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Abstract

Dot maps—drawings of point sets—are a well known cartographic method to visualize density functio
an area. We study the problem of simplifying a given dot map: given a setP of points in the plane, we want t
compute a smaller setQ of points whose distribution approximates the distribution of the original setP .

We formalize this using the concept ofε-approximations, and we give efficient algorithms for computing
approximation error of a setQ of m points with respect to a setP of n points (withm� n) for certain families of
ranges, namely unit squares, arbitrary squares, and arbitrary rectangles.

If the family R of ranges is the family of all possible unit squares, then we compute the approximation e
Q with respect toP in O(n logn) time. If R is the family of all possible rectangles, we present an O(mn logn)
time algorithm. IfR is the family of all possible squares, then we present a simple O(m2n+n logn) algorithm and
an O(n2√n logn) time algorithm which is more efficient in the worst case.

Finally, we develop heuristics to compute good approximations, and we evaluate our heuristics experim
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

An important component in the area of cartography is the ability to represent and visuali
distribution or density of some phenomenon such as the population distribution over a certain
The most common technique to achieve this is thedot map, as shown in Fig. 1. The termdot map is
self-explanatory—it refers to the use of dots or points placed on a map to represent a given distr
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Fig. 1. Example of a dot map.

Dot maps are quite important and their use has been extensively studied in cartography—see for
Chapter 8 of the book by Dent [6].

There are many issues involved in the use of dot maps as a tool for representing distributio
example, the radius of the dots used, or the decision to allow or disallow dots to overlap are im
visual considerations [6]. Depending on the application, it can also be important to take the topo
‘background map’ into account: a dot map representing population density should not have dot
lakes, in mountainous areas one may have to take altitude into account, and it may be important t
that dots are on the correct side of borders or other features [11]. In this paper, we concentrate
related computational issues that purely deal with distribution issues; visual considerations and ad
to a background map are beyond the scope of this paper.

The first question we study is: Given a point setP representing a certain distribution, how can
automatically simplify it, that is, generate a smaller representative point setQ of a given size? This
question arises when one wishes to scale a map: the number of points in the map has to decrease
size of the map is decreased, otherwise it would become too cluttered. It may also arise in the ge
of the initial dot map: “The printed dot map of the population distribution should be constructe
larger scale based on more detailed information such as settlements and houses and then redu
final scale”, as Ditz [11] writes. The first question—How can we compute a good approximati
immediately leads to the second: Given setsP andQ, how can we determine the quality ofQ as an
approximation toP? To determine the quality of an approximation, we need a quantitative meas
similarity between dot maps. Our measure is inspired by interactive GISs where a user can u
map of, say, the population density, to estimate the population within a region [11]. This can eit
a user-defined area—a square, for example—or a geographically meaningful region such as
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within a certain distance from a river. This leads us to propose the notion ofε-approximations [17] as a
quantitative measure of the quality of an approximation. A setQ ofm points is called anε-approximation
of a setP of n points1 with respect to a familyR of ranges, if for any ranger ∈R we have
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∣∣|r ∩ P |/n− |r ∩Q|/m∣∣ � ε.
In other words, if we approximate the number of points fromP inside a ranger by multiplying the
number of points fromQ inside the range byn/m, then we make an error of at mostεn. This leads us to
define�R(Q,P ), theapproximation error of Q with respect to P , for a familyR of ranges, as

�R(Q,P )= max
r∈R

∣∣|r ∩ P | − (n/m) · |r ∩Q|∣∣.
The valuen/m, which can be viewed as the weight of a point inQ as compared to a point inP , is
called thedot value of the points inQ. We usually denote it byδ. In this paper we focus on squar
and rectangles2 as ranges. Of these types of ranges, squares are probably most natural in our app
Another natural range to consider would be discs.

1.1. Related work

ε-Approximations have been studied and used extensively in computational geometry—s
instance Chazelle’s book [5]—and various algorithms are known to computeε-approximations of
asymptotically optimal size for a setP and a given value ofε. Note that we want to solve a slight
different problem: in our caseε is not given, but the desired number of points in the approximationQ.
Still, one may use the same type of algorithms. For instance, in many cases it turns out that
sampling is expected to produce an approximation of asymptotically optimal size. (One cave
place here: the optimality here refers to the worst-case size of anε-approximation over all point set
P of n points, not to the minimum size needed for the given setP . These two sizes need not be t
same.) Thus, for our problem we could simply take a random subsetQ⊂ P of the desired size. Then, o
course, one would want to check how good the sample is, that is, one needs an algorithm to com
approximation error of given setsP andQ.

The use ofε-approximations to measure the similarity of two point sets is related to some stat
methods to derive a (continuous) density function from a given point set; see the book by Ba
Gatrell [2] for more information on statistical methods for spatial data analysis. For example,
estimation defines the densityλ(x) at a pointx in the plane by summing the number of points within
region around the pointx in a weighted manner; the shape of the region and the exact weighting sc
depends on the kernel used. Comparing two point sets—for example, to see whether the dis
of some feature of the population (number of cancer deaths, for instance) deviates from the po
distribution itself—is then done by comparing the density functionsλ1(x) andλ2(x) obtained for the two
points sets. Usually one takes the quotient of these two values, but if one wants to bound the wo
error this doesn’t work (λ2(x) may be zero) and one could take the absolute difference. The noti
ε-approximation with unit squares as ranges can be seen as a special case of this, where the
a block function with value 1 inside the unit square centered at the pointx and value 0 elsewhere (an

1 Traditionally, in the definition ofε-approximation it is required thatQ⊂ P , but this is not necessary.
2 In this paper squares and rectangles are always axis-parallel.
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the other parameters of the kernel estimation method chosen suitably). The advantage of such a simple
kernel function is that it is computationally easier, in the sense that it makes computing the approximation
error easier. Recall that the motivation behind our use ofε-approximations is that we want to bound the
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maximum error when an approximating setQ is used to estimate the number of points from a setP inside
a range. The size of such a range is not fixed in an interactive setting. Hence, we also look at sq
arbitrary sizes, which makes our error measure different from traditional kernel methods.

