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Abstract

Dot maps—drawings of point sets—are a well known cartographic method to visualize density functions over
an area. We study the problem of simplifying a given dot map: given @ s#tpoints in the plane, we want to
compute a smaller s@ of points whose distribution approximates the distribution of the originaPset

We formalize this using the concept ofapproximations, and we give efficient algorithms for computing the
approximation error of a s? of m points with respect to a sét of n points (withm < n) for certain families of
ranges, namely unit squares, arbitrary squares, and arbitrary rectangles.

If the family R of ranges is the family of all possible unit squares, then we compute the approximation error of
0 with respect toP in O(nlogn) time. If R is the family of all possible rectangles, we present am@logn)
time algorithm. IfR is the family of all possible squares, then we present a simpl€@+ n logn) algorithm and
an Q(n®./nlogn) time algorithm which is more efficient in the worst case.

Finally, we develop heuristics to compute good approximations, and we evaluate our heuristics experimentally.
0 2003 Elsevier B.V. All rights reserved.

Keywords: Dotmaps; Discrepancy-approximations

1. Introduction

An important component in the area of cartography is the ability to represent and visualize the
distribution or density of some phenomenon such as the population distribution over a certain region.
The most common technique to achieve this isdbemap, as shown in Fig. 1. The termot map is
self-explanatory—it refers to the use of dots or points placed on a map to represent a given distribution.
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Fig. 1. Example of a dot map.

Dot maps are quite important and their use has been extensively studied in cartography—see for instance
Chapter 8 of the book by Dent [6].

There are many issues involved in the use of dot maps as a tool for representing distributions. For
example, the radius of the dots used, or the decision to allow or disallow dots to overlap are important
visual considerations [6]. Depending on the application, it can also be important to take the topographic
‘background map’ into account: a dot map representing population density should not have dots inside
lakes, in mountainous areas one may have to take altitude into account, and it may be important to ensure
that dots are on the correct side of borders or other features [11]. In this paper, we concentrate on two
related computational issues that purely deal with distribution issues; visual considerations and adherence
to a background map are beyond the scope of this paper.

The first question we study is: Given a point getrepresenting a certain distribution, how can we
automatically simplify it, that is, generate a smaller representative poinQ seft a given size? This
guestion arises when one wishes to scale a map: the number of points in the map has to decrease when tt
size of the map is decreased, otherwise it would become too cluttered. It may also arise in the generation
of the initial dot map: “The printed dot map of the population distribution should be constructed at a
larger scale based on more detailed information such as settlements and houses and then reduced to tl
final scale”, as Ditz [11] writes. The first question—How can we compute a good approximation?—
immediately leads to the second: Given sBtand Q, how can we determine the quality ¢f as an
approximation toP? To determine the quality of an approximation, we need a quantitative measure of
similarity between dot maps. Our measure is inspired by interactive GISs where a user can use a dot
map of, say, the population density, to estimate the population within a region [11]. This can either be
a user-defined area—a square, for example—or a geographically meaningful region such as the arec
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within a certain distance from a river. This leads us to propose the notierapproximations [17] as a
guantitative measure of the quality of an approximation. Aef m points is called am-approximation
of a setP of n points" with respect to a familyR of ranges, if for any range € R we have

lIrOPl/n—1rnQl/m|<e.

In other words, if we approximate the number of points frérinside a range: by multiplying the
number of points fronQ inside the range by/m, then we make an error of at mast. This leads us to
defineAx (Q, P), theapproximation error of Q with respect to P, for a family R of ranges, as

AR(Q,P)=QWE%>4IFHPI —(n/m)-|rn Q||

The valuen/m, which can be viewed as the weight of a pointghas compared to a point iR, is

called thedot value of the points inQ. We usually denote it by. In this paper we focus on squares

and rectanglésas ranges. Of these types of ranges, squares are probably most natural in our application.
Another natural range to consider would be discs.

1.1. Related work

e-Approximations have been studied and used extensively in computational geometry—see for
instance Chazelle’'s book [5]—and various algorithms are known to comgpajgproximations of
asymptotically optimal size for a sét and a given value of. Note that we want to solve a slightly
different problem: in our case is not given, but the desired number of points in the approximation
Still, one may use the same type of algorithms. For instance, in many cases it turns out that random
sampling is expected to produce an approximation of asymptotically optimal size. (One caveat is in
place here: the optimality here refers to the worst-case size efapproximation over all point sets
P of n points, not to the minimum size needed for the given Belhese two sizes need not be the
same.) Thus, for our problem we could simply take a random subsetP of the desired size. Then, of
course, one would want to check how good the sample is, that is, one needs an algorithm to compute the
approximation error of given se® and Q.

The use ofk-approximations to measure the similarity of two point sets is related to some statistical
methods to derive a (continuous) density function from a given point set; see the book by Baily and
Gatrell [2] for more information on statistical methods for spatial data analysis. For example, kernel
estimation defines the densityx) at a pointx in the plane by summing the number of points within a
region around the point in a weighted manner; the shape of the region and the exact weighting scheme
depends on the kernel used. Comparing two point sets—for example, to see whether the distribution
of some feature of the population (humber of cancer deaths, for instance) deviates from the population
distribution itself—is then done by comparing the density functiof(s) andi,(x) obtained for the two
points sets. Usually one takes the quotient of these two values, but if one wants to bound the worst-case
error this doesn’t workXz(x) may be zero) and one could take the absolute difference. The notion of
g-approximation with unit squares as ranges can be seen as a special case of this, where the kernel i
a block function with value 1 inside the unit square centered at the paanid value O elsewhere (and

1 Traditionally, in the definition of-approximation it is required tha® c P, but this is not necessary.
2 In this paper squares and rectangles are always axis-parallel.
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the other parameters of the kernel estimation method chosen suitably). The advantage of such a simple
kernel function is that it is computationally easier, in the sense that it makes computing the approximation
error easier. Recall that the motivation behind our use-@bproximations is that we want to bound the
maximum error when an approximating g2ts used to estimate the number of points from afsetside

a range. The size of such a range is not fixed in an interactive setting. Hence, we also look at squares of
arbitrary sizes, which makes our error measure different from traditional kernel methods.

