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SUMMARY

Clathrin/AP1- and clathrin/AP3-coated vesicular
carriers originate from endosomes and the trans-
Golgi network. Here, we report the real-time visuali-
zation of these structures in living cells reliably
tracked by rapid, three-dimensional imaging with
the use of a spinning-disk confocal microscope. We
imaged relatively sparse, diffraction-limited, fluores-
cent objects containing chimeric fluorescent protein
(clathrin light chain, s adaptor subunits, or dyna-
min2) with a spatial precision of up to �30 nm and
a temporal resolution of �1 s. The dynamic charac-
teristics of the intracellular clathrin/AP1 and cla-
thrin/AP3 carriers are similar to those of endocytic
clathrin/AP2 pits and vesicles; the clathrin/AP1 coats
are, on average, slightly shorter-lived than their AP2
and AP3 counterparts. We confirmed that although
dynamin2 is recruited as a burst to clathrin/AP2 pits
immediately before their budding from the plasma
membrane, we found no evidence supporting a
similar association of dynamin2 with clathrin/AP1 or
clathrin/AP3 carriers at any stage during their life-
time. We found no effects of chemical inhibitors of
dynamin function or the K44A dominant-negative
mutant of dynamin on AP1 and AP3 dynamics. This
observation suggests that an alternative budding
mechanism, yet to be discovered, is responsible for
the scission step of clathrin/AP1 and clathrin/AP3
carriers.
INTRODUCTION

Clathrin-based carriers are responsible for a large fraction of the

endocytic traffic between the plasma membrane and endo-

somes, for traffic between endosomes, and for traffic between

endosomes and the trans-Golgi network (TGN). Protein compo-
Cell Re
nents of the clathrin coat selectively recruit cargo into the

carrier. Assembly of the coat drives membrane engulfment

into a clathrin-coated pit, which pinches off as a coated vesicle.

Clathrin-coated pits and vesicles are diffraction-limited objects

with typical diameters ranging between 75 and 130 nm. The

smaller �75 nm coats contain at least 36 copies of clathrin, a

heterohexameric protein of three heavy chains and three light

chains, and about half that number of copies of the heterotetra-

meric AP adaptor complex (Kirchhausen, 2000); the larger coats,

which are more abundant, contain proportionally more clathrin

and APs. Intracellular clathrin-coated vesicles contain AP1 or

AP3 adaptors; endocytic clathrin-coated vesicles contain AP2

(Kirchhausen, 1999; Robinson and Bonifacino, 2001). The

assembly of the endocytic clathrin-based carriers can be fol-

lowed by expression of clathrin light chains or the s2 subunit

of AP2 fused with enhanced green fluorescent protein (EGFP)

or related fluorescent proteins; suitably designed chimeric

proteins do not affect the functional properties of the labeled

carriers (Ehrlich et al., 2004). Thus, the dynamics of AP2-contain-

ing clathrin-coated structures at the surface of a cell attached to

a glass coverslip have been studied by two-dimensional (2D)

time-lapse imaging, using confocal or total internal reflection

fluorescence microscopy (Cocucci et al., 2012; Ehrlich et al.,

2004; Merrifield et al., 2005; Mettlen et al., 2009; Saffarian

et al., 2009; Taylor et al., 2011; Yarar et al., 2005). Results from

these experiments have shown that clathrin and AP2 adaptors

are recruited continuously during coat formation and that the

average lifetime of endocytic coats is 40–60 s.

Efforts to follow AP1-containing intracellular carriers have

been less successful (Waguri et al., 2003), however, because

the rapid three-dimensional (3D) movement of endosomes has

not permitted one to distinguish initiation of assembly or dissoci-

ation of their coat from passage into or out of the imaging plane.

No data are available for AP3. We have circumvented these

problems by using a 3D tracking method that yields accurate

results for relatively weak fluorescent objects that vary in position

and intensity from image to image. The approach, which is

simple to apply, uses data from 3D time series recorded with

a spinning-disk confocal microscope from cells stably express-

ing s1-EGFP or s3-EGFP. It reveals previously undetected
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properties of AP1- and AP3-containing carriers in mammalian

