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SUMMARY

Monoclonal antibodies derived from blood plasma
cells of acute HIV-1-infected individuals are predom-
inantly targeted to the HIV Env gp41 and cross-re-
active with commensal bacteria. To understand this
phenomenon, we examined anti-HIV responses in
ileumB cells using recombinant antibody technology
and probed their relationship to commensal bacteria.
The dominant ileumB cell responsewas to Env gp41.
Remarkably, a majority (82%) of the ileum anti-gp41
antibodies cross-reacted with commensal bacteria,
and of those, 43% showed non-HIV-1 antigen poly-
reactivity. Pyrosequencing revealed shared HIV-1
antibody clonal lineages between ileum and blood.
Mutated immunoglobulin G antibodies cross-reac-
tive with both Env gp41 and microbiota could also
be isolated from the ileum of HIV-1 uninfected indi-
viduals. Thus, the gp41 commensal bacterial antigen
cross-reactive antibodies originate in the intestine,
and the gp41 Env response in HIV-1 infection can
be derived from a preinfection memory B cell pool
triggered by commensal bacteria that cross-react
with Env.

INTRODUCTION

The plasma cell and memory B cell pools in intestine contain a

normal subset of B cells reactive with intestinal commensal bac-

teria (Benckert et al., 2011). In acute HIV-1 infection (AHI), virus

replication is prominent in the gastrointestinal tract, with early

depletion of CD4+ T cells (Brenchley et al., 2004; Guadalupe
Cell Hos
et al., 2003; Mehandru et al., 2006; Pope and Haase, 2003; Vea-

zey et al., 1998; 2001) as well as early destruction of B cell

germinal centers (Levesque et al., 2009). Initial plasma (Tomaras

et al., 2008) and mucosal fluid (Yates et al., 2013) antibody

response in AHI is targeted to HIV-1 Env gp41. The AHI gp41

antibody response is nonneutralizing and does not select viral

escape mutants (Tomaras et al., 2008). Rather, it is the initial

autologous gp120 neutralizing antibody response that is the first

Env antibody shown to select viral escape mutants (Moore et al.,

2009; Richman et al., 2003; Wei et al., 2003).

Recombinant monoclonal antibodies (mAbs) isolated from

blood plasmablasts and/or plasma cells (hereafter termed

plasma cells) of individuals with AHI were predominantly tar-

geted to Env gp41 and were polyreactive with both host and

environmental antigens including commensal bacteria (Liao

et al., 2011). These observations raised the hypothesis that a

component of the peripheral blood HIV-1 Env gp41 response

in blood originates from polyreactive memory B cells activated

prior to transmission by environmental antigens (Liao et al.,

2011).

Here we have used single B cell sorting and recombinant anti-

body technology to probe the plasma cell and memory B cell

repertoire of the terminal ileum in early and chronic HIV-1 infec-

tion. We found that the terminal ileum plasma cell and memory B

cell repertoire was comprised of predominantly polyclonally acti-

vated, non-HIV-1-reactive antibodies, and the dominant early

HIV-1 B cell response in the terminal ileum was targeted to Env

gp41. Remarkably, 82% of HIV-1 gp41-reactive terminal ileum

antibodies cross-reacted with intestinal commensal bacterial

antigens, and mutated antibodies cross-reactive with Env gp41

and intestinal commensal bacteria were isolated from HIV-1 un-

infected individuals. Thus, the antibody response to HIV-1 may

be shaped by intestinal B cells stimulated by microbiota to

develop a preinfection pool of memory B cells cross-reactive

with HIV-1 gp41.
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Figure 1. Characteristics of Antibodies Iso-

lated from Terminal Ileum Plasma Cells and

Memory B Cells of EHI Individuals

(A) The total number of mAbs generated from wells

with one VHDHJH and one VLJL gene isolated is

indicated in the center of the pie chart. The per-

centages of mAbs binding to gp41, gp120, p24, and

non-HIV-1 antigens are indicated by colors.

(B) Frequency of somatic mutations in VH gene

segments of HIV-1-reactive antibodies compared

to non-HIV-1-reactive or nondefined mAbs from

terminal ileum plasma cells and memory B cells of

six EHI individuals. Mean and SEM are indicated by

lines.

(C) The HCDR3 lengths of HIV-1-reactive mAbs

compared to non-HIV-1-reactive or nondefined

antibodies isolated from terminal ileum B cells, with

plasma cells and memory B cells pooled. Mean and

SEM are indicated by lines.

(D) Six recombinant mAbs (DH300, DH301, DH302,

DH303, DH304, and DH305) produced in a rIgG1

backbone were evaluated for reactivity with HIV-1

rgp41, SP62 = 2F5 MPER gp41 epitope peptide

(QQEKNEQELLELDKWASLWN), and sp400 = gp41

immunodominant peptide (RVLAVERYLRDQQLLG

IWGCSGKLICTTAVPWNASWSNKSLNK) by ELISA.

They were tested in 3-fold dilutions ranging from

100 to 0.05 mg/ml (x axis).

See also Tables S1, S2, and S3.
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RESULTS

HIV-1 gp41-Reactive Antibodies in Terminal Ileum in
Early and Chronic HIV-1 Infection Individuals
We investigated the plasma cell response to HIV-1 infection

within the terminal ileum of six early HIV-1 infection (EHI) individ-

uals (Table S1). We expressed 114 mAbs from plasma cells and

140mAbs frommemoryBcells recovered from terminal ileum.Of

the 254 total mAbs isolated fromEHI individuals, only 5 (2.0%) re-

acted with gp41 and none (0.0%) with gp120 (Figure 1 and Table

S2). HIV-1-reactive mAbs primarily utilized heavy-chain variable

gene segments fromVH family 3. VHmutation frequencies ranged

from 0.0% to 10.4%, and HCDR3 lengths ranged from 11 to

25 amino acids. There were no statistical differences between

the mean VH mutation frequencies and HCDR3 lengths of the

HIV-1-reactive antibodies compared to non-HIV-1-reactive anti-

bodies isolated from terminal ileum plasma cells from EHI indi-

viduals (Figures 1B and 1C). All recombinant HIV-1 mAbs were

expressed with an immunoglobulin G1 (IgG1) backbone; their
216 Cell Host & Microbe 16, 215–226, August 13, 2014 ª2014 Elsevier Inc.
original isotypes were IgA1, IgA2, and

IgG3 (Table S2). IgA2 and IgG3 only

made up 6.7% and 5.1% of total terminal

ileummAbs isolated fromEHI, respectively

(Table S3). Four of the five gp41-reactive

mAbs were low affinity, with effective anti-

body binding 50% concentrations (EC50s)

of >100 mg/ml. DH300 had the highest

apparent affinity, with an EC50 of only

>25 mg/ml (Figure 1D and Table S2).