The approximation error as defined above is a generalization obittheomatic discrepancy (or
combinatorial discrepancy). Here one colors each point of a given set either red or blue and one is
interested in the maximum difference, over all possible ranges of the given family, between the number
of red points and the number of blue points inside a range. If we call the red poihieset the blue point
setQ, and we define the dot value to be 1 (even whn# | Q|), then the bichromatic discrepancy equals
the approximation error. Also, finding an optimal red-blue coloring of a give® seidentical to finding
a subsetQ c P such that the discrepancy @f with respect toP and dot value 2 is minimized. The
concept of bichromatic discrepancy arises in computational learning theory, in particular in the so-called
minimizing disagreement problem in agnostic PAC-learning [8,12]. Thus our algorithms to compute the
approximation error of two given sets with respect to a farfilyof ranges may be used to solve the
minimizing disagreement problem when the class of hypothes@s-isee the paper by Dobkin et al. [9]
for details.

Finally, we note that our problem is related to that of computingatiea discrepancy (or continuous
discrepancy) of a point setP. This is a measure of how uniform that point set is, and it has applications
in computer graphics [7,9,16].

1.2. Our results

Computing the approximation error of a g@tof m points with respect to a sét of n points, with
m < n, is the topic of Section 2. We obtain the following resultsRlfis the family of all possible unit
squares, then we can compute the approximation errgrwith respect taP in O(n logn) time. If R is
the family of all possible rectangles, then we present two algorithms, a singpi&:Q-» logn) algorithm
and a more efficient @nlogn) time algorithm. This is a slight improvement over an algorithm of
Dobkin et al. [9] whenn is o(n). Their algorithm runs in @?logn) time regardless of how smad is.

If R is the family of all possible squares, then we present a simpte’®-+ n logn) algorithm and an
O(n?./nlogn) time algorithm which is more efficient in the worst case.

We turn our attention in Section 3 to the experimental component of the paper. The goal is to develop
heuristics to generate for a given getan approximationQ of the desired size with as small an error as
possible. We concentrate on the case of square ranges, as this seems most relevant to our application. Ot
heuristics use as a subroutine an algorithm to compute the error for giaerd Q. Unfortunately, our
algorithm for arbitrary squares is rather slow, and some of the heuristics call this subroutine many times.
Hence, we first show experimentally that the exact error with respect to squares can be approximated well
by computing the error with respect to fixed-size squares for a number of different sizes. After having
established this, we compare various heuristics to find a good approximation of a given p&inOset
of our findings is that taking the best approximation out of a large collection of random samples does not
work so well, even though random sampling is guaranteed to find approximations that are asymptotically
worst-case optimal.
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2. Computing the approximation error

Let P be a set of: points andQ be a set ofr points in the plane, with: < n. In this section we show
how to compute the approximation error @f with respect toP for three different families of ranges:
unit squares, arbitrarily sized squares, and arbitrarily sized rectangles:=By/m we denote the dot
value of the points irQ.

2.1. Unit squares as ranges

Let R be the family of all possible unit squares. When we want to compute the approximation error
of Q with respect toP for unit squares, it can make a difference whether we consider open or closed
squares. In the description of the algorithm, we will consider the squares to be closed,; it is easy to adapt
the algorithm to the case of open squares.

Recall that we use the absolute value of the error in the definition of approximation error. It is
convenient to compute separately the maximum positive error and the maximum negative error. Below
we describe how to compute the maximum positive error; computing the maximum negative error can be
done in a similar way.

A unit square contains a point if and only if the center of the unit square is contained in the unit square
centered at the point. Hence, instead of considering the pointPsatsd Q and the family of all unit
squares as ranges, we can use the$etnd S, of unit squares centered at the pointshirand 0, and
all points in the plane as ranges. Call the square$yitthe red squares, and the squares if, the blue
squares. The (positive) approximation error of a poinin the plane is now

(# of red squares containing — § - (# of blue squares containing.

The approximation error of, with respect taS, is the maximum approximation error over all points in
the plane. From the discussion above it follows that this is the same as the approximation &rweitlof
respect taP for the family R of unit squares as ranges.

The arrangement formed by the squargs and Sp partitions the plane into faces where the
approximation error of any point in a face of the arrangement is the same. Therefore, finding the
maximum approximation error amounts to finding the face with maximum approximation error. We
compute the approximation ¢f, with respect taS, with a plane-sweep algorithm. In this algorithm,
we sweep a vertical liné from left to right over the arrangement. As we sweep the arrangement, we
maintain the maximum approximation error over the faces of the arrangement interseét&irme the
arrangement is formed by squares, the only events are when the sweep lines reaches a left or right edg
of a square. At each event we compute the maximum error of all pointsaad of all points slightly to
the right of¢ (but to the left of the previous event). The maximum error found in all the events will be
the maximum error of, with respect taS,. We now describe the information we maintain during the
sweep—the status structure—and how to handle the events.

2.1.1. Adynamic 1-dimensional structure

The status structure is a dynamic data structure for solving the following 1-dimensional version of the
problem. We are given a sé} of red segments and a skf of blue segments on the real line, and a
parametes. The (positive) approximation error of a poink R is defined as

(# of red segments containing — § - (# of blue segments containing.
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We want to maintain the maximum error over all point&Riminder insertions and deletions of segments.