cells. We find conclusive evidence for colocalization of AP-3

and clathrin in intracellular carriers.We also find that intracellular,

AP-1-containing clathrin carriers are on average slightly shorter-

lived than intracellular clathrin/AP3 and endocytic clathrin/AP2

carriers. The large GTPase, dynamin, drives the final pinching-

off of a clathrin-coatedmembrane vesicle froma fully constricted

coated pit (Hinshaw, 2000; Macia et al., 2006; Mettlen et al.,

2009; Praefcke and McMahon, 2004; Sever et al., 2000; Urrutia

et al., 1997). At the plasma membrane, this step requires acute

recruitment of dynamin immediately following completion of cla-

thrin/AP2 coat assembly (Ehrlich et al., 2004; Merrifield et al.,

2002; Taylor et al., 2011), detected as a burst of fluorescence

from dynamin2-EGFP just after the fluorescence from tagged

clathrin has reached its maximum (Ehrlich et al., 2004; Lee

et al., 2006; Massol et al., 2006; Taylor et al., 2011). Dynamin

activity is also necessary at an earlier stage in endocytic-coated

pit assembly: blocking dynamin with the small-molecule inhib-

itor, Dynasore (Kirchhausen et al., 2008; Macia et al., 2006),

arrests clathrin incorporation before the coat has fully closed,

but generally after at least half the clathrin has already accumu-

lated (Macia et al., 2006), a result confirmed by measurements

of the effect of overexpressedmutant dynamin on thematuration

of endocytic clathrin-coated pits (Loerke et al., 2009). This

assembly-arrest function appears to correspond to a steady

recruitment of dynamin, at a level generally well below that of

the fission-inducing burst, during the growth of an endocytic

clathrin coat (Macia et al., 2006; Taylor et al., 2011).

We have examined the dynamics of dynamin recruitment and

the effects of dynamin inhibition on the AP1- and AP3-containing

clathrin carriers we can now detect. We find no evidence of

a detectable burst of dynamin2-EGFP associated with clathrin/

AP1 or clathrin/AP3 carriers at any point in their assembly-disas-

sembly cycle, andwe confirm this result by immunofluorescence

imaging of endogenous dynamin2. In the same cells, dynamin2-

EGFP exhibits the characteristic recruitment burst at clathrin/

AP2-coated pits at the plasma membrane. Moreover, we find no

evidence that treating cells with dynasore (3-hydroxy-naphtha-

lene-2-carboxylic acid (3,4-dihydroxy-benzylidene)-hydrazide)

or with its more active hydroxylated analog, dynasore-OH

(3-hydroxy-N0-[(2,4,5-trihydroxyphenyl)methylidene]naphthalene-

2-carbohydrazide) or dyngo-4a (Harper et al., 2011; Nguyen

et al., 2012), prevents release of AP1- or AP3-containing carriers

from the their donormembranes. These results are in linewith the

absence of effects from overexpressed dominant negative

mutant dynamin K44A on the maturation of AP1- and AP3-con-

taining carriers. These observations, which are also consistent

with earlier work that demonstrated lack of functional interfer-

ence with traffic along the secretory pathway by overexpression

of dominant negative mutant dynamins, suggest that an alterna-

tive budding mechanism, yet to be discovered, is responsible for

the scission step of clathrin/AP1 and clathrin/AP3 carriers.

RESULTS AND DISCUSSION

3D Tracking
We implemented a method for tracking the 3D position of

a diffraction limited object with up to �30 nm precision and for
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determining the fluorescence intensity associated with its 3D

point-spread function. The approach is suitable for 3D time

series recorded from living cells with a spinning-disk confocal

microscope. It yields accurate results for relatively weak fluores-

cent objects that might vary in intensity from image to image.

Our tracking routine accepts data as a time series of z stacks,

each plane in the stack being a recorded optical section. The

required z spacing is approximately one-fourth to one-third of

the full height of the point spread function (PSF); in the examples

described here, Dz �250–450 nm. We detect single fluorescent

spots in the maximum projection image of a stack by a three-

step procedure: 2D Gaussian and Laplacian filtering, followed

by a local maximum-finding algorithm. The x and y positions of

the spots are then obtained in a window of 7 3 7 pixels (94 nm

per pixel) by a previously described 2DGaussian fitting algorithm

(Yildiz et al., 2003). For each spot, the 73 7 pixel window is then

extended to each plane in the z stack, and integrated intensities

for each plane are calculated by summing the pixel values

and subtracting the local background. The background on

each plane was determined in an 11 3 11 pixel window around

each spot, by taking the average of the lowest-intensity pixel

in each row. This average of minima ensures that no signal

from a neighboring spot contributes to the calculation. The

centroid of the intensity distribution in z was calculated as

Cz =
Pn

i= 1ziIi=
Pn

i= 1Ii where n is the number of planes in the z

stack, zi is the coordinate of a plane on the z axis, and Ii is the

integrated signal of that plane. The integrated intensity of the

plane with the minimum signal is the threshold subtracted from

all planes.

To establish the feasibility of the localization method just

described, we imaged AP1 adaptors tagged by stable expres-

sion in BSC1 cells of the small AP1 subunit, s1, fused to EGFP

(Figure 1A), rather than beads or other idealized objects. We first

tested axial localization accuracy in fixed cells for AP1-carriers

(Figure 1B) containing 20–40 EGFP fluorophores per spot (Fig-

ure S1) imaged in a spinning disk confocal microscope equipped

with a piezo-driven stage. For a particular position of the stage,

we recorded a set of ten independent z stacks (each stack con-

taining seven optical sections at a spacing of 350 nm; Figure 1B).