The approximation error as defined above is a generalization of thebichromatic discrepancy (or
combinatorial discrepancy). Here one colors each point of a given set either red or blue and o
interested in the maximum difference, over all possible ranges of the given family, between the n
of red points and the number of blue points inside a range. If we call the red point setP and the blue poin
setQ, and we define the dot value to be 1 (even when|P | �= |Q|), then the bichromatic discrepancy equ
the approximation error. Also, finding an optimal red-blue coloring of a given setP is identical to finding
a subsetQ ⊂ P such that the discrepancy ofQ with respect toP and dot value 2 is minimized. Th
concept of bichromatic discrepancy arises in computational learning theory, in particular in the so
minimizing disagreement problem in agnostic PAC-learning [8,12]. Thus our algorithms to compu
approximation error of two given sets with respect to a familyR of ranges may be used to solve t
minimizing disagreement problem when the class of hypotheses isR—see the paper by Dobkin et al. [
for details.

Finally, we note that our problem is related to that of computing thearea discrepancy (or continuous
discrepancy) of a point setP . This is a measure of how uniform that point set is, and it has applica
in computer graphics [7,9,16].

1.2. Our results

Computing the approximation error of a setQ of m points with respect to a setP of n points, with
m � n, is the topic of Section 2. We obtain the following results. IfR is the family of all possible uni
squares, then we can compute the approximation error ofQ with respect toP in O(n logn) time. If R is
the family of all possible rectangles, then we present two algorithms, a simple O(m2n+n logn) algorithm
and a more efficient O(mn logn) time algorithm. This is a slight improvement over an algorithm
Dobkin et al. [9] whenm is o(n). Their algorithm runs in O(n2 logn) time regardless of how smallm is.
If R is the family of all possible squares, then we present a simple O(m2n+ n logn) algorithm and an
O(n2√n logn) time algorithm which is more efficient in the worst case.

We turn our attention in Section 3 to the experimental component of the paper. The goal is to d
heuristics to generate for a given setP an approximationQ of the desired size with as small an error
possible. We concentrate on the case of square ranges, as this seems most relevant to our applic
heuristics use as a subroutine an algorithm to compute the error for givenP andQ. Unfortunately, our
algorithm for arbitrary squares is rather slow, and some of the heuristics call this subroutine many
Hence, we first show experimentally that the exact error with respect to squares can be approxima
by computing the error with respect to fixed-size squares for a number of different sizes. After
established this, we compare various heuristics to find a good approximation of a given point setP . One
of our findings is that taking the best approximation out of a large collection of random samples d
work so well, even though random sampling is guaranteed to find approximations that are asymp
worst-case optimal.
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2. Computing the approximation error

LetP be a set ofn points andQ be a set ofm points in the plane, withm� n. In this section we show
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how to compute the approximation error ofQ with respect toP for three different families of ranges
unit squares, arbitrarily sized squares, and arbitrarily sized rectangles. Byδ := n/m we denote the do
value of the points inQ.

2.1. Unit squares as ranges

Let R be the family of all possible unit squares. When we want to compute the approximation
of Q with respect toP for unit squares, it can make a difference whether we consider open or c
squares. In the description of the algorithm, we will consider the squares to be closed; it is easy
the algorithm to the case of open squares.

Recall that we use the absolute value of the error in the definition of approximation error
convenient to compute separately the maximum positive error and the maximum negative error
we describe how to compute the maximum positive error; computing the maximum negative error
done in a similar way.

A unit square contains a point if and only if the center of the unit square is contained in the unit
centered at the point. Hence, instead of considering the point setsP andQ and the family of all unit
squares as ranges, we can use the setsSP andSQ of unit squares centered at the points inP andQ, and
all points in the plane as ranges. Call the squares inSP the red squares, and the squares inSQ the blue
squares. The (positive) approximation error of a pointx in the plane is now

(# of red squares containingx) − δ · (# of blue squares containingx).

The approximation error ofSQ with respect toSP is the maximum approximation error over all points
the plane. From the discussion above it follows that this is the same as the approximation error ofQ with
respect toP for the familyR of unit squares as ranges.

The arrangement formed by the squaresSQ and SP partitions the plane into faces where t
approximation error of any point in a face of the arrangement is the same. Therefore, findi
maximum approximation error amounts to finding the face with maximum approximation erro
compute the approximation ofSQ with respect toSP with a plane-sweep algorithm. In this algorithm
we sweep a vertical line� from left to right over the arrangement. As we sweep the arrangemen
maintain the maximum approximation error over the faces of the arrangement intersected by�. Since the
arrangement is formed by squares, the only events are when the sweep lines reaches a left or r
of a square. At each event we compute the maximum error of all points on� and of all points slightly to
the right of� (but to the left of the previous event). The maximum error found in all the events w
the maximum error ofSQ with respect toSP . We now describe the information we maintain during
sweep—the status structure—and how to handle the events.

2.1.1. A dynamic 1-dimensional structure
The status structure is a dynamic data structure for solving the following 1-dimensional version

problem. We are given a setIR of red segments and a setIB of blue segments on the real line, and
parameterδ. The (positive) approximation error of a pointx ∈ R is defined as

(# of red segments containingx) − δ · (# of blue segments containingx).
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We want to maintain the maximum error over all points inR under insertions and deletions of segments.
The structure we use is essentially the structure described in [4] in the context of grid placement

problems. A similar structure is also presented in [9]. The structure maintains a functionf :R → R.
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Initially, it is assumed thatf (x) = 0, for all x ∈ R. The following update and query operations
allowed on the structure:

(1) Insert([a : b], d): Increase the value off (x) by d over the interval[a : b].
(2) Delete([a : b], d): Decrease the value off (x) by d over the interval[a : b].
(3) Max( ): Return max{f (x): x ∈ R}.