With a VH mutation frequency of 10.4%,

the heavy chain of DH300 was also the
mostmutated of the EHI terminal ileumHIV-1-reactive mAbs iso-

lated (Table S2). These HIV-1-reactive mAbs were tested for

neutralization against the easy-to-neutralize (tier 1) viruses,

ADA, MN, and SF162, and the difficult-to-neutralize virus (tier

2) DU156, and all were nonneutralizing when assayed in the

TZM-bl pseudovirus infection assay. Thus, the plasma cell

and memory B cell response in EHI was polyclonal, and the

HIV-1-reactive mAbs were targeted to Env gp41 and were

nonneutralizing.

We next characterized the plasma cell response in the terminal

ileum of three chronically HIV-1-infected (CHI) individuals, 038-7,

004-0, and 071-8 (Table S1). From these individuals, we ex-

pressed 158 mAbs from terminal ileum plasma cells; 14 (8.8%)

of these mAbs reacted with HIV-1 antigens, 9 (5.7%) with Env

gp41, 4 (2.5%) with HIV-1 capsid protein (p24), and 1 (0.6%)

with Env gp120 (Figure 2 and Table S2). Similar to the gp41 an-

tibodies from EHI individuals, the HIV-1-reactive mAbs isolated

from CHI individual 071-8 predominantly used VH family 3 gene

segments; mutation frequencies ranged from 1.3% to 7.0%,
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Figure 2. Characteristics of Antibodies Iso-

lated from Terminal Ileum Plasma Cells of

CHI Individuals

(A) The total number of mAbs generated is indi-

cated in the center of the pie chart. The percent-

ages of mAbs binding to gp41, gp120, p24, and

non-HIV-1/nondefined antigens are indicated by

colors.

(B) Frequency of somatic mutations in VH gene

segments of HIV-1-reactive antibodies compared

to non-HIV-1- or nondefined reactive antibodies

from terminal ileum plasma cells and memory B

cells of three CHI subjects. Mean and SEM are

indicated by lines.

(C) The HCDR3 lengths of HIV-1-reactive anti-

bodies compared to non-HIV-1- or nondefined

reactive antibodies isolated from terminal plasma

cells of three CHI individuals. Mean and SEM are

indicated by lines.

(D) A total of 16 recombinant mAbs (DH306,

DH307, DH308, DH309, DH310, DH311, DH312,

DH313, DH314, DH315, DH316, DH317, DH318,

DH319, DH320, and DH321) produced in a rIgG1

backbone were evaluated for reactivity with HIV-1

rgp41, p24, sp62 = 2F5 MPER gp41 epitope pep-

tide (QQEKNEQELLELDKWASLWN) and sp400 =

gp41 immunodominant peptide (RVLAVERYLRD

QQLLGIWGCSGKLICTTAVPWNASWSNKSLNK),

and MN gp120 gD- by ELISA. They were tested in

3-fold dilutions ranging from 100 to at least

0.05 mg/ml (x axis).

See also Tables S1, S2, S4, and S5.
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and the majority of the original mAbs were of IgA isotype (Table

S2). In contrast, 8 of the 9 (89%) HIV-1-reactive mAbs from

plasma cells of CHI individual 004-0 used VH1-69; all these

VH1-69 antibodies were originally IgG1 (Table S2). Both individ-

uals, 071-8 and 004-0, have three genomic copies of VH1-69

as determined by digital PCR (Table S4). The number of B cells

utilizing the gene segment VH1-69 has been reported to be pro-

portional to the gene copy number of certain VH1-69 alleles

(Sasso et al., 1996). However, this was not seen at the terminal

ileum single B cell level in our study, where both 071-8 and

004-0 had three genomic copies of VH1-69, yet only 004-0 pre-

dominately used VH1-69 to respond to HIV-1 infection (Table S2).

The VH mutation frequencies of antibodies from individual

004-0 ranged from 3.3% to 11.9%, and HCDR3 lengths ranged

from 12 to 23 amino acids (Table S2). There were no statistical

differences between the mean VH mutation frequencies and

HCDR3 lengths of the HIV-1-reactive mAbs compared to non-

HIV-1-reactive mAbs isolated from terminal ileum plasma cells
Cell Host & Microbe 16, 215–226
from CHI individuals (Figures 2B and

2C). The estimated EC50s for gp41 bind-

ing of these antibodies ranged from

<0.1 mg/ml to >100 mg/ml (Table S2).

DH306 and DH309 had high apparent af-

finities to gp41 (EC50s of <0.1 mg/ml).

DH310, DH311, DH312, and DH314 had

high affinities to Gag p24 (EC50s of

<1 mg/ml � <0.1) (Figure 2D and Table

S2). These HIV-1-reactive mAbs were
also tested for neutralization against viruses, ADA, MN, SF162,

and DU156 in TZM-bl assays and were nonneutralizing.

Because the HIV-1 antigen-specific terminal ileum mAbs ac-

count for such a small proportion of the plasma cell and memory

B cell response as measured by single-cell sorting, we next

quantified the Env-specific memory B cell pool by an alternative

method. We assayed paired peripheral blood mononuclear cells

(PBMCs) and terminal ileum samples from four CHI individuals

(078-2, 067-8, 072-3, and 076-4) (Table S1) by flow cytometry

analysis of HIV-1 Env-specific memory B cells with a fluores-

cent-labeled consensus group M gp140 Env, consensus-S

(CON-S) previously shown to bind to clade B-reactive antibodies

(Liao et al., 2006; Tomaras et al., 2008). We found means of

0.04% ± 0.02%, 0.26% ± 0.24%, and 0.20% ± 0.29% IgM,

IgG, and IgA CON-S gp140-reactive memory B cells, respec-

tively, in blood (Table S5). The mean percentage of IgM, IgG,

and IgA CON-S gp140-reactive memory B cells in terminal ileum

were 0.01% ± 0.02%, 0.05% ± 0.1%, and 0.03% ± 0.06%,
, August 13, 2014 ª2014 Elsevier Inc. 217
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Figure 3. Commensal Bacteria Cross-Reac-

tivity of HIV-1-Reactive Antibodies Isolated

from Terminal Ileum Plasma Cells and Mem-

ory B Cells of EHI and CHI Individuals

(A) HIV-1-reactive mAbs isolated from terminal ileum

plasma cells and memory B cells of EHI and CHI in-

dividuals were tested for reactivity to anaerobic

commensal bacteria by SPR. The response unit and

off rate for each antibody that reacted with anaerobic

commensal bacteria in this assay is plotted. Anti-

bodies isolated from EHI individuals are indicated in

red, and antibodies isolated from CHI individuals are

indicated in black. The HIV-1 reactivity of the anti-

bodies is indicated by shapes.