We then displaced the stage (and hence the cell) by 100 nm and

recorded a second set of z stacks. We repeated the displace-

ment three more times, yielding ten seven-plane z stacks for

each of five stage positions. We determined, by the method out-

lined above, the z coordinate for the object in each of the ten

stacks at different stage positions. The 100 nm steps taken by

the stage were resolved with an estimated error of �30 nm (Fig-

ure 1B) despite the relatively coarse sampling (the interval

between optical sections was 350 nm and the total height of

the point-spread function was nearly 1 mm); similar values were

obtained using data from four instead of seven optical sections

(red and green tracings, Figure 1B). Because the xy translations

of our stage were not accurate enough to calibrate the precision

by direct translation, we used instead the SD of the centroid

determination in x and y, which were <10 nm, to set an accuracy

of �10 nm.

We then tested the applicability of the 3D approach in living

cells by following the dynamics of an AP1-containing carrier

in BSC1 cells. We recorded z stacks of five optical planes
hors



Figure 1. 3D Fluorescence Microscopy Visualization Strategy and Tracking

(A) Schematic representation of the 3D visualization strategy used to image the intracellular region of a cell.

(B) Determination of the axial accuracy of the 3D tracking procedure. The accuracy along the z axis was determined by imaging a single intracellular AP1

diffraction limited fluorescent spot from a chemically fixed BSC1 cell stably expressing s1-EGFP. The spot was visualized by positioning the sample to different z

positions spaced 100 nm apart, and then acquiring ten consecutive frames each composed of a z stack made of seven sequential optical sections separated by

350 nm obtained with 50 ms exposures. The same position of the fluorescence spot along the z axis was obtained by calculating the center of fluorescence

intensity from four (green) or seven (red) sequential planes. Numeric values indicate step size measurement and estimated error using seven planes (see

Experimental Procedures).

(C) Real-time 3D tracking of the relative x, y, and z displacements of a single diffraction limited AP1 spot visualized in a live BSC1 cell stably expressing s1-EGFP.

Data set obtained from a 60 s time series made of z stacks obtained every 1 s, each composed of five sequential images acquired with 25 ms exposures and

spaced 350 nm apart.

(D) Expanded region of the z trace highlighted in (C). The surface representations correspond to the 2D fluorescence intensities of the spot from each of the

contiguous planes acquired at 38 s and 52 s.

(E) Real-time tracking of a single fluorescent object containing AP1 (green arrow head) and clathrin (red arrow head) from a BSC1 cell stably expressing s1-EGFP

and transiently expressing clathrin LCa-Tomato. The images were simultaneously obtained on both fluorescent emission channels using a Dual View device

placed in front of the camera and represent maximum intensity projections from z stacks obtained every 1.5 s each consisting of four planes acquired with 20 ms

exposures and spaced 350 nm.

(F) Time dependence of the fluorescence intensity and displacements along the x, y, and z axis for the spot tracked in (E).

See also Figures S1, S2, and S4.
separated by 350 nm (after correction by the axial distortion);

the time interval between stacks was 1 s; each exposure

was for 25 ms. The x and y positions (Figure 1C) of a diffrac-

tion-limited, AP1-containing object followed for 60 s were

determined at each time point from the center of a Gaussian fit

to the maximum projected image of the stack. The correspond-

ing z position, equivalent to the center of the intensity profile

along the z axis, was established by centroid analysis of the

integrated intensity of the spot determined in each plane (Figures

1C and 1D).

3D Tracking of AP1 and AP3 Clathrin-Coated Carriers
We proceeded to image a large number of intracellular AP1-

or AP3-containing carriers (tagged by stable expression of

s1-EGFP or s3-EGFP, respectively) in a volume defined by a

region �1–2 mm thick between the dorsal and ventral plasma
Cell Re
membrane at the cell periphery or between the ventral surface

and the nucleus immediately above it. By using this spatial

constraint, we ensured that the carriers were completely tracked

during the assembly and disassembly cycle of the coat. Acquisi-

tion of interpretable 3D tracings from the perinuclear region

containing the TGN was not feasible, however, because the

AP1 or AP3 fluorescent spots were so dense that single carriers

were not resolvable. This imaging approach overcomes a signif-

icant limitation of 2D visualization with wide-field or single-plane

laser confocal microscopy, in which movement of the carriers

along the z axis leads to the possibility that appearance or disap-

pearance of the fluorescence signal might be explained by

entering or departing the imaging volume, rather than by initia-

tion or dissociation of the coat.

We confirmed that all fluorescently tagged AP1- and AP3-

containing structures werewithin the endosomal and perinuclear
ports 2, 1111–1119, November 29, 2012 ª2012 The Authors 1113



Figure 2. 3D Live Cell Imaging of Intracel-

lular Clathrin Carriers in Living Cells

(A) Real-time tracking of a single fluorescent

object containing AP3 and clathrin from a BSC1

cell stably expressing s3-EGFP and transiently

expressing clathrin LCa-Tomato. The imageswere

simultaneously obtained on both fluorescent

emission channels using a Dual View device

placed in front of the camera and represent

maximum intensity projections from z stacks ob-

tained every 1 s each consisting of four planes

acquired with 50 ms exposures and spaced

350 nm. The z stack obtained at 42 s is shown.

(B and C) Time dependence of the fluorescence

intensity (B) and displacements along the x, y, and

z axis (C) for the AP3/clathrin spot tracked in (A).