The first two operations can be performed in O(logn) time wheren is the number of intervals current
inserted and the third operation takes O(1) time. Essentially, the data structure is a balanced bin
tree (similar to a segment tree [3]) whose leaves represent theelementary intervals (of the inserted
intervals) ordered from left to right. An internal node of the tree represents the interval that is the
of the elementary intervals of the leaves in its subtree. The nodes have been augmented with a
information in order to answer the queries. The structure has O(n) size wheren is the number of interval
currently in the structure. For more details on the structure, the reader is referred to the paper of
al. [4].

With this structure, the 1-dimensional problem is easily solved. When inserting (respectively de
a red segment, we increase (respectively decrease) the value off (x) by 1 over this segment. Similarly
when inserting (respectively deleting) a blue segment, we decrease (respectively increase) the
f (x) by δ over this segment. Max( ) allows one to recover the maximum approximation error ov
currently inserted segments.

This leads to the following lemma.

Lemma 2.1. The maximum approximation error of a set of red and blue segments on a line can be
maintained with a structure of O(n) space that takes O(logn) time per insertion and deletion, where n is
the number of red and blue segments.

We now return to the 2-dimensional problem, where we want to compute the approximation err
set of blue squares with respect to a set of red squares, with the points in the plane as ranges. R
our approach is a plane-sweep algorithm. The algorithm maintains the maximum error along the
line � using the structureT just described above. Whenever the left edge of a square is encoun
we insert itsy-interval into the structure along with the appropriate value (that is, 1 if it is red an−δ
otherwise), and whenever the right edge of a square is encountered, we delete itsy-interval. If events
happen simultaneously—multiple edges have the samex-coordinate—then we process the events in
following order. First we handle all left boundaries. After this, Max( ) tells us the maximum error�.
Next, we handle all the right boundaries, and get the maximum error slightly to the right of�. Hence,
every event takes O(logn) time to process and the initialization takes O(n logn) time. Since there ar
O(n) events to process, we get the following theorem.

Theorem 2.2. Let P be a set of n points in the plane, and let Q be a set of m points in the plane, with
m� n. The approximation error ofQ with respect to P for the family of all unit squares can be computed
in O(n logn) time.



M. de Berg et al. / Computational Geometry 27 (2004) 43–62 49

2.2. Arbitrarily sized squares as ranges

The case of squares of arbitrary size as ranges is probably the most interesting in our application.
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Note that, unlike in the case of unit squares, the approximation error does not depend on whe
consider open or closed squares: for any open (closed) square, there is a slightly smaller close
open) square that contains exactly the same points. We start by showing a fairly simple algorith
runs in O(m2n+ n logn) time.

We first prove a lemma which restricts the number of candidate squares. LetB be the bounding box
of P ∪Q.

Lemma 2.3. There is an open square with maximum positive error such that two opposite sides of the
square each either contain a point from Q or are contained in the boundary of B . Similarly, there is a
closed square with maximum negative error such that two opposite sides of the square each contain a
point from Q.

Proof. Let s be an open square of maximum positive error, that is, a square that maximizes|r ∩ P | −
δ · |r ∩Q|. Suppose the top and right edge do not contain a point fromQ or a part of the boundary o
B. Fix the bottom left corner ofs and grow the square until either a point fromQ or the boundary ofB
hits the top or right edge ofs. No point ofP can enters during this process since otherwises was not
a maximum. Next, fix the top right corner ofs and grow the square until either a point fromQ or the
boundary ofB hits the bottom or left edge ofs. Again, no point ofP can enters during this process. A
this point, the conditions of the lemma are met or two adjacent edges ofs contain a point fromQ or the
boundary ofB. If the latter holds, then assume, without loss of generality, that the top and left ed
s contain a point ofQ. Then fix the top left corner and grow the square until the condition of the le
is met.

Now let s be a closed square of maximum negative error, and suppose the top and right edge
contain a point fromQ or a part of the boundary ofB. We can transforms into a square with the sam
error that satisfies the conditions of the lemma using the same procedure as above, except this
shrink s instead of growings. Because of the shrinking, we do not have the case where the bound
s hits the boundary ofB, since we can assume that initiallys lies completely insideB. ✷
2.2.1. A simple algorithm

Next we describe a simple algorithm, based on Lemma 2.3, to compute the maximum p
approximation error; the maximum negative error can be computed in a similar way.

By Lemma 2.3, the square of maximum discrepancy must have a blue point (i.e., a point fromQ) on
two opposite sides. Given two blue points, if the absolute value of the difference in theirx-coordinate
is larger than the absolute value of they-coordinate difference, then the two points can only lie on
left and right sides of a square. Similarly, if they-coordinate difference is larger, than the two points
only lie on the top and bottom edges of the square. Finally, if the differences are the same, the
is a unique square with the points at the opposite corners. This implies that a given pair of blue
determines the size of the square and the direction of search. Since there arem blue points, there are