The structure we use is essentially the structure described in [4] in the context of grid placement
problems. A similar structure is also presented in [9]. The structure maintains a furfctin— R.
Initially, it is assumed thatf (x) = 0, for all x € R. The following update and query operations are
allowed on the structure:

(1) Insert(a : b], d): Increase the value of (x) by d over the intervala : b].
(2) Delete[a : b], d): Decrease the value gf(x) by d over the intervala : b].
(3) Max(): Return makf (x): x € R}.

The first two operations can be performed itid@#) time wheren is the number of intervals currently
inserted and the third operation takeslPtime. Essentially, the data structure is a balanced binary
tree (similar to a segment tree [3]) whose leaves representldéhentary intervals (of the inserted
intervals) ordered from left to right. An internal node of the tree represents the interval that is the union
of the elementary intervals of the leaves in its subtree. The nodes have been augmented with additional
information in order to answer the queries. The structure la$ €ize where: is the number of intervals
currently in the structure. For more details on the structure, the reader is referred to the paper of Bose et
al. [4].

With this structure, the 1-dimensional problem is easily solved. When inserting (respectively deleting)
a red segment, we increase (respectively decrease) the vafug)by 1 over this segment. Similarly,
when inserting (respectively deleting) a blue segment, we decrease (respectively increase) the value of
f(x) by § over this segment. Max() allows one to recover the maximum approximation error over the
currently inserted segments.

This leads to the following lemma.

Lemma 2.1. The maximum approximation error of a set of red and blue segments on a line can be
maintained with a structure of O(n) space that takes O(logn) time per insertion and deletion, wheren is
the number of red and blue segments.

We now return to the 2-dimensional problem, where we want to compute the approximation error of a
set of blue squares with respect to a set of red squares, with the points in the plane as ranges. Recall the
our approach is a plane-sweep algorithm. The algorithm maintains the maximum error along the sweep
line ¢ using the structurg just described above. Whenever the left edge of a square is encountered,
we insert itsy-interval into the structure along with the appropriate value (that is, 1 if it is red-and
otherwise), and whenever the right edge of a square is encountered, we dejetatétval. If events
happen simultaneously—multiple edges have the sest@ordinate—then we process the events in the
following order. First we handle all left boundaries. After this, Max() tells us the maximum errér on
Next, we handle all the right boundaries, and get the maximum error slightly to the rightHzce,
every event takes @gn) time to process and the initialization takesn@gn) time. Since there are
O(n) events to process, we get the following theorem.

Theorem 2.2. Let P be a set of n points in the plane, and let O be a set of m points in the plane, with
m < n. Theapproximation error of Q with respect to P for the family of all unit squares can be computed
in O(nlogn) time.
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2.2. Arbitrarily sized squares as ranges

The case of squares of arbitrary size as ranges is probably the most interesting in our application.
Note that, unlike in the case of unit squares, the approximation error does not depend on whether we
consider open or closed squares: for any open (closed) square, there is a slightly smaller closed (largel
open) square that contains exactly the same points. We start by showing a fairly simple algorithm that
runs in Qm?®n + nlogn) time.

We first prove a lemma which restricts the number of candidate squares. hethe bounding box
of PU Q.

Lemma 2.3. There is an open square with maximum positive error such that two opposite sides of the
square each either contain a point from Q or are contained in the boundary of B. Smilarly, thereisa
closed square with maximum negative error such that two opposite sides of the sguare each contain a
point from Q.

Proof. Lets be an open square of maximum positive error, that is, a square that maximizes| —
3 - |r N Q. Suppose the top and right edge do not contain a point fgor a part of the boundary of
B. Fix the bottom left corner of and grow the square until either a point frginor the boundary oB
hits the top or right edge of. No point of P can enter during this process since otherwisavas not
a maximum. Next, fix the top right corner efand grow the square until either a point frgihor the
boundary ofB hits the bottom or left edge of Again, no point ofP can entes during this process. At
this point, the conditions of the lemma are met or two adjacent edgesafitain a point fromQ or the
boundary ofB. If the latter holds, then assume, without loss of generality, that the top and left edges of
s contain a point ofQ. Then fix the top left corner and grow the square until the condition of the lemma
is met.

Now let s be a closed square of maximum negative error, and suppose the top and right edge do not
contain a point fromQ or a part of the boundary @¢. We can transform into a square with the same
error that satisfies the conditions of the lemma using the same procedure as above, except this time we
shrink s instead of growing. Because of the shrinking, we do not have the case where the boundary of
s hits the boundary oB, since we can assume that initialiyies completely insides. O

2.2.1. Asimplealgorithm

Next we describe a simple algorithm, based on Lemma 2.3, to compute the maximum positive
approximation error; the maximum negative error can be computed in a similar way.

By Lemma 2.3, the square of maximum discrepancy must have a blue point (i.e., a poir®@from
two opposite sides. Given two blue points, if the absolute value of the difference invtoewrdinate
is larger than the absolute value of theoordinate difference, then the two points can only lie on the
left and right sides of a square. Similarly, if thecoordinate difference is larger, than the two points can
only lie on the top and bottom edges of the square. Finally, if the differences are the same, then there
is a unique square with the points at the opposite corners. This implies that a given pair of blue points
determines the size of the square and the direction of search. Since therélarepoints, there ar§))
candidate pairs. Select one such pgirg;, and assume without loss of generality that theoordinate
difference is larger. The case where theoordinate difference is larger is symmetric, and the other case
is trivial.



50 M. de Berg et al. / Computational Geometry 27 (2004) 43-62

Giveng; andg;, let h; andh; be the horizontal lines through the respective points. We have to find
the maximum error over all squares whose top end bottom edges are contained in those lines. In order tc
find this maximum, we will sweep (i.e., move) the square from left to right through the strip.