(D) Time dependence of the average fluorescence

intensity of sets of AP1-, AP2-, and AP3-contain-

ing spots obtained from different 3D time series.

Each trace was normalized to the maximal fluo-

rescence intensities and average lifetimes of the

corresponding set; error bars represent SE of the

mean fluorescence intensity from data acquired

from cells stably expressing s1-EGFP (n = 187, 21

cells), s2-EGFP (n = 455, 4 cells), and s3-EGFP

(n = 184, 25 cells).

(E) Lifetimes of single fluorescent spots calculated

from individual 3D time series of AP1-, AP2-, and

AP3-containing carriers in the absence (AP1: 45 ±

16 s, n = 125, 4 cells; AP2: 53 ± 18 s, n = 113, 2

cells; AP3: 53 ± 15 s, n = 110, 5 cells) or presence

of 160 mMDynasore (AP1: 53 ± 23 s, n = 30, 3 cells;

AP2: n = 39, 3 cells) or 20 mM Dynasore-OH (AP1:

46 ± 20 s, n = 27, 3 cells; AP2: n = 32, 3 cells; AP3:

58 ± 17 s, n = 20, 2 cells). Lifetimes were also

calculated for cells expressingWTdynamin2 (AP1:

43 ± 14 s, n = 35, 3 cells; AP2: 53 ± 17 s, n = 52, 4

cells; AP3: 53 ± 15 s, n = 60, 5 cells) or dominant

negative K44A dynamin2 (AP1: 41 ± 17 s, n = 35, 3

cells; AP2: n = 43, 4 cells; AP3: 52 ± 18 s, n = 56, 7

cells). Data also shows average ± SD and p values

used to determine the significance of the statistical

differences calculated using the Student’s t test.

(F) Scatter plot as a function of lifetime of the

maximum florescence signal of single fluorescent

spots calculated from individual 3D time series of

AP1- (n = 125, 4 cells), AP2- (n = 113, 2 cells), and

AP3-containing carriers (n = 110, 5 cells). The

fluorescence intensities were normalized to the

largest value of each set.

(G) Scatter plot corresponding to the maximum fluorescence intensity of clathrin-containing spots as a function of their relative z positions calculated from

individual 3D time series. Spots located within 200 nm of the plasma membrane (orange) corresponded to endocytic AP2-containing carriers with maximum

fluorescence intensities of 113 ± 41 (n = 336); the remaining spots (crimson) identified in the same cell corresponded to intracellular AP1- and AP3-containing

carriers with maximum fluorescence intensity of 100 ± 38 (n = 415).

See also Figures S2, S3, and S4.
regions, but not at the plasma membrane of the stably express-

ing BSC1 cells (Figure S2), in agreement with previous immuno-

fluorescence localization studies of endogenous AP1 and AP3 of

other cell types (Dell’Angelica et al., 1997; Seaman et al., 1996).

In addition we confirmed that all AP1 spots colocalized with

clathrin (one representative example shown in Figures 1E and

1F) and found that AP3 also colocalized with clathrin tagged by

transient expression of its light chain LCa fused to tomato

(Figures 2A–2C and S3). We also established by immunofluores-
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cence that stable expression of s3-EGFP did not affect the

extent of colocalization between objects containing AP3 and

clathrin identified with a newly available anti-d adaptin antibody

(Peden et al., 2004) and an antibody specific for clathrin light

chain (Figures S4A and S4B). The nearly complete colocalization

of all AP3 spots with clathrin resolves a long-standing contro-

versy concerning the extent of their association. Limitations

inherent in the binding properties of different antibodies for

AP3 or purification efficiency of AP3-containing coated vesicles
hors



led to the previous uncertainties (Borner et al., 2012; Dell’Angel-

ica et al., 1997; Robinson and Bonifacino, 2001).

We then measured the lifetimes of intracellular AP1- and

AP3-containing carriers and compared them with the life-

times of endocytic AP2-containing carriers (Figures 2D–2F).

The average ±SD values for AP1-, AP2-, and AP3-containing

carriers were 45 ± 16 s, 53 ± 18 s, and 53 ± 15 s, respectively

(Figure 2E).

Most clathrin- and AP2-containing carriers are within 200 nm

of the plasma membrane (Saffarian and Kirchhausen, 2008)

(Figure 2G), whereas the AP1- and AP3-containing carriers are

further displaced toward the cell interior (Figures 1A and 2G).