(B) The avidity score (response unit [RU] / off rate [kd])

of the terminal ileum HIV-1-reactive antibodies

binding to anaerobic WCL by SPR.

(C) HIV-1-reactive mAbs isolated from EHI terminal

ileum B cells were also tested for reactivity to

anaerobic and aerobic commensal bacteria WCL by

SDS-PAGE western blot. A total of 100 mg of each

anaerobic and aerobic WCL was loaded in individual

lanes, and mAbs were tested at 20 mg/ml in both

nonreducing and reducing conditions. Three repre-

sentative westerns under nonreducing conditions are

shown.

(D) HIV-1-reactive mAbs isolated from terminal ileum

plasma cells and memory B cells of EHI individuals

were tested for reactivity to anaerobic and aerobic

commensal bacteria by BAMA at 100 mg/ml. Mean

and SEM are indicated by lines.

(E) HIV-1-reactive mAbs isolated from CHI terminal

ileum B cells were also tested for reactivity to anaer-

obic and aerobic commensal bacteria WCLs by SDS-

PAGEwestern blot. A total of 100 mg of anaerobic and

aerobic WCLs was loaded in individual lanes, and

mAbs were tested at 20 mg/ml in both nonreducing

and reducing conditions. Four representative west-

erns under nonreducing conditions are shown.

(F) HIV-1-reactive mAbs isolated from terminal ileum

plasma cells and memory B cells of CHI individuals

were also tested for reactivity to anaerobic and

aerobic commensal by BAMA at 100 mg/ml. Mean

and SEM are indicated by lines. See also Figures S1–

S3 and Tables S2 and S6.
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respectively (Table S5). Thus, by flow cytometry with a fluoro-

phor-labeled Env, there was also a relative dearth of HIV-1

Env-reactive memory B cells in terminal ileum compared to

blood in CHI.

Terminal Ileum HIV-1-Reactive Antibodies Were Cross-
Reactive with Commensal Bacterial Antigens
We tested HIV-1-reactive mAbs isolated from terminal ileum of

EHI for reactivity to antigens in anaerobic commensal bacteria

whole-cell lysates (WCLs) by surface plasmon resonance

(SPR) and to both anaerobic and aerobic commensal bacteria

WCLs by western blot analysis. Of the six gp41-reactive anti-

bodies from EHI, all were reactive to anaerobic intestinal

commensal bacteria by both SPR and western blot (Figures

3A–3C and S1 and Table S6). Similarly, 11 of the 16 HIV-1-reac-

tive mAbs isolated from the terminal ileum of CHI cross-reacted

with anaerobic commensal bacteria by SPR and western blot

(Figures 3A, 3B, 3E, and S1 and Table S6). Antibody reactivity
218 Cell Host & Microbe 16, 215–226, August 13, 2014 ª2014 Elsevi
to aerobic and anaerobic commensal bacteria was also tested

in Luminex-based binding antibody multiplex assays (BAMAs)

(Figure S2A). Of 17 antibodies positive in western blot and

SPR, 14 could also be confirmed in BAMA (Figures 3D, 3F, S1,

and S2 and Table S6).

To determine if HIV-1 and commensal bacteria cross-

reactive mAbs were polyreactive/autotreactive, we tested the

HIV-1-reactive mAbs in Luminex AtheNA ANA II and HEp-2

immunofluorescence ANA assays. Four of the six gp41-

commensal bacteria cross-reactive mAbs from EHI terminal

ileum were not reactive with additional antigens by these

assays (Figure S1B and Table S6). Of the 11 HIV-1 and

commensal bacteria cross-reactive mAbs isolated from CHI

terminal ileum plasma cells, six were not reactive in either

assay (Figure S2B and Table S6).

In addition to HIV-reactive mAbs, we produced and purified

19 terminal ileum mAbs that did not bind HIV-1 epitopes by

ELISA or BAMA (Table S2). Of these, four antibodies (21%)
er Inc.
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were reactive with intestinal bacterial WCLs by both western

blot and BAMA (Figures S1A and S3 and Table S6). Three of

these four antibodies were not reactive in AtheNA ANA II or

HEp-2 ANA assays (Table S6). Therefore, not all commensal

bacteria-reactive antibodies from intestine were cross-reactive

with gp41.

Affinity Maturation of Commensal Bacteria
Cross-Reactive Antibodies to Autologous Envelope
To determine if HIV-1 gp41-reactive antibodies that were cross-

reactive with commensal bacteria underwent affinity matura-

tion to gp41, we inferred the heavy- and light-chain unmutated

common ancestors (UCAs) of five gp41-reactive mAbs, DH306,

DH309, DH308, DH305, and DH319, and produced their UCAs,

termed DH306 UCA, DH309 UCA, DH308 UCA, DH305 UCA,

and DH319 UCA, respectively. For mAbs isolated from 004-0,

DH306, DH309, and DH308, we determined UCA and ma-

ture antibody affinities to autologous HIV-1 004-0 gp140 and

heterologous HIV-1 MN gp41, as well as relative binding to

commensal bacterial antigens. Affinity for the autologous Env

increased from undetectable binding to 0.62 nM when

comparing the UCA DH306 UCA and the mature antibody

DH306 and similarly increased from 4.44 nM to 0.34 nM for

DH309 UCA and DH309 (Figures 4A, 4B, and 4D). The mature

antibody DH306 also had a greater reactivity to commensal

bacteria compared to its UCA (Figure 4A). Binding to the

004-0 T/F gp140 was undetectable for DH308 UCA and

DH308; however, affinity to MN gp41 increased from 9.97 nM

to 0.41 nM (Figures 4C and 4D). In contrast, DH305 UCA and

DH319 UCA had high affinities of 3.55 nM and 0.41 nM to

MN gp41, respectively, and affinity did not increase upon

accumulation of mutations in the mature mAbs, DH305 and

DH319 (Figures 4E and 4F). Therefore, in three commensal bac-

terial antigen cross-reactive gp41 clonal lineages, affinity matu-

ration to gp41 could be demonstrated from UCAs to mature

antibodies.