Consider the points i? U Q that lie within this strip. Sort these points by theicoordinates, and
let S represent this set in sorted order. Start with the left boundary of the square on the left boundary
of B. Compute the discrepancy of this square by finding the point$ iof this square. Now, sweep
the square from left to right until the right boundary reaches the right boundaByawfd maintain the
maximum at each step. The events in this sweep are that either a point leaves the square or a point enter
the square. The order in which the points enter as well as the order in which the points leave is the
sorted order. Processing an event amounts to adding or subtracting the appropriate amount to the currer
discrepancy, depending on which point enters or leaves. (Events that occur simultaneously should be
handled together; the details of how this should be done are easy to fill in.) Note that we do not need
to sweep the whole strip but only the portion of the strip whgrendg; are on the top and bottom
edges of the square. However, this optimization does not make a difference asymptotically. Since each
event can be processed iXptime given the sorted order, we can compute im)Xime the maximum
discrepancy given a candidate pair of points provided the points in the strip are sorted. If we pre-sort the
points of P U Q in O(n logn) time then @r) time the sorted order of points &f U Q within a strip can
be obtained. Since there argi¥) possible candidates and each candidate can be verifiethintione,
the total time for the algorithm is @:%n + n logn).

Theorem 2.4. Let P be a set of n points in the plane, and let O be a set of m points in the plane, with
m < n. The approximation error of P with respect to Q for squares can be computed in O(m?n +n logn)
time.

2.2.2. A subcubic algorithm

The algorithm of Theorem 2.4 runs in cubic timeri= © (n). Next we describe a subcubic algorithm.
Recall that in the case of unit squares as ranges, we replaced every ppiatghwith a unit square and
we looked at the maximum error of points in the plane with respect to the resulting,seatsd S, of
squares. This approach does not apply here since the size of the square is not fixed. However, we can d
something similar: replace every pointtU Q with a square of size, let p grow from zero to infinity,
and maintain the maximum error of points in the plane with respect to the resultin§satsl S, of
squares over the whole growing process. Notice that the maximum error only changes when two squares
start overlapping. This is precisely when new faces in the arrangement of squares appear and other face
disappear. This happeng#3) times. The approach is to maintain the maximum over the whole growing
process. In the remainder we develop a structure that allows us to compute¢/ind@n) time the new
maximum discrepancy when such an event takes place, leading to an algorithm with overall running time

of O(n?/nlogn).

A dynamic 2-dimensional structure. We develop a dynamic structure for the following 2-dimensional
problem. We are given sef®; and Ry of red and blue rectangles, respectively, and a paranieiéne
error of a pointy in the plane is defined as

(# of red rectangles containing — § - (# of blue rectangles containing.
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The approximation error oRz with respect toRy is the maximum approximation error over all points

in the plane. Our goal is to maintain the approximation erroR gpfwith respect toR; under insertions

into and deletions fronRz and R z. We usen to denote the total number of rectangles in the current sets.
Our structure uses a partitioning of the plane similar to the one used by Overmars and Yap [14]. More

precisely, we partition the plane into vertigiébs by drawing Qi\/n) vertical lines such that in between

any two consecutive lines there are at mg&t vertices of rectangles (in the current set). A rectangle

is said tobelong to a slab if any vertex of the rectangle is contained within the slab. A rectangle is said

to cross a slab if the intersection of the slab and the rectangle is not empty but the rectangle does not

belong to the slab. Each slabis further subdivided by drawing horizontal segments connecting its two

bounding lines through every vertex of a rectangle ingidd his way we obtain a subdivision of the

plane into cells with the following properties.

e There are @,/n) slabs and @) cells.
e No cell contains a vertex of a rectangle fratg U R in its interior.
e Acellis crossed by at most(@n) vertical edges.

Let A represent the arrangement®yf U R . Essentially, we need to maintain the face of this arrangement
with maximum error under insertions and deletions of red or blue rectangles. The main idea is to maintain
the maximum for each slab. In order to do this, we maintain for each cell in a given slab, the maximum
in that cell with respect to the rectangles belonging to the slab. We first describe how to maintain the
maximum in a given cell and then we show how to use this in order to maintain the maximum in a given
slab.

As we are concentrating on a particular eglin a slabo, let R(o) represent the rectangles B U R
that belong tar clipped to withino, and letA(o) be the arrangement of rectanglRér). SinceC has
no vertices in its interior and all rectangles &{o) belong too, the part of A(o) within C is formed
by O(y/n) vertical edges crossing. Therefore, maintaining the maximum @ is a 1-dimensional
problem and we can use the tree structiéigedescribed in Lemma 2.1 to maintain the maximum. For
each rectangle of R(o) in C, insert an intervalr,, r.] in 7c wherer, andr, are thex-coordinates of
the left and right edges of The value associated with this interval is ¥ ifs red and—§ otherwise. If
ry IS to the left of the left side of the slab aris to the right of the right side of the slab, we truncater
r. to the slab boundary since we only concentrate on what is within

We now turn our attention on how to maintain the maximum within a slabhere are two types of
rectangles that contribute to the error of the faceglaofithin o: those that belong te and those that
crosso . The error of the rectangles that belongstare taken care of within each cell, so to maintain the
maximum for the slab, we need to incorporate the information pertaining to the rectangles crossing the
slab. LetX (o) represent all of the rectangles that cres$-or a rectangle € X (o), consider the cells of
o that are contained in. For each such cell, the maximum error in that cell only changes by a constant
(depending on the color af) because the whole cell is contained-ir5o again, we are able to transform
the problem to a 1-dimensional problem. Igtbe they-intervals of the cells o& and letYy ) be the
y-intervals of the rectangles iki (o). To maintain the maximum i, we construct a tre&,. For each
interval y; in Y, we inserty; in 7, and the associated value is the maximum error in the cell. For each
y-interval y; in Yx ), we inserty; in 7, and the associated value is either 1-af depending on the
color of the rectangle.
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Our structure consists of one tree for each slab and one tree for each cell within a slab. Therefore, the
structure consists of Q/n) slab trees and @) cell trees.