By applying this simple geometric categorization, we could

differentiate endocytic from intracellular clathrin events occur-

ring within the same cell (Figure 2G) and hence control for

variation due to expression level or extent of replacement of

endogenous light chains with ectopically expressed LCa-

EGFP. We then compared the final sizes of the clathrin coats

associated with AP1 and AP3 intracellular carriers with those

of coats associated with AP2 (Figure 2F) using the maximum

fluorescence intensity of the clathrin signal as a measure of

size (Ehrlich et al., 2004; Saffarian et al., 2009). Both sets of

carriers had similar distributions of maximum clathrin fluores-

cence intensities, indicating a similar range of sizes for AP1-,

AP2-, and AP3-containing carriers. This conclusion agrees with

previous measurements from electron microscopy of fixed

samples (Kirchhausen, 2000). Assuming that the molar ratio of

clathrin to AP2 or to AP1 in the coated vesicles of these cells is

the same as in brain (�0.7:1) (Blondeau et al., 2004), we estimate

that like AP2-coated vesicles, a typical clathrin intracellular

carrier contains 30–80 AP1 or AP3 adaptors. This range is

consistent with the maximum number of s1-EGFP or s3-EGFP

molecules associated with a given fluorescent spot (Figure S1)

after a correction by a factor of 2 if one assumes an �50%

replacement of the endogenous s1 or s3 subunit with the ectop-

ically stably expressed subunits, a replacement value deter-

mined for s2 in AP-2 in BSC1 cells stably expressing s2-EGFP

(Cocucci et al., 2012). A biochemical confirmation of this analysis

bywestern blot analysis is currently not possible because appro-

priate antibodies specific for s1 or s3 are not available.

Absence of Detectable Bursts of Dynamin
Recruited to Intracellular Clathrin/AP1- and
Clathrin/AP3-Containing Carriers
Mammalian genomes encode three dynamins. Dynamin1 is

brain-specific, dynamin2 is ubiquitously expressed, and dyna-

min3 is found in brain, lung, and testis (Urrutia et al., 1997). It is

well established that dynamin mediates budding of endocytic

AP2/clathrin-coated vesicles from the plasma membrane

(Hinshaw, 2000; Macia et al., 2006; Mettlen et al., 2009; Praefcke

and McMahon, 2004; Sever et al., 2000). In this process,

dynamin drives the fission of the membrane neck connecting

the invaginated pit to the plasma membrane, in a process that

requires acute recruitment of dynamin (Ehrlich et al., 2004; Taylor

et al., 2011) around the neck immediately after completion of the

clathrin/AP2 coat and prior to its uncoating. Complete assembly

of endocytic clathrin/AP2 pits also depends on the steady

recruitment of smaller amounts of dynamin during growth of
Cell Re
the coat, particularly during later stages of coat formation

(Macia et al., 2006).

Although these properties of dynamin have been thoroughly

characterized for endocyticAP2/clathrin-coated pits, the target-

ing of dynamin to intracellular AP1- and AP3/clathrin-containing

carriers and its possible role in maturation of these carriers

remains controversial. Some immunolocalization studies

showed targeting of endogenous dynamin to the perinuclear

region (Jones et al., 1998; Maier et al., 1996; van Dam and Stoor-

vogel, 2002), whereas other immunofluorescence studies failed

to show any significant localization of endogenous dynamin

with clathrin, AP1, or TGN markers in the endosome-enriched

perinuclear region (Altschuler et al., 1998; Kasai et al., 1999;

Yoon et al., 1998). Only when dynamin2 was overexpressed

could it consistently be found in perinuclear regions, by immuno-

fluorescence, by immunoelectron microscopy visualization (Cao

et al., 1998; Damke et al., 1994; Jones et al., 1998; Liu et al.,

2011; Nicoziani et al., 2000), or by live cell imaging (data not

shown). Overexpression of dominant negative forms of dynamin

have also been used to test its effects of the intracellular traffic in

intact cells; some groups reported no detectable effects (Altsch-

uler et al., 1998; Banting et al., 1998; Damke et al., 1994; Kasai

et al., 1999) whereas others reported inhibition (Bonazzi et al.,

2005; Cao et al., 2000, 2005; Jones et al., 1998; Lauvrak et al.,

2004; Nicoziani et al., 2000; van Dam and Stoorvogel, 2002). A

more recent report showed that simultaneous elimination of

dynamin1 and dynamin2 by gene knockout or by siRNA deple-

tion had no effect on the perinuclear intracellular distribution of

AP1, but the effects on the assembly dynamics of clathrin/AP1

carriers were not determined (Ferguson et al., 2009).

To resolve the uncertainties arising from these various obser-

vations, we used immunofluorescence to establish the extent of

association of endogenous dynamin2, visualized in BSC1 cells

with an antibody specific for dynamin2, with AP1, AP2, or AP3

fluorescently labeled by stable expression of s1, s2, or s3-

EGFP (Figure 3). We confirmed that many AP2-containing

structures contained dynamin2 (24 ± 4%; 1,915 AP2 spots,

n = 5 cells), reflecting that the association of dynamin2 with

endocytic clathrin/AP2 pits, at low levels during coat assembly,

and as an acute burst immediately before coated pit budding

(Ehrlich et al., 2004; Macia et al., 2006; Taylor et al., 2011). In

contrast, only a very small fraction of the AP1 or AP3 fluorescent

spots (4 ± 1% and 5 ± 2%; n = 1,639 AP1 spots, n = 5 cells and

871 AP3 spots, n = 4 cells, respectively) showed detectable

presence of dynamin2.