(
m

2

)

candidate pairs. Select one such pair,qi, qj , and assume without loss of generality that they-coordinate
difference is larger. The case where thex-coordinate difference is larger is symmetric, and the other
is trivial.
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Givenqi andqj , let hi andhj be the horizontal lines through the respective points. We have to find
the maximum error over all squares whose top end bottom edges are contained in those lines. In order to
find this maximum, we will sweep (i.e., move) the square from left to right through the strip.
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Consider the points inP ∪Q that lie within this strip. Sort these points by theirx-coordinates, and
let S represent this set in sorted order. Start with the left boundary of the square on the left bo
of B. Compute the discrepancy of this square by finding the points ofS in this square. Now, swee
the square from left to right until the right boundary reaches the right boundary ofB and maintain the
maximum at each step. The events in this sweep are that either a point leaves the square or a po
the square. The order in which the points enter as well as the order in which the points leave
sorted order. Processing an event amounts to adding or subtracting the appropriate amount to th
discrepancy, depending on which point enters or leaves. (Events that occur simultaneously sh
handled together; the details of how this should be done are easy to fill in.) Note that we do no
to sweep the whole strip but only the portion of the strip whereqi andqj are on the top and bottom
edges of the square. However, this optimization does not make a difference asymptotically. Sin
event can be processed in O(1) time given the sorted order, we can compute in O(n) time the maximum
discrepancy given a candidate pair of points provided the points in the strip are sorted. If we pre-
points ofP ∪Q in O(n logn) time then O(n) time the sorted order of points ofP ∪Q within a strip can
be obtained. Since there are O(m2) possible candidates and each candidate can be verified in O(n) time,
the total time for the algorithm is O(m2n+ n logn).

Theorem 2.4. Let P be a set of n points in the plane, and let Q be a set of m points in the plane, with
m� n. The approximation error of P with respect toQ for squares can be computed in O(m2n+n logn)
time.

2.2.2. A subcubic algorithm
The algorithm of Theorem 2.4 runs in cubic time ifm= (n). Next we describe a subcubic algorith

Recall that in the case of unit squares as ranges, we replaced every point inP ∪Q with a unit square and
we looked at the maximum error of points in the plane with respect to the resulting setsSP andSQ of
squares. This approach does not apply here since the size of the square is not fixed. However, w
something similar: replace every point inP ∪Q with a square of sizeρ, let ρ grow from zero to infinity,
and maintain the maximum error of points in the plane with respect to the resulting setsSP andSQ of
squares over the whole growing process. Notice that the maximum error only changes when two
start overlapping. This is precisely when new faces in the arrangement of squares appear and ot
disappear. This happens O(n2) times. The approach is to maintain the maximum over the whole gro
process. In the remainder we develop a structure that allows us to compute in O(

√
n logn) time the new

maximum discrepancy when such an event takes place, leading to an algorithm with overall runni
of O(n2√n logn).

A dynamic 2-dimensional structure. We develop a dynamic structure for the following 2-dimensio
problem. We are given setsRR andRB of red and blue rectangles, respectively, and a parameterδ. The
error of a pointx in the plane is defined as

(# of red rectangles containingx) − δ · (# of blue rectangles containingx).
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The approximation error ofRB with respect toRR is the maximum approximation error over all points
in the plane. Our goal is to maintain the approximation error ofRB with respect toRR under insertions
into and deletions fromRR andRB . We usen to denote the total number of rectangles in the current sets.
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Our structure uses a partitioning of the plane similar to the one used by Overmars and Yap [14
precisely, we partition the plane into verticalslabs by drawing O(

√
n) vertical lines such that in betwee

any two consecutive lines there are at most
√
n vertices of rectangles (in the current set). A rectan

is said tobelong to a slab if any vertex of the rectangle is contained within the slab. A rectangle is
to cross a slab if the intersection of the slab and the rectangle is not empty but the rectangle d
belong to the slab. Each slabσ is further subdivided by drawing horizontal segments connecting its
bounding lines through every vertex of a rectangle insideσ . This way we obtain a subdivision of th
plane into cells with the following properties.

• There are O(
√
n) slabs and O(n) cells.

• No cell contains a vertex of a rectangle fromRR ∪RB in its interior.
• A cell is crossed by at most O(

√
n) vertical edges.

LetA represent the arrangement ofRB∪RR. Essentially, we need to maintain the face of this arrangem
with maximum error under insertions and deletions of red or blue rectangles. The main idea is to m
the maximum for each slabσ . In order to do this, we maintain for each cell in a given slab, the maxim
in that cell with respect to the rectangles belonging to the slab. We first describe how to maint
maximum in a given cell and then we show how to use this in order to maintain the maximum in a
slab.

As we are concentrating on a particular cellC in a slabσ , letR(σ ) represent the rectangles ofRR∪RB
that belong toσ clipped to withinσ , and letA(σ ) be the arrangement of rectanglesR(σ ). SinceC has
no vertices in its interior and all rectangles inR(σ ) belong toσ , the part ofA(σ ) within C is formed
by O(

√
n) vertical edges crossingC. Therefore, maintaining the maximum inC is a 1-dimensiona

problem and we can use the tree structureTC described in Lemma 2.1 to maintain the maximum.
each rectangler of R(σ ) in C, insert an interval[rs, re] in TC wherers andre are thex-coordinates of
the left and right edges ofr . The value associated with this interval is 1 ifr is red and−δ otherwise. If
rs is to the left of the left side of the slab orre is to the right of the right side of the slab, we truncaters or
re to the slab boundary since we only concentrate on what is withinC.

We now turn our attention on how to maintain the maximum within a slabσ . There are two types o
rectangles that contribute to the error of the faces ofA within σ : those that belong toσ and those tha
crossσ . The error of the rectangles that belong toσ are taken care of within each cell, so to maintain
maximum for the slab, we need to incorporate the information pertaining to the rectangles cross
slab. LetX(σ) represent all of the rectangles that crossσ . For a rectangler ∈X(σ), consider the cells o
σ that are contained inr . For each such cell, the maximum error in that cell only changes by a con
(depending on the color ofr) because the whole cell is contained inr . So again, we are able to transfor
the problem to a 1-dimensional problem. LetYσ be they-intervals of the cells ofσ and letYX(σ) be the
y-intervals of the rectangles inX(σ). To maintain the maximum inσ , we construct a treeTσ . For each
intervalyi in Yσ , we insertyi in Tσ and the associated value is the maximum error in the cell. For
y-interval yj in YX(σ), we insertyj in Tσ and the associated value is either 1 or−δ depending on the
color of the rectangle.
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Our structure consists of one tree for each slab and one tree for each cell within a slab. Therefore, the
structure consists of O(

√
n) slab trees and O(n) cell trees.
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Updates. To insert a rectangler into the structure, we proceed as follows. First, we find in O( n) time
all O(

√
n) slabs that are completely crossed byr . For each such slabσ , we insert they-interval ofr and

the value ofr into Tσ . This takes at most O(
√
n logn) time.