HIV-1 gp41 Commensal Bacterial Cross-Reactive
Antibodies Isolated from the Terminal Ileum of
Uninfected Individuals
If preinfection terminal ileum antibodies cross-reactive with in-

testinal commensal bacteria and gp41 are responsible for the

initial antibody response to HIV-1 Env gp41 following HIV-1

infection, mutated gp41 and gut flora cross-reactive antibodies

should exist in the terminal ileum of uninfected individuals. To

investigate this hypothesis, we sorted single plasma cells and

memory B cells from three HIV-1 uninfected individuals (Table

S1) and identified two low-affinity gp41-reactive antibodies,

DH366 and DH367, both of which also reacted with intestinal

commensal bacteria (Figures 5 and S1B and Table S2). Both

antibodies used VH gene segments from family 3 and were

class-switched to IgG; the VH mutation frequencies of these

antibodies were 5.2% and 9.7% (Table S2). Therefore, com-

mensal bacteria-reactive mutated B cells that are cross-

reactive with Env gp41 can be found in the intestinal B cell

repertoire of HIV-1 uninfected individuals, supporting the notion

that the initial gp41 antibody response to HIV-1 derived from

preexisting commensal bacterial cross-reactive memory B

cells.
Cell Hos
E. coli RNA Polymerase Is One Intestinal Bacterial
Antigen Cross-Reactive with HIV-1 gp41 Antibodies
To identify antigens in commensal bacteria cross-reactive with

gp41 mAbs, we used the AHI blood-derived HIV-1 gp41, gut

bacterial WCL-reactive antibody 558_2 previously reported to

bind to an �520 kDa band of both aerobic and anaerobic

commensal bacteria WCLs (Liao et al., 2011) (Figure 6A). The

large molecular weight fraction of bacterial WCL was isolated

by size exclusion chromatography (SEC) (Figure 6B), and

isoelectric zoom fractionation showed that the protein reactive

with mAb558_2 migrated to the gel compartment with pH 7–10

(Figure S4A). E. coli RNA polymerase subunits b, b0, and a were

identified by liquid chromatography-tandem mass spectrom-

etry (LC-MS/MS) of the 520 kDa excised bands from two lanes

of the SEC-enriched >500 kDa fraction analyzed on a Native-

PAGE gel (Figures 6B, 6C, and S4B–S4D). We determined

that mAb558_2 binding was specific for the core enzyme

of E. coli RNA polymerase (Figures 6D, S4E, and S4F). By

western blot, we mapped the specificity of mAb558_2 to the

37 kDa a subunit of recombinant E. coli RNA polymerase

(Figure 6D).

We found that 2 of 14 (14.3%) Env gp41 and intestinal

commensal bacteria cross-reactive EHI and CHI terminal ileum

antibodies also reacted with rRNA polymerase by BAMA. (Fig-

ures 6E–6G) Moreover, the gp41 commensal bacterial cross-

reactive antibody DH367 isolated from the terminal ileum of an

uninfected individual also reacted with rRNA polymerase by

BAMA (Figure 6H).

Terminal Ileum HIV-1-Reactive Antibody Clonal Lineage
Members Shared by Terminal Ileum and Peripheral
Blood Compartments
We next asked if HIV-1 and commensal bacteria cross-reactive

B cells recirculate in the terminal ileum and peripheral blood.

We studied paired blood samples of three of the individuals

(042-8, 004-0, and 071-8) from whom we had isolated terminal

ileum plasma cell andmemory B cell mAbs (Table S1). We sorted

single plasma cells and memory B cells from PBMCs and iden-

tified 13 antibodies with HIV-1 reactivity (Figure S5 and Table

S2). By single-cell PCR, we were able to identify four clonal line-

ages within the terminal ileum and one clonal lineage within the

blood (Table S7). However, by these methods we were unable

to identify any clonal lineages with members shared between

the terminal ileum and blood.

We next conducted pyrosequencing of genomic DNA isolated

from PBMCs taken at the same time as terminal ileum samples

from chronically infected individuals 004-0 and 071-8 and

searched the sequences for VHDHJH members clonally related

to the 149 terminal ileum VHDHJH sequences isolated from these

same two individuals by single-cell sorting. By this method we

identified a total of 18 clonal lineages that had members in

both terminal ileum and blood compartments (Figures 7 and

S6 and Table S7). Thus, 12% of terminal ileum B cells isolated

by single-cell PCR had cross-compartment clonal lineage

members in the blood. Of these 18 cross-compartment clonal

lineages, we determined that two clonal lineages were cross-

reactive with Env gp41 and intestinal commensal bacteria, and

one lineage was cross-reactive with HIV-1 Gag p24 and

commensal bacteria (Figures 1D, 2D, 7, and S6 and Table S2).
t & Microbe 16, 215–226, August 13, 2014 ª2014 Elsevier Inc. 219
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Figure 5. HIV-1-Reactive Antibodies Iso-

lated from Terminal Ileum Plasma Cells

and Memory B Cells of Uninfected Individ-

uals React to Both HIV-1 gp41 and Com-

mensal Bacteria

(A) SPR strategy used to confirm HIV-1 reactivity of

mAbs isolated from the terminal ileum of uninfected

individuals. Signal generated by antibody binding

to catalase was subtracted from signal generated

by antibody binding to recombinant MN gp41.

(B) Antibodies DH366 and DH367 isolated from

terminal ileum plasma cells that were natural IgG1

and IgG3 antibodies, respectively, were produced

in a rIgG1 backbone and were evaluated for

reactivity with HIV-1 MN gp41 by SPR. The VHs of

DH366 and DH367 were mutated 6.6% and

11.8%, respectively.