Updates. To insert a rectangle into the structure, we proceed as follows. First, we find (R/@) time
all O(4/n) slabs that are completely crossedry-or each such slab, we insert they-interval of» and
the value of- into 7. This takes at most Q/n logn) time.

Next we deal with the at most two slabs that contain a vertex &or each such slah, we find in
O(4/n) time all O(y/n) cells intersected by. There are two types of cells: the ones that contain a vertex
of r and the ones that are crossed from top to bottom. Byor cellC of the latter type, we insert the error
of r and thex-interval of r (clipped to withino) into Z¢. Cells of the former type—there are at most
two of them—have to be split using horizontal segments through the verticessoice the number of
intervals stored with a cell is @Q/n), splitting a cell and rebuilding its structure can be done (/@)
time. For each affected cdll in o we now know its new error, so we update the slab Feby deleting
and re-inserting the affected cells. Overall, we sperig/@ogn) time to handle the at most two slabs
containing an endpoint of.

After this, we go over all slabs to recompute the new maximum error.

Deleting a rectangle is done using a similar procedure, so we omit the details. Finally, during the
course of insertions and deletions, we may have to split a slab into two or merge two neighboring slabs
in order to maintain the partition into (Qn) slabs each containing (Qn) cells. Merging or splitting
can be done in Gilogn) time by simply reconstructing the trees for the slabs and cells. If we split a
slab whenever its size is more thag/2 or merge two slabs when both their sizes are less {{fay2
then a standard amortization argument shows that given an update sequence caontaséngons and
deletions that merges and splits can be can be achieved in amortizéd@n) time.

Lemma 2.5. The maximum approximation error of a set of red and blue rectangles in the plane can
be maintained in O(,/nlogn) amortized time per update, where n is the number of rectangles in the
Set.

We now return to the original problem, of computing the approximation error of adsef m
points in the plane with respect to a sBtof n points, where the set of ranges is the family of
all possible squares. Lat,(p) denote the square of size centered at a poinp. Furthermore, let
Sp(p) ={s,(p): pe P} and letSy(p) = {s,(q): q € Q}. Define the maximum error ofp(p) with
respect taSy (p) for point ranges as before. Then the maximum error we want to compute is given by
max,-.o{error of Sp(p) wrt Sp(p)}. When we lefp increase, the error oy (p) with respect td, (p) can
only change when two edges of squares meet. Hence, we proceed as follows. We normalize the problerr
by replacing thex-coordinates of the vertical edges by their rank, and by replacing-t@ordinates
of the horizontal edges by their rank. Now every square becomes a rectangle with coordinates from a
universe of sizd/ = 2(n + m). We store these rectangles in a dynamic structure as described above.
Whenever two vertical (or horizontal) edges swap ranks, we delete the rectangles from our structure, and
re-insert the rectangles with their new normalized coordinates. This takgs 6gn) time, and gives us
the new error.

We start the process with a value gthat is small enough so that all rectangles are disjoint (and the
error isé or § — 1, depending on whetha? C P). The number of swaps we have to process (8°Q
We get the following result.
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Theorem 2.6. Let P be a set of n points in the plane, and let Q be a set of m points in the plane, with
m < n. The approximation error of Q with respect to P for the family of all squares can be computed in
O(n?,/nlogn) time.

2.3. Rectangles asranges

Let R be the set of all possible rectangles in the plane. Dobkin et al. [9] present an algorithm that
computes the approximation error ¢f with respect toP in O(n?logn) time. Their algorithm is not
sensitive to the size of the s@t We present an algorithm that is sensitive to the relative sizes of the two
point sets.

Like in the case of arbitrarily sized squares, the approximation error does not depend on whether we
consider open or closed rectangles: for any open (closed) rectangle, there is a slightly smaller closed
(larger open) rectangle that contains exactly the same points.

We start with a simple lemma limiting the number of rectangles to considerB st the bounding
box of PU Q.

Lemma 2.7. Thereis an open rectangle with maximum positive error such that each side either contains
apoint from Q or iscontained in the boundary of B. Smilarly, thereisa closed rectangle with maximum
negative error such that each side contains a point from Q.

Proof. Let r be an open rectangle of maximum positive error, that is, a rectangle that maximizes

[rNP|—34-|rn Q|. While there is a side of that does not contain a point frod@ on its boundary,

move that side away from the centerrofintil it does contain a point of on its boundary or until the

side is contained in the boundary Bf Sincer is open,|r N Q| remains the same as before the growing

operation. Clearlylr N P| has not decreased, so the new rectangle still gives the maximum error.
Similarly, we can transform a closed rectangle of maximum negative error to one satisfying the

conditions of the lemma by moving the sides towards the center (thus shrinking the rectangle) until

each side contains a point ¢f on its boundary. O

Herein lies the main difference in approach between our algorithms and the algorithm of Dobkin et
al. [9]: they verify all pairs of points rather than exploiting the above lemma. Lemma 2.7 immediately
implies a fairly simple algorithm with Gn?n + nlogn) running time, very similar to the first algorithm
we presented for squares. However, we can do better, by using the following divide-and-conquer
approach. As before, we show how to compute the positive approximation error; the negative error can
be computed in a similar way.

Split the plane into two half-planes using a vertical line, and recursively compute the maximum error
over all rectangles lying completely to the left &f and the maximum error over all rectangles lying
completely to the right of. What remains is to compute the maximum error over all rectangles crdssing
i.e. the merging step, which we describe below. The maximum of the three values is the global maximum.

In the merging step we have to find the rectandlgiving the largest error over all rectangles crossing
a given line¢ : x = £,.. Our algorithm is based on the following observation. Letbe the closed half-
plane to the left of, and let¢™ be the open half-plane to the right &f(\We make one of the half-planes
open to ensure that points érare counted only once.)