It is possible that steric hindrance of the dynamin epitope

might explain the low level of association of the dynamin anti-

body with clathrin/AP1- or clathrin/AP3-containing carriers. We

ruled out this by live cell imaging experiments carried out with

human SK-MEL-2 cells expressing dynamin2 alone (hDNM2EN)

or clathrin light chain A and dynamin2 (hCLTAEN/DNM2EN)

(Doyon et al., 2011) (Figure 4). We took advantage that in

these recently developed cell lines, there is full replacement of

the endogenous untagged dynamin2 with a dynamin2-EGFP

chimera, constitutively expressed at the same level as the native

protein (Doyon et al., 2011). Expression of this dynamin2-EGFP

has no detectable functional consequences for the cells. The

hCLTAEN/DNM2EN cells also expressed clathrin light chain
ports 2, 1111–1119, November 29, 2012 ª2012 The Authors 1115



Figure 3. Extent of Colocalization of AP1,

AP2, or AP3 with Dynamin2

Immunofluorescence of dynamin2 together with

EGFP fluorescence imaging of AP1-, AP2-, and

AP3-containing carriers in BSC1 cells stably ex-

pressing s1-EGFP, s2-EGFP, or s3-EGFP visu-

alized in 3D. The fixed samples were stained with

an antibody specific for dynamin2 and imaged in

3D using optical sections spaced 0.1 mm. The

views show maximum intensity z projections of

images restored by constrained iterative decon-

volution. The green circles (bottom panels) show

instances of AP-carriers containing dynamin2.

Scale bar represents 10 mm.
LCa-cherry, which replaced untagged endogenous LCa. We

used live-cell, 3D imaging to compare in the same hCLTAEN/

DNM2EN cells the recruitment of dynamin2 to the plasma

membrane (e.g., to endocytic AP2/clathrin-containing struc-

tures) with the recruitment of dynamin2 to internal membranes

including all intracellular, clathrin-containing structures (e.g.,

those containing AP1 or AP3). We collected time series in a

volume �1.8 mm thick, starting at the ventral plasma membrane

and extending through the intracellular region to the dorsal

(Figures 4A–4C). We confirmed that the 3D imaging approach

correctly monitored the behavior of dynamin2-EGFP by demon-

strating that most of the dynamin2-EGFP fluorescence diffrac-

tion-limited spots at the plasma membrane appeared as

transient events with rapid kinetics. As expected, the majority

of these spots (�80%) colocalized with LCa-cherry, displaying

the characteristic burst of dynamin recruitment toward the end

of the clathrin growth phase and immediately before the clathrin

uncoating step (Figure 4C). Similar dynamin2-EGFP kinetics

were observed at the plasma membrane of hDNM2EN cells, in

which dynamin2-EGFP is the only protein that has replaced its

wild-type counterpart, indicating that the dynamin behavior is

not influenced by expression of clathrin light chain LCa-cherry

(not shown). In contrast to dynamin activity at the plasma

membrane, we detected very few dynamin2-EGFP fluorescent

spots in the intracellular region of the same two types of cells

(Figures 4B and 4D); the few detected spots failed to display

the rapid formation and disappearance that would report an

acute recruitment to intracellular sites. These live cell-imaging

results show that the budding mechanism of intracellular cla-

thrin/AP1- and clathrin/AP3-containing carriers does not involve

a process with dynamics that resemble the acute recruitment of

dynamin2 to budding endocytic clathrin/AP2 carriers at the

plasma membrane.

Our failure to detect dynamin associated with AP1- or AP3-

containing carriers indicates that no more than a limited amount

of dynamin is likely to associate with these structures. It does not
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rule out a potential parallel for the activity

of dynamin that is required to avoid

mid- to late-stage assembly arrest of

endocytic-coated vesicles (Macia et al.,

2006), because the associated accumu-

lation could have been below the

threshold of detection in our experiments.
To test this possibility, we examined the effects of inhibiting dy-

namin on AP1 and AP3 dynamics, and found that adding 160 mM

to cells expressing s1- or s3-EGFP had no detectable effect on

the dynamics of AP1 and AP3 (Figure 2E). Moreover, addition of

dynasore-OH, a more potent analog of dynasore, also had no

detectable effect on AP1 and AP3 dynamics (20 mM dynasore-

OH [Figure 2E] or 40 mM [not shown]). As a positive control for

the inhibitory endocytic effect of dynasore or dynasore-OH, we

established that transferrin uptake in the same cells was

completely blocked (not shown), as were AP2 dynamics (Fig-

ure 2E). These experiments were complemented by examining

AP dynamics in BSC1 cells following transient expression of

WT dynamin2 or the dynamin2 mutant K44A 16 hr postviral

transduction (Altschuler et al., 1998). Under these conditions,

expression of the dynamin2 K44A mutant but not WT dynamin2

fully inhibited AP2 dynamics and strongly blocked receptor-

mediated endocytosis of transferrin in every cell observed in

the field (Figure 2E and data not shown). We found no evidence,

however, of inhibition of AP1 and AP3 dynamics (Figure 2E) even

though the uptake of transferrin was also blocked in cells

expressing s1- or s3-EGFP (data not shown). These results

are consistent with electron microscopy data showing accumu-

lation of incomplete coated structures at the plasma membrane

but not in the perinuclear region (Damke et al., 1994) and are in

agreement with absence of defects in clathrin-dependent intra-

cellular traffic in cells overexpressing dominant negative forms

of dynamin (Altschuler et al., 1998; Banting et al., 1998; Damke

et al., 1994; Kasai et al., 1999). These observations suggest

that dynamin is not used for the scission of AP1 and AP3 carriers

and that their budding may be different in mechanism from the

budding of AP2-containing carriers.