(C) DH366 and DH367 were tested for reactivity to

anaerobic and aerobic commensal bacteria by

BAMA. Dilutions were 2-fold, ranging from 100–

3.1 mg/ml (x axis).

(D) Reactivity to anaerobic and aerobic com-

mensal bacteria under nonreducing and reducing

conditions by SDS-PAGE western blot.
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To determine if the cross-compartmentalization of B cell clonal

lineages identified in 004-0 and 071-8 was due to contamination

of the terminal ileum tissue biopsies with blood B cells trafficking

through the ileum vasculature without entering the tissue, we

performed quantitative image analysis of B cells in the terminal

ileum of HIV-1-infected individuals and found that of the 12 ter-

minal ileumbiopsies studied, only 0.2%of the CD20+ cells within

the tissue samples were found within blood vessels (Figure S7).

Thus, blood contamination of the biopsy could not explain the
Figure 4. HIV-1 gp41 and Commensal Bacteria Cross-Reactive Antibodies from the Terminal Il

and Heterologous HIV-1 Envelope

(A–C) SPR binding curves of UCA andmature mAbs immobilized with an anti-Fc receptor antibody binding to

004-0 and to MN gp41. Relative binding to commensal bacteria was also determined by SPR. (A) DH306 UC

DH308 UCA and DH308.

(D) Table of the on rates, off rates, and apparent dissociation constant (KD) for each mature mAb and UCA pai

unit and off rate of mAb binding to anaerobic bacteria WCL. N/A: this antibody was not tested for binding to

(E and F) SPR binding curves of UCA and mature mAbs immobilized with an anti-Fc receptor antibody bindin

available for these two mAbs. Relative binding to commensal bacteria was also determined by SPR. (E) DH
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12% of terminal ileum B cells isolated by

single-cell PCR as contaminating B cells

from the blood compartment.

DISCUSSION

In this study we have demonstrated that

the dominant plasma cell antibody pop-

ulation to HIV-1 in both EHI and CHI in

the terminal ileum was nonneutralizing,

directed to Env gp41, and cross-reac-

tive with intestinal commensal bacterial

antigens. One such bacterial antigen

identified was the a subunit of E. coli

RNA polymerase. Similar specificities of

gp41 commensal bacteria cross-reactive
mutated antibodies could be isolated from HIV-1 uninfected in-

dividuals. Moreover, we demonstrated sharing of terminal ileum

clonal lineage members with the blood compartment, providing

support for the hypothesis that blood B cells cross-reactive with

intestinal bacteria and gp41 are derived from the intestinal tract.

The preponderance of gp41 antibodies in terminal ileum

plasma cell and memory B cell pools now potentially explains

the mechanism of induction of gp41 antibody immunodomi-

nance in plasma and mucosal fluid studies (Tomaras et al.,
eum Show Affinity Maturation to Autologous

titrations of autologous HIV-1 gp140 from individual

A and DH306; (B) DH309 UCA and DH309; and (C)

r binding to the HIV-1 Envs tested and the response

004-0 gp140.

g to titrations of MN gp41. Autologous Env was not

305 UCA and DH305. (F) DH319 UCA and DH319.
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Figure 6. Identification of E. coli RNA Poly-

merase as One Cross-Reactive Commensal

Bacterial Antigen Recognized by HIV-1 gp41

Antibodies

(A) Western blot analysis following NativePAGE gel

run showing that mAb 558_2 (Liao et al., 2011)

binds to an �520 kDa protein band in anaerobic

and aerobic intestinal bacterial WCL.

(B). Protein fractions from bacterial WCL with

molecular weight of �500 kDa were collected

following size exclusion chromatography (SEC).

(C) The�500 kDa fraction shows enrichment of the

520 kDa protein by 1D native Coomassie blue

(lanes 1 and 2) and blue native western blotting

with mAb558_2 (lane 3). The�520 kDa bands from

two gels, identified in two red boxes, were excised

from the gel and determined to be E. coli RNA

polymerase by LC-MS/MS.

(D) Recombinant E. coli RNA polymerase core

protein was run on a denaturing SDS-PAGE gel

under both reducing and nonreducing conditions

and blotted with mAb558_2 and a hemagglutinin

(HA) flu-reactive antibody Ab1248 as a negative

control.

(E–H) Reactivity of terminal ileum Env gp41

commensal bacteria cross-reactive antibodies

with rE. coli RNA polymerase was determined by

BAMA. Dilutions were 2-fold, ranging from 100–

3.1 mg/ml (x axis). (E) HIV-1 gp41 commensal

bacteria cross-reactive mAbs isolated from the

terminal ileum of EHI individuals. (F) HIV-1 gp41

commensal bacteria cross-reactive mAbs isolated

from the terminal ileum of CHI individuals. DH309

and DH316 are representative of the other lowest

binders, DH317 and DH318. (G) H308, a gp41mAb

isolated from a terminal ileum plasma cell from

CHI individual 004-0, is the strongest rE. coli RNA

polymerase binder. DH308 used the VH gene

segment 1–69, which was 8.6% mutated and was

naturally IgG1. (H) HIV-1 gp41 commensal bacteria

cross-reactive mAbs isolated from the terminal

ileum of uninfected individuals. See also Figure S4.
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2008; Yates et al., 2013). Liao et al. (2011) showed a predomi-

nance of blood gp41 antibodies from HIV-1 plasma cell-derived

mAbs from AHI and found them to be a minority of the plasma

cell pool 17–46 days after HIV-1 transmission. The polyclonal

pool of non-HIV-1-reactive B cells is likely due to the massive

cytokine storm that occurs early on after HIV-1 transmission

(Stacey et al., 2009) and prompted us to ask if the plasma cell

and memory B cell pools in terminal ileum would be a location

of a more robust HIV-1 Env antibody response. Instead, we

found in both EHI and CHI that terminal ileum contained primarily

non-HIV-1-reactive polyclonal plasma and memory B cells, and

the few HIV-1-reactive B cells that were present were targeted to

Env gp41.