Next we deal with the at most two slabs that contain a vertex ofr . For each such slabσ , we find in
O(

√
n) time all O(

√
n) cells intersected byr . There are two types of cells: the ones that contain a ve

of r and the ones that are crossed from top to bottom byr . For cellC of the latter type, we insert the err
of r and thex-interval of r (clipped to withinσ ) into TC . Cells of the former type—there are at mo
two of them—have to be split using horizontal segments through the vertices ofr . Since the number o
intervals stored with a cell is O(

√
n), splitting a cell and rebuilding its structure can be done in O(

√
n)

time. For each affected cellC in σ we now know its new error, so we update the slab treeTσ by deleting
and re-inserting the affected cells. Overall, we spend O(

√
n logn) time to handle the at most two sla

containing an endpoint ofr .
After this, we go over all slabs to recompute the new maximum error.
Deleting a rectangle is done using a similar procedure, so we omit the details. Finally, duri

course of insertions and deletions, we may have to split a slab into two or merge two neighborin
in order to maintain the partition into O(

√
n) slabs each containing O(

√
n) cells. Merging or splitting

can be done in O(n logn) time by simply reconstructing the trees for the slabs and cells. If we sp
slab whenever its size is more than 2

√
n or merge two slabs when both their sizes are less than

√
n/2

then a standard amortization argument shows that given an update sequence containingn insertions and
deletions that merges and splits can be can be achieved in amortized O(

√
n logn) time.

Lemma 2.5. The maximum approximation error of a set of red and blue rectangles in the plane can
be maintained in O(

√
n logn) amortized time per update, where n is the number of rectangles in the

set.

We now return to the original problem, of computing the approximation error of a setQ of m
points in the plane with respect to a setP of n points, where the set of ranges is the family
all possible squares. Letsρ(p) denote the square of sizeρ centered at a pointp. Furthermore, le
SP (ρ) = {sρ(p): p ∈ P } and letSQ(ρ) = {sρ(q): q ∈ Q}. Define the maximum error ofSP (ρ) with
respect toSQ(ρ) for point ranges as before. Then the maximum error we want to compute is giv
maxρ>0{error ofSP (ρ) wrt SQ(ρ)}. When we letρ increase, the error ofSP (ρ) with respect toSQ(ρ) can
only change when two edges of squares meet. Hence, we proceed as follows. We normalize the
by replacing thex-coordinates of the vertical edges by their rank, and by replacing they-coordinates
of the horizontal edges by their rank. Now every square becomes a rectangle with coordinates
universe of sizeU = 2(n + m). We store these rectangles in a dynamic structure as described a
Whenever two vertical (or horizontal) edges swap ranks, we delete the rectangles from our struct
re-insert the rectangles with their new normalized coordinates. This takes O(

√
n logn) time, and gives us

the new error.
We start the process with a value ofρ that is small enough so that all rectangles are disjoint (and

error isδ or δ − 1, depending on whetherQ⊂ P ). The number of swaps we have to process is O(n2).
We get the following result.
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Theorem 2.6. Let P be a set of n points in the plane, and let Q be a set of m points in the plane, with
m� n. The approximation error of Q with respect to P for the family of all squares can be computed in
O(n2√n logn) time.
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2.3. Rectangles as ranges

Let R be the set of all possible rectangles in the plane. Dobkin et al. [9] present an algorith
computes the approximation error ofQ with respect toP in O(n2 logn) time. Their algorithm is no
sensitive to the size of the setQ. We present an algorithm that is sensitive to the relative sizes of the
point sets.

Like in the case of arbitrarily sized squares, the approximation error does not depend on whe
consider open or closed rectangles: for any open (closed) rectangle, there is a slightly smalle
(larger open) rectangle that contains exactly the same points.

We start with a simple lemma limiting the number of rectangles to consider. LetB be the bounding
box ofP ∪Q.

Lemma 2.7. There is an open rectangle with maximum positive error such that each side either contains
a point fromQ or is contained in the boundary of B . Similarly, there is a closed rectangle with maximum
negative error such that each side contains a point from Q.

Proof. Let r be an open rectangle of maximum positive error, that is, a rectangle that maxi
|r ∩ P | − δ · |r ∩Q|. While there is a side ofr that does not contain a point fromQ on its boundary,
move that side away from the center ofr until it does contain a point ofQ on its boundary or until the
side is contained in the boundary ofB. Sincer is open,|r ∩Q| remains the same as before the grow
operation. Clearly,|r ∩ P | has not decreased, so the new rectangle still gives the maximum error.

Similarly, we can transform a closed rectangle of maximum negative error to one satisfyin
conditions of the lemma by moving the sides towards the center (thus shrinking the rectangle
each side contains a point ofQ on its boundary. ✷

Herein lies the main difference in approach between our algorithms and the algorithm of Dob
al. [9]: they verify all pairs of points rather than exploiting the above lemma. Lemma 2.7 immed
implies a fairly simple algorithm with O(m2n+ n logn) running time, very similar to the first algorithm
we presented for squares. However, we can do better, by using the following divide-and-c
approach. As before, we show how to compute the positive approximation error; the negative er
be computed in a similar way.

Split the plane into two half-planes using a vertical line, and recursively compute the maximum
over all rectangles lying completely to the left of�, and the maximum error over all rectangles lyi
completely to the right of�. What remains is to compute the maximum error over all rectangles cross�,
i.e. the merging step, which we describe below. The maximum of the three values is the global ma

In the merging step we have to find the rectangler∗ giving the largest error over all rectangles cross
a given line� : x = �x . Our algorithm is based on the following observation. Let�− be the closed half
plane to the left of�, and let�+ be the open half-plane to the right of�. (We make one of the half-plane
open to ensure that points on� are counted only once.)
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Fig. 2. Replacing points by quadrants in the merging step for rectangles.