We have noticed that expression of WT or mutant dynamin2

driven by viral transduction or plasmid transfection decreased

the fluorescence intensity of all s-EGFP subunits associated

with APs spots, presumably a result of promoter competition.

This effect is particularly strong 24 hr posttransfection, a period



Figure 4. 3D Live Cell Imaging of Genome-Edited Cells Expressing Fluorescently Tagged Clathrin and Dynamin2

(A) Visualization strategy used to acquire the 3D time series shown at the right in (B) and (C) using SK-MEL-2 cells stably expressing clathrin light chain A and

dynamin2 (hCLTAEN/DNM2EN). Each z stack consisted of five sequential optical sections spaced by 350 nm obtained every 2 s using 30 ms exposures.

(B) Snapshot from a maximum intensity projection and corresponding kymograph obtained from the top four optical sections corresponding to the intracellular

region containing the TGN and endosomes (highlighted by the concentrated clathrin signal) showed absence of fluorescence bursts of dynamin2-EGFP. The

bright dynamin2-EGFP at the cell periphery associated with endocytic clathrin LCa-RFP-containing carrier, an example of which is highlighted by the arrowhead.

Scale bar represents 10 mm.

(C) Snapshot from the bottom optical section containing the plasma membrane and corresponding kymograph acquired from the same cell imaged in (B). It

showed numerous fluorescence bursts of dynamin2-EGFP associated with clathrin LCa-RFP prior to clathrin coat disassembly; the arrowhead highlights

a representative example.

(D) Selected optical sections obtained from a 3D live cell imaging series obtained from aSK-MEL-2 cell stably expressing dynamin2-EGFP (DNM2EN). The z stack

consisted of 25 optical sections separated by 350 nm and imaged with 100ms exposures. Bright dynamin2-EGFPwere only observed at the cell periphery. Scale

bar represents 10 mm.
required in order to block endocytosis due to the accumulation

of sufficient amounts of dynaminK44A, so that it was not

possible to detect fluorescent spots containing s1, s2, or s3-

EGFP, even though the localization of APs spots detected by

immune fluorescence microscopy was not affected (not shown).

Conclusions
We have used data from 3D time series corresponding to z

stacks recorded with a spinning-disk confocal microscope to

follow the fate of AP1- and AP3-containing intracellular carriers.

We have been able to track them from assembly to uncoating,

despite their relatively rapid motion in all three dimensions.

These structures have lifetimes and sizes (the latter as estimated

from maximum fluorescence intensity) comparable to those

of endocytic, clathrin-coated AP2/clathrin-containing carriers.

We were unable to detect participation of dynamin in AP1- and

AP3-directed clathrin carrier formation either during coat

assembly or at the vesicular pinching off steps. The molecular
Cell Re
mediators of membrane fission for these carriers remain to be

determined.

EXPERIMENTAL PROCEDURES

Reagents, Cell Culture, and Transfections

Monkey BSC1 cells stably expressing s2-EGFP (Ehrlich et al., 2004; Saffarian

and Kirchhausen, 2008), s1-EGFP (Anitei et al., 2010), or s3a-EGFP and

human SK-MEL-2 cells expressing dynamin2-EGFP (hDNM2EN) or clathrin

light chain A fused to RFP and dynamin2-EGFP (hCLTAEN/DNM2EN) in

their native genomic loci (Doyon et al., 2011) were grown in DMEM medium

containing 10% fetal calf serum, penicillin, and streptomycin. Transient

expression of 2 mg rat Tomato-LCa (Massol et al., 2006) in BSC1 cells was

carried out using Lipofectamine 2000 (Invitrogen) in Optimem (GIBCO) accord-

ing to the manufacturer’s instructions and were analyzed 24 hr after transfec-

tion. Transient expression of WT and the K44A dominant negative mutant

of dynamin2 were achieved by adenovirus transduction and cells analyzed

for AP dynamics and fluorescence transferrin uptake 16 hr postinfection

(Altschuler et al., 1998). The rabbit polyclonal anti-dynamin 2 (ab3457, Abcam,

Cambridge, MA) antibody, mouse monoclonal anti-d-adaptin antibody (Peden
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et al., 2004) (anti-delta SA4, Developmental Studies Hybridoma Bank, Iowa

City, IA), rabbit polyclonal anti-clathrin light chain antibody (kindly provided

by F. Brodsky, UCSF, San Francisco, CA), and Alexa Fluor 647 goat anti-rabbit

and Alexa Fluor 568 donkey anti-rabbit antibodies (Invitrogen, Grand Island,

NY) were used for immunofluorescence.