Host-specific bacterial colonization of the gastrointestinal

tract is required for normal development of the intestinal immune
222 Cell Host & Microbe 16, 215–226, August 13, 2014 ª2014 Elsevier Inc.
system (Chung et al., 2012; Erturk-Has-

demir and Kasper, 2013; Hooper et al.,

2012). Germ-free mice have numerous

immunological deficiencies, including
small Peyer’s patches and mesenteric lymph nodes, reduced

secretory IgA, fewer plasma cells, CD4+ T cells and CD8+

T cells, and diminished antimicrobial peptide production (Er-

turk-Hasdemir and Kasper, 2013; Hooper et al., 2012; Round

and Mazmanian, 2009). Recolonization of germ-free mice with

host-specific commensal bacteria ameliorates these defects

(Chung et al., 2012; Smith et al., 2007). The presence of intestinal

commensal bacteria induces immune maturation that is not only

required for gut homeostasis, but helps generate a pool of

mature adaptive immune cells prepared to protect the host

from infections. The pre-HIV-1 infection presence of B cells

within the intestine cross-reactive with both bacterial antigens

and HIV-1 gp41 is evidence of molecular mimicry between

HIV-1 antigens and bacteria antigens and suggests an explana-

tion for why the initial antibody response to AHI in the plasma and
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Figure 7. Phylogenetic Trees of Ig Heavy-Chain Clonal Lineages

with Members Derived from Blood B Cells and Terminal Ileum B

Cells, with Known Antibody Reactivity

(A–C) Trees are rooted on the inferred UCA. Nodes are labeled with the anti-

body or sequence ID and sample they were isolated from. Red nodes indicate

B cells isolated by single-cell PCR from terminal ileum B cells that were pro-

duced in large scale and screened for reactivity to HIV-1 antigens and

commensal bacteria WCLs. The reactivity of the terminal ileum mAb is noted

below each tree. Black nodes indicate VHDHJH sequences identified by py-

rosequencing of time-matched peripheral PBMCs. Tree IDs are located to the

left of each tree: TR3666 (A), TR3669 (B), and TR3684 (C). See also Figures S5–

S7 and Table S7.
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mucosal fluids is to gp41 (Fujinami et al., 1983; Liao et al., 2011;

Oldstone, 1998; Srinivasappa et al., 1986; Tomaras et al., 2008;

Yates et al., 2013).

Isolation of mutated gp41 and gut flora cross-reactive anti-

bodies from terminal ileum HIV-1 uninfected individuals directly

suggests that commensal or pathogenic bacteria or other

cross-reactive environmental antigens can trigger gp41

cross-reactive responses before HIV-1 infection. These data

provide evidence in support of the hypothesis that the domi-

nant HIV-1 gp41 antibody response after HIV-1 transmission

is mediated by previously activated memory B cells that are

present before HIV-1 infection and cross-reactive with intesti-

nal bacteria. Once HIV-1 infection occurs, then gp41 would

begin to trigger the previously activated bacterial-driven line-

ages toward affinity maturation to gp41-specific antibodies. A

critical test of this notion would be to demonstrate that reac-

tivity in commensal bacteria-gp41 lineage begins with a gut

flora-reactive UCA followed by acquisition of gp41 reactivity

upon affinity maturation. In the present study, we provide three

examples of gp41-reactive antibodies, DH306, DH308, and

DH309, that showed affinity maturation to autologous and/or

heterologous Env (Figure 4). In the case of antibody DH306,

reactivity of the UCA with gp41, but not the T/F Env gp140,

may well be an example of cross-reactive stimulation of the

UCA by an environmental gp41 cross-reactive antigen before

transmission that gave rise to the affinity mature antibody

that, after infection, reacted with the autologous T/F Env.
Cell Hos
Both DH308 and DH308 UCA bound to MN gp41 with nanomo-

lar affinity but did not bind to the autologous T/F gp140 (Fig-

ure 4). It is important to note that antibody DH308 was isolated

from individual 004-0 3 years into infection. Thus, it is likely that

a T/F Env variant selected by antibodies over time initiated the

DH308 lineage, given the high level of affinity maturation to

gp41 from �10 nM in DH308 UCA to 0.4 M in the mature anti-

body DH308 (Figure 4D). DH305 UCA and DH319 UCA are ex-

amples of naturally paired, unmutated VHDHJH and VLJL with

high affinities for viral antigens and B cell clonal lineages reach-

ing an affinity ceiling prior to accumulation of the mutations

found in the mature mAbs as previously described (Batista

and Neuberger, 1998). We have also previously shown that in

a reconstructed blood gp41 clonal lineage, the UCA and the

first intermediate antibody in the lineage were commensal bac-

teria reactive, but not gp41-reactive (Liao et al., 2011). Instead,

gp41 reactivity only occurred later in clonal lineage develop-

ment, and after gp41 reactivity occurred, there was affinity

maturation to HIV-1 env gp41 in the clonal lineage. The pres-

ence of CD4+ memory T cells cross-reactive with both HIV-1

antigens and microbial peptides in uninfected adults (Campion

et al., 2014; Su et al., 2013), and the 5.2% and 11.9% VH mu-

tation frequencies of DH306 and DH309, suggested that the

affinity maturation of gp41 commensal bacteria cross-reactive

B cells to gp41 is T cell dependent.

We now directly demonstrate the intestinal tract origin for

commensal bacteria-gp41 cross-reactive antibodies found

in the blood. Moreover, we demonstrated that 21% of com-

mensal bacteria-reactive B cells were not gp41 reactive,

adding additional support to the idea that, in HIV-1-infected

individuals, the gp41-reactive plasma cells and memory B

cells represented a response to HIV-1. The proportion of

these control non-HIV-1-reactive antibodies isolated from

the terminal ileum of HIV-1-infected individuals that reacted

with gut flora (21%) is greater than the �12% of plasma cells

from the terminal ileum of HIV-1 uninfected individuals deter-

mined to be reactive with specific gut flora by Benckert et al.

(2011). Microbial translocation that occurs in HIV-1 infection

may account for this higher level of commensal bacteria-

reactive terminal ileum B cells in our study (Brenchley et al.,

2006).

A critical test of the hypothesis that blood gp41 commensal

bacteria-reactive B cells arise in the intestine was to determine

if commensal bacteria-gp41 clonal lineages shared members

with blood B cells. Indeed, we have now found evidence for three

such intestinal commensal bacteria-gp41 clonal lineages shared

by both terminal ileum and peripheral blood compartments (Fig-

ures 7 and S6 and Table S7).

In summary, these data provide evidence for the hypothesis

that the postinfection B cell response to HIV-1 is shaped by

the preinfection B cell repertoire to environmental antigens.

