cluster boundary than observations that the classifica-
tions agree on. For the 16P3 vs. 16P6 comparison, 108 of the 231
ð46:75%Þ panelists had ẑig 2 ½0:5;0:9Þ. Of the other 339 observa-
tions, 118 ð34:81%Þ had a probability of group membership in this
range. Therefore, misclassified observations for these two compar-
isons are only a little more likely to be near cluster boundaries than
observations that the classifications agree on. These comparisons,
together with the classification agreement summary in Table 8,
tells us that there is relatively poor classification agreement
between the 16P3 and 16P4, and between the 16P3 and 16P6 SIDs
for the brown bread data. Furthermore, these results suggest that
while a 12P3 SID might have sufficed for the white bread data, a
16P3 SID may not have sufficed for the brown bread data.

5. Discussion

We have introduced an approach for generating effective SIDs
and illustrated that verifiable clustering results can be obtained
therefrom. These SIDs strive to make the products considered by
each panelist as different as possible, based on the sensory profiles,
while also maintaining position balance. The fact that nested
designs can be easily produced makes possible a verification step
that is relatively rare in cluster analyses. We wish to emphasize
that the work herein should be viewed as sort of blueprint or para-
digm for how incomplete-block designs should be constructed and
analyzed when used in liking studies. Depending on the applica-
tion, various steps could be changed along the way. For example,
simple Euclidean distance was used to find the distance between
products, whereas, in another study, a weighted distance might
be desirable.

In the white bread analysis, we observed that the clusters gen-
erally corresponded to higher scorers versus lower scorers. There
are a few things that could be done about this. For one, each cluster
could be investigated for possible heterogeneity therein, leading to
a sort of hierarchical clustering procedure. Another approach
would be to collect data as ranks, rather than on a hedonic scale.
This would, of course, bring its own problems, including having
to deal with ties. One thing that we cannot do is standardize pan-
elists’ results within the SID framework because doing so would
require that every panelist saw the same products. In fact, a nice
illustration of why standardization will not work here can be seen
by looking at the nested designs.
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