Immunofluorescence

Approximately 4–63 104 BSC1 cells were plated on 18mm in diameter No. 1.5

glass coverslips and allowed to grow for 24 hr at 37�C and 5% CO2 in DMEM

supplemented with 10% FCS. The cells were then washed three times with

PBS at room temperature and fixed for 10min with ice-cold 4% paraformalde-

hyde in PBS, pH 7.4, followed by three washes in PBS and two washes of

10 min each with 0.1 M glycine (Figure 2) or 50 mM ammonium chloride (Fig-

ure S4), and finally rinsedwith PBS supplementedwith 1%BSA. Cell were then

incubated at room temperature for 1 hr with the antibody specific for dynamin 2

dissolved in PBS containing 1%BSA and 0.1% TX-100 (Figure 2) or for clathrin

and d3-adaptin dissolved in PBS containing 5% BSA and 0.1% TX-100 (Fig-

ure S4). The cells were washed five times with PBS and 1% or 5% BSA then

incubated for 45 min at room temperature with secondary antibodies in PBS

and 1% or 5% BSA. After several washes in PBS, the samples were mounted

and imaged in 90% glycerol in PBS.

Live Cell Spinning Disk Confocal Imaging

Approximately 1 3 105 BSC1 or SK-MEL-2 cells were plated 16 hr prior to

imaging on 25 mm in diameter No. 1.5 glass coverslips. Imaging medium was

phenol red free DMEM supplemented with 10% FCS and 20 mM HEPES pH

7.4. For imaging, the coverslips were placed on a temperature-controlled 5%

CO2 humidified chamber (20/20 Technologies, Wilmington, NC) mounted on

the piezo-electric driven stage of aMariana imaging system (Intelligent Imaging

Innovations,Denver, CO) basedonanAxiovert 200M invertedmicroscope (Carl

Zeiss, Thornwood, NY), a CSU-X1 spinning disk confocal unit (Yokogawa

Electric, Tokyo, Japan), a spherical aberration correction device (SAC, Infinity

Photo-Optical, Boulder, CO) and a 633 objective lens (Plan-Apochromat, NA

1.4, Carl Zeiss). The SAC was placed between the oil-based objective lens

and the camera to resolve the spherical aberration introduced by the refractive

indexmismatch between living cells and the glass optics. The data acquired for

the experiments using the SK-MEL-2 cells were obtained with a CSU-22

spinning disk confocal unit (Yokogawa Electric) modified with a Borealis illumi-

nation system (Spectral Applied Research, Richmond Hill, Ontario, Canada)

and without SAC correction. Fluorescence images from cells expressing

EGFP and RFP chimeras were simultaneously collected on two sides of the

same CCD chip by using a dual view unit (Roper Scientific) mounted before

the camera and equipped with a 565DCXR dichroic mirror and HQ525/40

and HQ620/50 (Chroma) emission filters (Saffarian et al., 2009). All the data

were acquired using Slidebook 5 (Intelligent Imaging Innovations, Denver, CO).

Data Acquisition and Image Analysis

Three-dimensional time-lapse movies correspond to z stacks of four to six

consecutive optical planes spaced 0.25–0.45 mm after correction by the axial

distortion (equivalent to 0.36–0.64 mm displacement of the stage). Axial distor-

tion (elongation) stemming from the refractive index mismatch between the

glass coverslip and the biological sample was corrected by applying an axial

correction value of 0.7 (Ferko et al., 2006; Lu et al., 2009) obtained by imaging

15 mm fluorescent polystyrene beads with the spinning disk confocal micro-

scope equippedwith the spherical aberration correction device. All z distances

reported in the figures have been corrected by the axial distortion. The 3D data

were acquired at a frequency of 0.3–2 Hz per stack and 20–50 ms exposures

per frame; the movies had durations between 120 and 330 s. Slidebook 5 was

used to generate a maximum intensity z projection from each time point of the

3D time series. Custom made MATLAB-based algorithms were used to deter-

mine the fluorescence intensity of a given diffraction limited spot and their

location along the x and y axis (from the maximum intensity images) and along

the z axis (from the z stacks). Step sizes for the data in Figure 1B were calcu-

lated as Dzi = zi+1 � zi, where zi is the average position of step number i. The

SD of Dzi was calculated by error propagation: s2
Dzi

=s2
zi+ 1

+s2
zi
.

The colocalization analysis of APs with dynamin2 was performed using fixed

BSC1 cells imaged with the spinning disk confocal microscope. Three-dimen-
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sional images made of z stacks composed of 0.1 mm sequential optical

sections were restored using constrained iterative deconvolution (SlideBook

5). Three-dimensional binary masks were then created by segmentation for

both fluorescence channels (APs and dynamin2), and overlapping regions

were determined using the AND operator between the two masks. Each over-

lapping region was counted as a colocalization event.
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