Env gp41 antibodies cross-react with human intestinal com-

mensal bacteria, suggesting that commensal bacteria play crit-

ical roles in shaping the preinfection response to HIV-1, and

demonstrate a major role for the memory B cell pool in contrib-

uting to the initial antibody response to HIV-1. These data also

raise the hypothesis that the human B cell response to a wide va-

riety of other infectious agents may similarly be affected by

cross-reactivity to environmental antigens.
t & Microbe 16, 215–226, August 13, 2014 ª2014 Elsevier Inc. 223
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EXPERIMENTAL PROCEDURES

Study Subjects

Terminal ileum, blood, and bone marrow samples were collected from six EHI

individuals 47–200 days after transmission, ten CHI individuals greater than

200 days after transmission, as estimated from patient history and Fiebig clas-

sification (Fiebig et al., 2003), and three HIV-1 uninfected individuals (Table

S1). All individuals studied were from the United States. Table S1 shows the

clinical characteristics of the individuals studied. All work related to human

subjects was carried out with the informed consent of trial participants and

in compliance with Institutional Review Board protocols approved by Duke

University Medical Center and the University of North Carolina Medical Center.

Flow Cytometry Analysis of Terminal Ileum and Blood B Cells

Terminal ileummononuclear cells were isolated from gut tissues, and a single-

cell suspension was formed by passing cells through 100 mM cell strainer

(Fisher Scientific). The cells were then labeled with a panel of fluorochrome-

conjugated mAbs to label distinct B cell subsets in blood and terminal ileum.

A detailed protocol is included in the Supplemental Experimental Procedures.

PCR Amplification of Plasma Cell and Memory B Cell

Immunoglobulin VH and VL Genes

The Ig VHDHJH and VLJL genes of the sorted plasma cell and memory B cells

were amplified by RT and nested PCR using the method as reported (Liao

et al., 2009; Tiller et al., 2008; Wardemann et al., 2003; Wrammert et al., 2008).

Sequencing, Sequence Annotation, Quality Control, and Data

Management of Ig VHDHJH and VLJL Sequences

Thesemethodswere completed as previously described (Liao et al., 2011), and

a detailed explanation is included in Supplemental Experimental Procedures.

High-Throughput DNA Sequencing of Ig V(D)J Gene Segments

Thesemethodswere completed as previously described (Boyd et al., 2009), and

a detailed explanation is included in Supplemental Experimental Procedures.

Identification of Clone Members and Inference of UCA

Clonal relatedness of VHDHJH and VLJL sequences was determined as

described (Kepler, 2013; Liao et al., 2013).

Expression of VHDHJH and VLJL as Full-Length IgG1 Recombinant

mAbs

PCR was used to assemble linear full-length Ig heavy- and light-chain gene

expression cassettes using the Ig VHDHJH and VL gene pairs as previously

described (Liao et al., 2009, 2011, 2013). We determined that, in most cases,

isolation of one heavy chain and two light chains is an artifact of sorting two

B cells into one well, and the heavy-chain and light-chain pairing could not be

precisely determined. These antibodies were not included in statistical analysis

of frequencies of total antibodies, but such heavy-chain sequences were used

for analysis of clonal relationships, and VHDHJH and VL pairs that reacted with

HIV-1 antigens were included in the total list of HIV-1 antibodies. Additional

explanation is included in the Supplemental Experimental Procedures.

Assays for Antibody Reactivity

The recombinantmAbs expressed in small-scale and large-scale transfections

were assayed for antibody reactivity to HIV-1 antigens and a panel of non-

HIV-1 antigens by ELISA and BAMA as previously described (Liao et al.,

2009, 2011). Antibodies produced in large scale and protein A purified were

titrated at concentrations ranging from 100 mg/ml to 0.046 mg/ml at 3-fold di-

lutions for ELISA assays. Positivity cutoffs for reactivity were set at 3-fold

above background and an optical density (OD) of 0.130 at 100 mg/ml. An anti-

gen list is included in the Supplemental Experimental Procedures.

The apparent affinity of HIV-1-reactive antibodies was calculated in molar

concentration from EC50 values using a four-parametric sigmoid curve-fitting

analysis. Antibodies were titrated by 3-fold dilutions at concentrations ranging

from 100 mg/ml to 0.046 mg/ml titrations. Antibodies were considered to have

high affinity if the EC50 was less than 1 mg/ml, midrange affinity if the EC50

ranged between 1 and 50 mg/ml, and low affinity if the EC50 was greater

than 50 mg/ml.
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As previously described (Tomaras et al., 2008), BAMA assays are conducted

with carboxylated fluorescent beads (Luminex) covalently coupled to small

quantities (25 mg) of antigen and are incubated with antibody from small-scale

transfection or after column purification and binding is detected with biotin-

labeled mouse anti-human IgG (SouthernBiotech). Further explanation and

an antigen list are included in the Supplemental Experimental Procedures.

For indirect immunofluorescenceonHEp-2cells, all antibodiesgrown in large

scale were assayed for reactivity to HEp-2 cells at 50 mg/ml and 25 mg/ml (In-

verness Medical Professional Diagnostics) by indirect immunofluorescence

staining (Haynes et al., 2005). Antibody reactivity to autoantigens was also

determinedby antibodymultiplexAtheNAMulti-LyteANA II test (Wampole Lab-

oratories) (Haynes et al., 2005). Antibodies were studied in a dose dilution start-

ing at 50 mg/ml and determined to be reactive when binding antibody multiplex

assay scores were 225 MFI units or greater (Haynes et al., 2005).

For western blot analysis of commensal bacteria reactivity, 100 mg of both

aerobic and anaerobic lysates were run on 4%–12% Tris-Bis SDS-PAGE

(Life Technologies) for 1 hr 29 min at 150 V in both reduced and nonreduced

conditions. NuPAGE sample reducing agent at 13was used for reducing con-

ditions (Life Technologies). Antigens were transferred to nitrocellulose using

Life Technologies iBlot Gel Transfer system. Antibody binding was tested at

20 mg/ml for all antibodies, and the Anti-Human IgG (whole molecule)-Alkaline

Phosphatase antibody produced in goat (Sigma) was used at a 1:5,000 dilu-

tion. Detection occurred directly on the nitrocellulose using Western Blue

(Promega).