Observation 2.8. The rectangler∗ ∩�− (respectivelyr∗ ∩�+) has the largest error of all rectangles who
right (respectively left) side lies on� and whose top and bottom sides have the samey-coordinates as th
top and bottom sides ofr∗.

Let Y be the set of ally-coordinates of points inQ together with they-coordinates of the top an
bottom edge of the bounding boxB. Next we show how to compute, for eachy-interval (y1 : y2) defined
by y-coordinates inY , the rectangle of maximum error over all rectangles with thisy-interval whose
right edge lies on�.

Fix somey1. We can now restrict our attention to the quadrant to the left of� and above the liney = y1.
Let P(y1) andQ(y1) be the subsets ofP andQ, respectively, inside this quadrant. The rectangles
are interested in all have(�x, y1) as bottom right corner, so if we restrict our attention toP(y1)∪Q(y1),
we can regard the rectangles as being quadrants that are unbounded to the right and bottom. H
can apply the same algorithm as we used for unit squares: First, we replace every point inP(y1)∪Q(y1)

by a quadrant unbounded to the top and left. See Fig. 2. Next we sweep the arrangement of q
from bottom to top. Events are they-coordinates ofY larger thany1—these include those of the points
Q(y1)—and they-coordinates of the points inP(y1). We maintain a treeT that maintains the maximum
error of the intersections of the quadrants with the sweep line, as described in Lemma 2.1, and
y ∈ Y we report the maximum error. This gives us for a fixedy1 in O((m + n) log(n + m)) time the
maximum error for each interval(y1, y2).

We perform this procedure with eachy1 ∈ Y , taking O(m(m + n) log(n + m)) in total. Hence, the
merging step can be performed in this amount of time. To get a nicely balanced recursion tree, we
� at odd levels of the recursion tree such that at most half the points fromP lie on either side of�, and
we choose it at even levels such that at most half the points fromQ lie on either side of�. This way we
get the following recurrence for the running time,T (n,m):

T (n,m)= O
(
m(m+ n) log(n+m)) +

4∑

i=1

T (ni,mi),

with
4∑

i=1

ni = n andni � n/2 for i = 1, . . . ,4,

and
4∑

i=1

mi =m, andmi �m/2 for i = 1, . . . ,4.

This givesT (n,m)= O(m(n+m) log(n+m)).
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Theorem 2.9. Let P be a set of n points in the plane, and let Q be a set of m points in the plane, with
m� n. The approximation error of P with respect to Q for the family of all rectangles can be computed
in O(nm logn) time.
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Remark 2.10. If m= o(n1/3), then the following simple approach is more efficient than the one ab
preprocess the points inP for range counting, and query with each rectangle defined by four p
from Q. Using O(n logn) preprocessing, range counting queries can be answered in O(logn) time [1],
so this approach leads to a total time of O((n+m4) logn).

3. Finding approximations with small error

We now turn our attention to finding good approximations of a specified sizem for a given setP of n
points. We will concentrate on square ranges, as this seems most natural in our application.

3.1. Data sets

Our input setsP consist ofn points in the unit square, for various values ofn. We use three types o
distributions: uniform, clustered and real-world data. The clustered data sets were generated as
We randomly choose 20 cluster centers, draw a circle around each center, and generate points
within that circle according to a distribution that generates more points close to the center. Which f
of the points goes to which cluster is also determined randomly. Fig. 3 shows an example of a c

Fig. 3. Clustered 1000-point setP (on the left), and two 250-point approximations forP .
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data set generated in this manner. The real-world data set represents the acres of harvested cropland in
the USA in 1992 [15]—see Fig. 1.
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3.2. Computing the error

Our heuristics call a subroutine to compute the error for givenP andQ many times. We hav
implemented the O(m2n + n logn) algorithm for computing the error for square ranges. For largn
andm, this is rather slow. To speed up the heuristics we therefore want to replace the subrouti
faster one. We do this by computing the error for squares of a fixed size, for several different siz
a fixed size we used the O(n logn) algorithm of Theorem 2.2. The hope is that if the number of size
large enough, the error we find is close enough to the real error, so that it will not harm our heu
Our first experiment is to test whether this hope is justified: we compare the real error, compute
the O(m2n+ n logn) algorithm, to the error computed by looking at squares ofk different sizes only, for
various values ofk.

The results are summarized in Table 1.
For each distribution we have generated between 5 and 10 different setsP , and for eachP between 8

and 20 different setsQ. Half of the choices forQ were taken as random samples fromP , the other half
was generated using another distribution. The table shows the average difference between the
arbitrary squares and the error fork different fixed sizes, where the sizes were equally spaced. (We
tried sizes on a logarithmic scale, but obtained poorer results.) The numbers between brackets in
give the maximum difference found in the experiments. If we takek = 60, then the average differenc
between the real error and the estimated error is always close to (and often smaller than) the d
and the maximum difference is close to twice the dot value. We conclude from this that it is safe
the estimated error in our heuristics.

We use this estimate out of necessity. Computing the error exactly takes hours for the US d
while computing the estimated error takes only a few seconds. Since our algorithms for findin
approximations have to repeatedly compute the error of an approximation, computing the exact
not a reasonable option.