54 M. de Berg et al. / Computational Geometry 27 (2004) 43-62

Fig. 2. Replacing points by quadrants in the merging step for rectangles.

Observation 2.8. The rectangle* N ¢~ (respectively-* N ¢*) has the largest error of all rectangles whose
right (respectively left) side lies ofiand whose top and bottom sides have the saroeordinates as the
top and bottom sides of.

Let Y be the set of ally-coordinates of points i together with they-coordinates of the top and
bottom edge of the bounding bakx Next we show how to compute, for eagkinterval (y; : y») defined
by y-coordinates inY, the rectangle of maximum error over all rectangles with thiaterval whose
right edge lies or.

Fix somey;. We can now restrict our attention to the quadrant to the leftasfd above the ling = y;.

Let P(y;) and Q(y1) be the subsets aP and Q, respectively, inside this quadrant. The rectangles we

are interested in all hav,, y;) as bottom right corner, so if we restrict our attentionPto1) U Q (y1),

we can regard the rectangles as being quadrants that are unbounded to the right and bottom. Hence, w
can apply the same algorithm as we used for unit squares: First, we replace every pgind)io O (y;)

by a quadrant unbounded to the top and left. See Fig. 2. Next we sweep the arrangement of quadrant:
from bottom to top. Events are thecoordinates ot larger thany;—these include those of the points in

0 (y1)—and they-coordinates of the points iR (y;). We maintain a tre€ that maintains the maximum

error of the intersections of the quadrants with the sweep line, as described in Lemma 2.1, and at each
y € Y we report the maximum error. This gives us for a fixadin O((m + n)log(n + m)) time the
maximum error for each intervap., y,).

We perform this procedure with eagh € Y, taking Qim(m + n)log(n + m)) in total. Hence, the
merging step can be performed in this amount of time. To get a nicely balanced recursion tree, we choose
¢ at odd levels of the recursion tree such that at most half the points frdimon either side of, and
we choose it at even levels such that at most half the points fdia on either side of. This way we
get the following recurrence for the running tin¥eg, m):

4
T(n,m)=O(m(m +n)log(n +m)) + Y T (n;,m,),
i=1
4
with Zni =nandn; <n/2fori=1,...,4,
i=1
4
and Zm,- =m, andm; <m/2fori=1,...,4.
i=1
This givesT (n, m) = O(m(n + m) log(n + m)).



M. de Berg et al. / Computational Geometry 27 (2004) 43-62 55

Theorem 2.9. Let P be a set of n points in the plane, and let Q be a set of m points in the plane, with
m < n. The approximation error of P with respect to Q for the family of all rectangles can be computed
in O(nmlogn) time.

Remark 2.10. If m = o(n'/3), then the following simple approach is more efficient than the one above:
preprocess the points iR for range counting, and query with each rectangle defined by four points
from Q. Using Qn logn) preprocessing, range counting queries can be answeredag#A) time [1],

so this approach leads to a total time afi@+ m*) logn).

3. Finding approximations with small error

We now turn our attention to finding good approximations of a specifiedusitoe a given setP of n
points. We will concentrate on square ranges, as this seems most natural in our application.

3.1. Data sets

Our input setsP consist ofr points in the unit square, for various valuesiole use three types of
distributions: uniform, clustered and real-world data. The clustered data sets were generated as follows.
We randomly choose 20 cluster centers, draw a circle around each center, and generate points randoml
within that circle according to a distribution that generates more points close to the center. Which fraction
of the points goes to which cluster is also determined randomly. Fig. 3 shows an example of a clustered
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Fig. 3. Clustered 1000-point sét(on the left), and two 250-point approximations f@r
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data set generated in this manner. The real-world data set represents the acres of harvested cropland i
the USA in 1992 [15]—see Fig. 1.

3.2. Computing the error

Our heuristics call a subroutine to compute the error for givermnd Q many times. We have
implemented the On?n + nlogn) algorithm for computing the error for square ranges. For large
andm, this is rather slow. To speed up the heuristics we therefore want to replace the subroutine by a
faster one. We do this by computing the error for squares of a fixed size, for several different sizes; for
a fixed size we used the(@logn) algorithm of Theorem 2.2. The hope is that if the number of sizes is
large enough, the error we find is close enough to the real error, so that it will not harm our heuristics.
Our first experiment is to test whether this hope is justified: we compare the real error, computed with
the Qm?n + nlogn) algorithm, to the error computed by looking at squarek different sizes only, for
various values of.

The results are summarized in Table 1.

For each distribution we have generated between 5 and 10 differernt satsl for eachP between 8
and 20 different set®. Half of the choices folQ were taken as random samples frémthe other half
was generated using another distribution. The table shows the average difference between the error fol
arbitrary squares and the error fodifferent fixed sizes, where the sizes were equally spaced. (We also
tried sizes on a logarithmic scale, but obtained poorer results.) The numbers between brackets in the table
give the maximum difference found in the experiments. If we take60, then the average difference
between the real error and the estimated error is always close to (and often smaller than) the dot value,
and the maximum difference is close to twice the dot value. We conclude from this that it is safe to use
the estimated error in our heuristics.

We use this estimate out of necessity. Computing the error exactly takes hours for the US data set,
while computing the estimated error takes only a few seconds. Since our algorithms for finding good
approximations have to repeatedly compute the error of an approximation, computing the exact error is
not a reasonable option.