Surface Plasmon Resonance

To confirm the reactivity to gp41 of the antibodies isolated from the terminal

ileum of uninfected individuals, SPR binding assays were performed on a Bia-

core 3000 (GE Healthcare) maintained at 25�C. Recombinant catalase (GE

Healthcare) and HIV-1 gp41 MN were immobilized on a CM5 sensor chip by

standard amine coupling, as previously described (Alam et al., 2008, 2009).

To determine the reactivity of terminal ileum HIV-1-reactive mAbs to anaer-

obic intestinal commensal bacteria, SPR binding assays were performed on a

Biacore 4000 (Biacore). HIV-1-reactive mAbs were immobilized on CM5

sensor chips by standard amine coupling, and reactivity was determined by

double reference subtraction. Response generated by nonspecific binding

of anaerobic commensal bacteria WCLs to control antibody palivizumab

(anti-RSV IgG1 mAb) (Johnson et al., 1997) was subtracted from signal gener-

ated by antigen binding to HIV-1-reactive mAbs. The positivity cutoff was

calculated as three times the response generated by antigen binding to a sec-

ond negative control antibody Ab1248 (anti-influenza/hemagglutinin). Rate

constants weremeasured using 1:1 Langmuir equation. Additional explanation

of measuring rate constants for mAb binding to bacteria WCL is included in the

Supplemental Experimental Procedures. Glycine-HCL (pH 2.0) was used as

the regeneration buffer.

To determine the affinity of mature mAbs and their respective UCAs, Env

SPR binding titrations were performed using Biacore 3000 at 25�C. Autolo-
gous Env, 040 gp140 isolated from individual 004-0 (Table S1) (Bar et al.,

2012; Liao et al., 2013), and heterologous Env MN gp41 were used. Antibodies

were captured on a CM5 sensor chip coupled with anti-human Fc antibody.

Rate constants were measured using global curve fitting to binding curves ob-

tained from Env titrations.

Preparation of Intestinal Anaerobic and Aerobic Commensal

Bacteria Lysates

Two separate preparations of bacteria were inoculated from stool specimens

from 4–5 individuals and grown on agar plates under anaerobic and aerobic

conditions at 30�C. For each preparation the individual stool samples were

pooled, but aerobic and anaerobic extracts were prepared separately. A

detailed protocol is included in the Supplemental Experimental Procedures.

Identification of gp41 mAb-Reactive Protein in Intestinal Bacterial

Lysate

Anaerobe gut lysate (total protein �4 mg) was fractionated on a Superdex

S200 (GE Healthcare) size exclusion column, and protein fractions with molec-

ular size > 500 kDa were pooled and concentrated. SPR binding and western

blot analysis (�520 kDa band) confirmed that the high molecular weight frac-

tion from size exclusion chromatography was gp41 mAb276 reactive. The
er Inc.
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size-enriched and mAb276-reactive fraction comprised about 10%–20% of

the total gut lysate proteins. About 180 mg of size-fractionated lysate protein

was loaded on two adjacent lanes of a blue native gel, and �520 kDa bands

that blotted with Mab 276 were cut out of the Coomassie-stained blue native

gel. The cut out protein band was subjected to trypsin and chymotrypsin

digestion, and protein identification was performed by LC-MS/MS.

IgG VH1-69 Copy Number Assay

Primers and a probe designed for VH1-69 gene segments were used in the

QX100 Droplet Digital PCR system by Bio-Rad. A more detailed protocol is

included in the Supplemental Experimental Procedures.

Statistical Analysis

All analysis data sets were compiled and completed with SAS v.9.2 (SAS Insti-

tute). To compare VH mutation frequency and HCDR3 lengths, a mixed model

was performed to account for multiple observations taken from individual

patients.

Quantitative Image Analysis

Quantitative image analysis was performed on terminal ileum tissue B cells and

blood vessels as described (Levesque et al., 2009).

ACCESSION NUMBERS

The GenBank accession numbers for isolated antibody sequences reported in

this paper are as follows: DH300 (KM067693 and KM067694), DH301

(KM067695 and KM067696), DH302 (KM067697 and KM067698), DH303

(KM067699 and KM067700), DH304 (KM067701 and KM067702), DH305

(KM067703 and KM067704), DH306 (KM067705 and KM067706), DH307

(KM067707 and KM067708), DH308 (KM067709 and KM067710), DH309

(KM067711 and KM067712), DH310 (KM067713 and KM067714), DH311

(KM067715 and KM067716), DH312 (KM067717 and KM067718), DH313

(KM067719 and KM067720), DH314 (KM067721 and KM067722), DH315

(KM067723 and KM067724), DH316 (KM067725 and KM067726), DH317

(KM067727 and KM067728), DH318 (KM067729 and KM067730), DH319

(KM067731 and KM067732), DH320 (KM067733 and KM067734), DH321

(KM067735 and KM067736), DH322 (KM067737 and KM067738), DH323

(KM067739 and KM067740), DH324 (KM067741 and KM067742), DH325

(KM067743 and KM067744), DH326 (KM067745 and KM067746), DH327

(KM067747 and KM067748), DH328 (KM067749 and KM067750), DH329

(KM067751 and KM067752), DH330 (KM067753 and KM067754), DH331

(KM067755 and KM067756), DH332 (KM067757 and KM067758), DH333

(KM067759 and KM067760), DH334 (KM067761 and KM067762), DH335

(KM067763 and KM067764), DH336 (KM067765 and KM067766), DH337

(KM067767 and KM067768), DH338 (KM067769 and KM067770), DH339

(KM067771 and KM067772), DH340 (KM067773 and KM067774), DH341

(KM067775 and KM067776), DH342 (KM067777 and KM067778), DH343

(KM067779 and KM067780), DH344 (KM067781 and KM067782), DH345

(KM067783 and KM067784), DH346 (KM067785 and KM067786), DH347

(KM067787 and KM067788), DH348 (KM067789 and KM067790), DH349

(KM067791 and KM067792), DH350 (KM067793 and KM067794), DH351

(KM067795 and KM067796), DH352 (KM067797 and KM067798), DH353

(KM067799 and KM067800), DH354 (KM067801 and KM067802), DH355

(KM067803 and KM067804), DH366 (KM067805 and KM067806), and

DH367 (KM067807 and KM067808).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and seven tables and can be found with this article online at

http://dx.doi.org/10.1016/j.chom.2014.07.003.
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