Table 1
Estimating the square error byk fixed sizes

Uniform Clustered Real

n 1000 (20 samples) 5000 (5 samples) 1000 (5 samples) 5000 (5 samples) 11000 (

m 50 100 250 100 250 500 50 100 250 100 250 500 500 100
δ 20 10 4 50 20 10 20 10 4 50 20 10 22 11

k = 5 30 22 18 117 68 95 27 22 18 160 88 82 68 10
(104) (80) (80) (296) (183) (401) (121) (74) (92) (517) (230) (307) (68) (10

k = 10 17 14 9 78 47 53 17 12 9 102 58 54 68 10
(50) (60) (36) (177) (138) (230) (71) (38) (40) (220) (228) (192) (68) (10

k = 30 9 7 4 41 27 17 8 5 4 45 29 20 19 9
(30) (22) (15) (86) (65) (42) (28) (18) (22) (92) (119) (126) (19) (9)

k = 60 6 4 3 27 17 12 4 3 3 28 19 13 19 9
(18) (13) (9) (68) (44) (24) (27) (12) (12) (70) (90) (86) (19) (9)
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3.3. The heuristics

Next, we experimented with several heuristics for generating an approximationQ of a desired sizem
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for a given setP of n points. These heuristics fall into two classes:

(1) Iterative algorithms that start with a random solution and then apply some iteration rule to t
improve upon it. These algorithms include traditional optimization algorithms such as sim
annealing and taking the best ofk random samples.

(2) Clustering algorithms that partition the setS intom groups and then choose one representative p
for each group. These algorithms may partition the point setS directly (see Dobkin-Tal below) o
may partition the plane thereby inducing a partition ofS.

3.3.1. Iterative algorithms
The first class of heuristics that we consider areiterative algorithms. For this class, we consider a

algorithm that works by testing many different solutions, i.e., subsetsQ, and taking the best one. Th
differences between various iterative algorithms come from how the subsetsQ are selected.

Heuristic 1. Best of k random samples. Here we takek random samplesQ1, . . . ,Qk of P , compute the
approximation error for each of them, and return the best sample. Herek is a parameter. The larger th
value ofk, the better the approximation.

Heuristic 2. Simulated annealing. Simulated annealing (cf. [13]) is a general search technique that
with an initial random solution (i.e. a random sample) and then tries to converge to an optimal solu
introducing random changes. A random change is kept if (1) it improves the current solution, or (2
annealing condition is met.

In our implementation of simulated annealing, a random change involves choosing a random
of Q and replacing it with a random point fromP \ Q. The annealing criterion is the following
During the ith round of annealing, we replace the solutionQ by the solutionQ′ with probability
exp((�(Q,P ) − �(Q′,P ))/Ti). Here,Ti is a temperature parameter whose value isTi = (k − i)/k,
wherek is the total number of rounds the algorithm runs for.

Heuristic 3. Swapping. We first obtain an approximationQ by taking a random sample of sizem, and
then try to improve it as follows. We compute a rangerpos with the largest positive error and a rangerneg

with the largest negative error. We remove a random point inQ ∩ rneg fromQ, and add a random poin
in (P \Q)∩ rpos toQ.

Initial experimental results with the swapping heuristic were encouraging. However, this he
is highly dependent on having a good starting configuration. When this doesn’t happen, the alg
can get stuck in a local minimum, after which no further improvement can be made. To overcom
problem, we implemented two variants of the swapping heuristic.

Heuristic 4. Swapping with restart. This is a version of the swapping heuristic that starts with a
random sampleQ if 10 consecutive rounds of swapping fail to improve the solution.
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Heuristic 5. Swapping with 10%perturbation. This is a version of the swapper that, after 10 consecutive
rounds of swapping fail to improve the solution, removes�m/10� points ofQ at random and replaces
them with�m/10� points ofP \Q selected at random.

n
tion
e
ifferent
riments

quick
m with
ducing
inimum
nealing
esented
3.4. Experimental results

Fig. 1 shows the progress of iterative algorithms for 1000 rounds on a setP of n= 5000 points chose
uniformly at random from the unit square. The algorithms are attempting to find a good approximaQ
of sizem= 100. Thex-axis of the figure represents time (number of rounds) and they-axis represents th
approximation error. Note that, although the figure looks as if the various heuristics began with d
starting configurations, this is caused by a lack of resolution, and is not actually the case. All expe
began with the same initial configuration.

The worst of the heuristics is clearly simulated annealing (Heuristic 2), which makes some
improvements in the first few rounds and then gets trapped in a local minimum. Part of the proble
simulated annealing is that it completely ignores the problem and tries to make progress by intro
small random changes. It is very easy for the simulated annealing strategy to get stuck in a local m
and never improve. Although it may be possible to improve the performance of the simulated an
heuristic by tweaking the parameters, we were unable to do significantly better than the results pr
here.

Fig. 4. The progress of Heuristics 1–5 over 1000 rounds.
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The second-worst heuristic is the swapping heuristic (Heuristic 3). The swapper performs better than
simulated annealing because it introduces a carefully-chosen change that is more likely to improve the
current solution. However, it still only changes the current solution by one point and therefore quickly
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gets caught in a local minimum.
The two best heuristics are modifications of the swapping heuristic. Swapping with restart (Heur

and swapping with 10% perturbation (Heuristic 5) both achieve comparable results after 1000
However, swapping with 10% perturbation converges more quickly to a good solution. This seem
due to the fact that, when it gets stuck in a local minimum, it restarts with a new solution that is still
better than a random sample.

Choosing the best ofk random samples (Heuristic 1), a technique that is often mentione
the literature, does not perform as well as the modified swapping heuristics. It reliably finds
approximations, but these are not quite as good as those found by the two modified swapping he

3.5. Clustering algorithms

We also considered algorithms that can be loosely termed “clustering” algorithms. The
algorithms that (implicitly or explicitly) partition the point setS into m groups and then select
representative point or points from each group.

Heuristic 6. Rows and columns. This heuristic produces a subsetQ withm= r× s points by first sorting
the points byx-coordinate and grouping the points intor columns, i.e., vertical strips, each containin
n/r points. Next, the points within each column are sorted and grouped intos =m/r rows, i.e. horizonta
strips, of sizen/m. Thus we obtain a partition of the plane intom rectangular cells each containin
exactlyn/m points.