Table 1
Estimating the square error liyfixed sizes
Uniform Clustered Real
n 1000 (20 samples) 5000 (5 samples) 1000 (5 samples) 5000 (5 samples) 11000 (1 set)
m 50 100 250 100 250 500 50 100 250 100 250 500 500 1000
) 20 10 4 50 20 10 20 10 4 50 20 10 22 11
k=5 30 22 18 117 68 95 27 22 18 160 88 82 68 10

(104) (80) (80) (296) (183) (401) (121) (74) (92) (517) (230) (307) (68) (10)
k=10 17 14 9 78 47 53 7 12 9 102 58 54 68 10
(50) (60) (36) (177) (138) (230) (71) (38) (40) (220) (228) (192) (68) (10)
k=30 9 7 4 41 27 17 8 5 4 45 29 20 19 9
(30) (220 (15) (86) (65) (42) (28) (18) (22) (92) (119) (126) (19) (9)
k=60 6 4 3 27 17 12 4 3 3 28 19 13 19 9
(18) (@3 (9 (68 (44 (4 (@7 (@2 (12 (o) (90) (86) (19) (9)
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3.3. The heuristics

Next, we experimented with several heuristics for generating an approximatafra desired size:
for a given setP of n points. These heuristics fall into two classes:

(1) lterative algorithms that start with a random solution and then apply some iteration rule to try and
improve upon it. These algorithms include traditional optimization algorithms such as simulated
annealing and taking the bestiofandom samples.

(2) Clustering algorithms that partition the seinto m groups and then choose one representative point
for each group. These algorithms may partition the pointSséirectly (see Dobkin-Tal below) or
may partition the plane thereby inducing a partitionSof

3.3.1. Iterative algorithms

The first class of heuristics that we consider iaegative algorithms. For this class, we consider any
algorithm that works by testing many different solutions, i.e., sub@getand taking the best one. The
differences between various iterative algorithms come from how the sufisats selected.

Heuristic 1. Best of k random samples. Here we takek random sample®)., ..., O, of P, compute the
approximation error for each of them, and return the best sample.Hsra parameter. The larger the
value ofk, the better the approximation.

Heurigtic 2. Smulated annealing. Simulated annealing (cf. [13]) is a general search technique that starts
with an initial random solution (i.e. a random sample) and then tries to converge to an optimal solution by
introducing random changes. A random change is kept if (1) it improves the current solution, or (2) some
annealing condition is met.

In our implementation of simulated annealing, a random change involves choosing a random point
of Q and replacing it with a random point frorR \ Q. The annealing criterion is the following:
During the ith round of annealing, we replace the solutiohby the solutionQ’ with probability
exXp((A(Q, P) — A(Q’, P))/T;). Here,T; is a temperature parameter whose valu&;is- (k —i)/k,
wherek is the total number of rounds the algorithm runs for.

Heuristic 3. Svapping. We first obtain an approximatio@® by taking a random sample of size, and
then try to improve it as follows. We compute a rangg with the largest positive error and a ranggy
with the largest negative error. We remove a random poir@ inr,eqg from Q, and add a random point
in (P\ Q) Nrposto Q.

Initial experimental results with the swapping heuristic were encouraging. However, this heuristic
is highly dependent on having a good starting configuration. When this doesn’t happen, the algorithm
can get stuck in a local minimum, after which no further improvement can be made. To overcome this
problem, we implemented two variants of the swapping heuristic.

Heuristic 4. Svapping with restart. This is a version of the swapping heuristic that starts with a new
random sample@ if 10 consecutive rounds of swapping fail to improve the solution.
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Heuristic 5. Svapping with 10% perturbation. This is a version of the swapper that, after 10 consecutive
rounds of swapping fail to improve the solution, remoVyes/ 10] points of O at random and replaces
them with[m/10] points of P \ Q selected at random.

3.4. Experimental results

Fig. 1 shows the progress of iterative algorithms for 1000 rounds onfaskt = 5000 points chosen
uniformly at random from the unit square. The algorithms are attempting to find a good approxifation
of sizem = 100. Thex-axis of the figure represents time (humber of rounds) ang-ives represents the
approximation error. Note that, although the figure looks as if the various heuristics began with different
starting configurations, this is caused by a lack of resolution, and is not actually the case. All experiments
began with the same initial configuration.

The worst of the heuristics is clearly simulated annealing (Heuristic 2), which makes some quick
improvements in the first few rounds and then gets trapped in a local minimum. Part of the problem with
simulated annealing is that it completely ignores the problem and tries to make progress by introducing
small random changes. It is very easy for the simulated annealing strategy to get stuck in a local minimum
and never improve. Although it may be possible to improve the performance of the simulated annealing
heuristic by tweaking the parameters, we were unable to do significantly better than the results presentec
here.
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Fig. 4. The progress of Heuristics 1-5 over 1000 rounds.
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The second-worst heuristic is the swapping heuristic (Heuristic 3). The swapper performs better than
simulated annealing because it introduces a carefully-chosen change that is more likely to improve the
current solution. However, it still only changes the current solution by one point and therefore quickly
gets caught in a local minimum.

The two best heuristics are modifications of the swapping heuristic. Swapping with restart (Heuristic 4)
and swapping with 10% perturbation (Heuristic 5) both achieve comparable results after 1000 rounds.
However, swapping with 10% perturbation converges more quickly to a good solution. This seems to be
due to the fact that, when it gets stuck in a local minimum, it restarts with a new solution that is still much
better than a random sample.

Choosing the best ok random samples (Heuristic 1), a technique that is often mentioned in
the literature, does not perform as well as the modified swapping heuristics. It reliably finds good
approximations, but these are not quite as good as those found by the two modified swapping heuristics.

3.5. Clustering algorithms

We also considered algorithms that can be loosely termed “clustering” algorithms. These are
algorithms that (implicitly or explicitly) partition the point set into m groups and then select a
representative point or points from each group.

Heuristic 6. Rows and columns. This heuristic produces a subsggtwith m = r x s points by first sorting
the points byx-coordinate and grouping the points int@olumns, i.e., vertical strips, each containing
n/r points. Next, the points within each column are sorted and grouped #ata /r rows, i.e. horizontal
strips, of sizen/m. Thus we obtain a partition of the plane into rectangular cells each containing
exactlyn/m points.