For our setQ, we take a sample from each cell. Several strategies for choosing the best sample
square were implemented. The one that worked best was to tryk = 50 random samples and choose
sample with smallest error constrained to that cell.

Note that, in these experiments, the value ofm is given, so we must factorm into r and s. We did
this by takingr = �√m� and then takings to be the largest integer so thatr × s �m. This gives us an
approximation that uses at mostm points. When computing the quality of the resulting approxima
we adjust the dot valueδ accordingly.

Heuristic 7. Quadtrees. This heuristic is based on the well-known quadtree data structure. LetS be some
axis-aligned square containing the point setP . We recursively partitionS into squares as follows. IfS
contains fewer than 4δ points ofP then we do nothing. Otherwise, we partitionS into 4 equal square
and recursively partition each square.

Once this partition is computed, we choose a sample from each square of the partition. If a
containsk points ofP then we choose a sample of size�k/δ + 1/2� from that particular square. Th
sampling strategy is the same as used for Heuristic 6. As before, this does not always yield a
with exactlyn/δ points so, when computing the error we adjust the dot valueδ accordingly.

Heuristic 8. Dobkin–Tal. The algorithm proposed by Dobkin and Tal [10] produces an approxima
that is not a subset ofP , by repeatedly finding closest pairs and replacing them by their midpoint.
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Dobkin and Tal were originally interested in the dual setting of our problem: given a set of lines, find
a smaller set of lines whose arrangement approximates the original arrangement. They solve the problem
using dualization, so they arrive exactly at our problem.
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Although their approach seems more suited to minimizing the Hausdorff distance betweenP and
Q—indeed, they prove bounds on the minimal Hausdorff distance they achieve—they also us
algorithm in an application that is closely related to ours. Namely, they want to approximate th
half-plane discrepancy [5] ofP with the discrepancy ofQ. (The area half-plane discrepancy of a
of points in the unit square is defined as the maximum, over all half-planes, of the absolute diff
between the fraction of points in the half-plane and the fraction of the unit square covered by th
plane.) Now if we considered half-planes as regions, then the approximation error ofQ with respect to
P is an upper bound on the difference between the area discrepancies ofP andQ. Dobkin and Tal claim
that for some distributions ofP the area discrepancy ofP can be estimated better by a setQ computed
with their algorithm than by a random sample. For this reason we also consider their algorithm
experiments.

3.6. Experimental results

Table 2 shows the results for Heuristic 5, the best of the iterative heuristics, after 50 rounds and
clustering algorithms. The tests were performed on 6 data sets of sizen= 5000 and one real world da
set. The data sets U5K{a,b,c} each consist of 5000 points uniformly distributed in the unit squar
data sets C5K{a,b,c} each consist of 5000 points drawn from the “city” distribution described e
The US1 data set is the data set shown in Fig. 1 and consists of 82516 points. For each data set
the algorithms to compute approximations with dot valuesδ = 100,50,20 and 10.

These results suggest that the “rows and columns” heuristic seems to be the best choice
clustering heuristics. For large values ofδ, it is competitive with the quadtree heuristic and much be

Table 2
Experimental results for clustering algorithms

Heuristic δ US1 U5Ka U5Kb U5Kc C5Ka C5Kb C5Kc

100 3206 570 674 655 570 730 680
Heuristic 5 50 3066 556 507 427 515 407 614
(Swap w. 10%) 20 4396 359 268 310 364 368 343

10 789 309 236 243 227 231 223

100 1924 650 682 657 491 487 524
Heuristic 6 50 1036 705 359 748 405 410 367
(Rows & Cols.) 20 885 315 256 294 188 273 203

10 780 153 195 156 119 128 132

100 2289 582 604 739 520 400 524
Heuristic 7 50 1612 500 508 356 421 321 353
(Quadtree) 20 4285 261 230 276 225 217 207

10 6728 439 467 398 398 396 343

100 – 824 742 691 1445 1806 1335
Heuristic 8 50 – 575 519 704 1479 1752 1133
(Dobkin–Tal) 20 – 414 392 399 1378 1631 1028

10 – 280 302 309 1302 1586 1011
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than Dobkin–Tal. For small values ofδ, the “rows and columns” heuristic is definitely the method of
choice and outperforms the quadtree heuristic by a significant margin. This seems to be because the
quadtree heuristic has trouble controlling the number of points in each cell, while the “rows and columns”
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heuristic has exactlyδ points per cell.
Surprisingly, the simple “rows and columns” heuristic also seems to perform better than Heur

even though we allow Heuristic 5 to run for 50 rounds. This makes the “rows and columns” heu
very fast method of obtaining good quality solutions. In terms of computation time, the entire ru
time of the rows and columns heuristic is roughly the same as one or two rounds of an iterative he

Finally, the Dobkin–Tal heuristic does reasonably well for uniformly distributed points, but does
poorly with clustered point sets. This seems to be an artifact of the averaging effect obtained by rep
taking the midpoints of the pairs of points.

4. Concluding remarks

In some applications, it may be desirable to give outliers inP a bigger chance to be present inQ. This
can be done by giving these points a higher weight. For instance, we can let the weight of eac
be dependent on the number of points within a fixed distance from that point. By giving more and
weight to isolated points, the approximation is likely to become more and more uniform. The defi
of approximation error and our algorithms can easily be extended to the weighted case, and it w
interesting to experiment with this.

In our application it seems most reasonable to look at the approximation error for families of s
or discs. We studied the case of squares, but it would be interesting to see if our algorithm to com
approximation error in this case can be improved. We did not study discs at all in this paper. It is
compute the approximation error for discs in (close to) cubic time, but it remains open whether t
be done faster.

Finally, we suspect that computing the best approximation of a given size with respect to a gi
P is NP-hard, but we have not been able to prove this.
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