For our setQ, we take a sample from each cell. Several strategies for choosing the best sample in each
square were implemented. The one that worked best was to=tr$0 random samples and choose the
sample with smallest error constrained to that cell.

Note that, in these experiments, the valuenofs given, so we must factor into » ands. We did
this by takingr = [/m| and then taking to be the largest integer so thatk s < m. This gives us an
approximation that uses at mostpoints. When computing the quality of the resulting approximation
we adjust the dot valu& accordingly.

Heuristic 7. Quadtrees. This heuristic is based on the well-known quadtree data structure. hesome
axis-aligned square containing the point #etWe recursively partitiors into squares as follows. I§
contains fewer than#points of P then we do nothing. Otherwise, we partitidrninto 4 equal squares
and recursively partition each square.

Once this partition is computed, we choose a sample from each square of the partition. If a square
containsk points of P then we choose a sample of siZe/§ + 1/2| from that particular square. The
sampling strategy is the same as used for Heuristic 6. As before, this does not always yield a solution
with exactlyn/§ points so, when computing the error we adjust the dot vélaecordingly.

Heuristic 8. Dabkin—Tal. The algorithm proposed by Dobkin and Tal [10] produces an approximation
that is not a subset a?, by repeatedly finding closest pairs and replacing them by their midpoint.
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Dobkin and Tal were originally interested in the dual setting of our problem: given a set of lines, find
a smaller set of lines whose arrangement approximates the original arrangement. They solve the problerr
using dualization, so they arrive exactly at our problem.

Although their approach seems more suited to minimizing the Hausdorff distance beRvaed
QO—indeed, they prove bounds on the minimal Hausdorff distance they achieve—they also use their
algorithm in an application that is closely related to ours. Namely, they want to approximate the area
half-plane discrepancy [5] of with the discrepancy of). (The area half-plane discrepancy of a set
of points in the unit square is defined as the maximum, over all half-planes, of the absolute difference
between the fraction of points in the half-plane and the fraction of the unit square covered by the half-
plane.) Now if we considered half-planes as regions, then the approximation expowih respect to
P is an upper bound on the difference between the area discrepandteanafQ. Dobkin and Tal claim
that for some distributions aP the area discrepancy @& can be estimated better by a ggicomputed

with their algorithm than by a random sample. For this reason we also consider their algorithm in our
experiments.

3.6. Experimental results

Table 2 shows the results for Heuristic 5, the best of the iterative heuristics, after 50 rounds and all the
clustering algorithms. The tests were performed on 6 data sets of siZ#00 and one real world data
set. The data sets U5K{a,b,c} each consist of 5000 points uniformly distributed in the unit square. The
data sets C5K{a,b,c} each consist of 5000 points drawn from the “city” distribution described earlier.
The US1 data set is the data set shown in Fig. 1 and consists of 82516 points. For each data set, we use
the algorithms to compute approximations with dot valties100, 50, 20 and 10.

These results suggest that the “rows and columns” heuristic seems to be the best choice of the
clustering heuristics. For large valuesfit is competitive with the quadtree heuristic and much better

Table 2
Experimental results for clustering algorithms
Heuristic 8 usi1 USKa U5Kb U5Kc C5Ka C5Kb C5Kc
100 3206 570 674 655 570 730 680
Heuristic 5 50 3066 556 507 427 515 407 614
(Swap w. 10%) 20 4396 359 268 310 364 368 343
10 789 309 236 243 227 231 223
100 1924 650 682 657 491 487 524
Heuristic 6 50 1036 705 359 748 405 410 367
(Rows & Caols.) 20 885 315 256 294 188 273 203
10 780 153 195 156 119 128 132
100 2289 582 604 739 520 400 524
Heuristic 7 50 1612 500 508 356 421 321 353
(Quadtree) 20 4285 261 230 276 225 217 207
10 6728 439 467 398 398 396 343
100 - 824 742 691 1445 1806 1335
Heuristic 8 50 - 575 519 704 1479 1752 1133
(Dobkin—-Tal) 20 - 414 392 399 1378 1631 1028

10 - 280 302 309 1302 1586 1011
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than Dobkin—Tal. For small values éf the “rows and columns” heuristic is definitely the method of
choice and outperforms the quadtree heuristic by a significant margin. This seems to be because the
guadtree heuristic has trouble controlling the number of points in each cell, while the “rows and columns”
heuristic has exactly points per cell.

Surprisingly, the simple “rows and columns” heuristic also seems to perform better than Heuristic 5,
even though we allow Heuristic 5 to run for 50 rounds. This makes the “rows and columns” heuristic a
very fast method of obtaining good quality solutions. In terms of computation time, the entire running
time of the rows and columns heuristic is roughly the same as one or two rounds of an iterative heuristic.

Finally, the Dobkin—Tal heuristic does reasonably well for uniformly distributed points, but does very
poorly with clustered point sets. This seems to be an artifact of the averaging effect obtained by repeatedly
taking the midpoints of the pairs of points.

4. Concluding remarks

In some applications, it may be desirable to give outlier® im bigger chance to be presentgn This
can be done by giving these points a higher weight. For instance, we can let the weight of each point
be dependent on the number of points within a fixed distance from that point. By giving more and more
weight to isolated points, the approximation is likely to become more and more uniform. The definition
of approximation error and our algorithms can easily be extended to the weighted case, and it would be
interesting to experiment with this.

In our application it seems most reasonable to look at the approximation error for families of squares
or discs. We studied the case of squares, but it would be interesting to see if our algorithm to compute the
approximation error in this case can be improved. We did not study discs at all in this paper. It is easy to
compute the approximation error for discs in (close to) cubic time, but it remains open whether this can
be done faster.

Finally, we suspect that computing the best approximation of a given size with respect to a given set
P is NP-hard, but we have not been able to prove this.
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