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It is shown that every bipartite plane cubic map of connectivity 2 has at least eight 
quadrilaterals, and those with exactly eight quadrilaterals are Hamiltonian. Also, the smallest 
non-Hamiltonian bipartite plane cubic map is determined. 

1. Introduction 

We will be dealing exclusively with bipartite plane cubic maps. Since these are 
2-connected (see [2, p. 272]), each face in a bipartite plane cubic map has a cycle 
as its boundary. The number of vertices on the boundary cycle will be called the 
degree of the face. 

It is well known (see [3, p. 1121) that if ui is the number of vertices of degree i 
in a plane triangulation, then the following formula holds. 

12=5u,+4v2+3v3+2vq+vs-v,-2vs-3u9-* *. 

The dual of a bipartite plane cubic map is an Euler triangulation, and since our 
maps are assumed to have neither multiple edges nor loops, we have the following 
result. 

Proposition 1. Let M be a bipartite plane cubic map and let fi denote the number of 
faces of M having degree i. Then, 

12=2f,-2f8-4f,,--6fi2-*. . 

As a consequence of Proposition 1, we see that each bipartite plane cubic map 
has at least six quadrilaterals and those with exactly six have no face of degree 
greater than six. If M has exactly seven quadrilaterals, it must contain exactly one 
octagon. If M has exactly eight quadrilaterals, it contains either two octagons or 
one decagon. 
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CUBE 

Fig. 1 

Fig. 1 shows all the bipartite plane cubic maps having fewer than twenty 
vertices. The following proposition is easily verified. 

Proposition 2. Let M be one of the maps shown in Fig. 1. Let e be any edge in M if 
Mf N, and any edge other than a if M = N. Then there is a Hamiltonian cycle in M 

which passes through e. 

In [l] P.R. Goodey proves the following. 

Proposition 3. Let M be a bipartite plane cubic map. Suppose e is an edge of M 
bordering a quadrilateral and a hexagon if M has exactly six quadrilaterals, and a 

quadrilateral and an octagon if M has exactly seven quadrilaterals. Then there is a 
Hamiltonian cycle in M passing through e. 

CoroIlary. Every bipartite plane cubic map having exactly six quadrilaterals is 
Hamiltonian. 

Proposition 4. Let M be a bipartite plane cubic map having exactly six quadrilater- 
als and an edge e which borders two quadrilaterals. Then there is a Hamiltonian 
cycle in M which passes through e. 

Proof. The proof of Proposition 4 is quite tedious and lengthy and hence will be 
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omitted. It can be found in its entirety in [4] or [5]. Copies of [S] can be obtained 
from the author. 

2. Bipartite plane cubic maps having connectivity 2 

Proposition 5. Let M be a bipartite plane cubic map. M has connectivity 2 if and 
0~x1~ if there is a face in M with two nonadjacent edges on its boundary whose 
removal disconnects the map. 

Proof. It is quite easy to show that a cubic map is n-connected if and only if it is 
n-edge-connected. Since M is 2-connected the proposition follows immediately. 

Let M be a bipartite plane cubic map having connectivity 2. By Proposition 5, 
M has a face F with two nonadjacent edges e. and a, on its boundary whose 
removal disconnects M. This is depicted in Fig. 2. Straight lines in diagrams will 
be used to depict edges only, while curved lines may be paths of any length. 

It is easily shown that each of the paths PO and QO in the figure must contain an 
even number of vertices. With this in mind a decomposition process will now be 
described. 

Erase the edges e, and a,,, and consider the component of the resulting map 
which contains the path PO; call it L,. If x0 and yO are not connected by an edge, 
we can form another bipartite plane cubic map ML,, by adding the edge xoyo to LO. 
If x0 and yO are connected by an edge, we have one of the situations shown in Fig. 
3. Either PO is an edge (left), or consists of two edges and a path P, (right). Dotted 
lines in diagrams represent portions of the map which have been erased. 

Assume Lk-, is defined, 1~ k. Let Lk = Lk-,-{q-,, ykml}, taking one of the 
forms shown in Fig. 4. If xk and yk are not connected by an edge, we add the edge 
xkyk to Lk forming the map ML,. If xk and yk are connected by an edge, the map 
Lk can be represented by the one diagram shown in Fig. 5, where either p; or pk 
is an edge. Depending on which of these cases is true, Lk must take one of the 
forms shown in Fig. 6. 

Continuing this process, there must be a positive integer k such that xk and yk 
are not connected by an edge. When this occurs we add the edge xkyk to Lk 
forming the bipartite plane cubic map MLI, ending the procedure. A similar 
process may be carried out beginning with the vertices wO and .zO and the path Qo. 
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Fig. 2. 



D. L. Peterson 

Fig. 3. Fig. 4. 

Assuming that we have a map Ri at the jth step with vertices Wi and zi not 
connected by an edge, we add the edge wizi forming the bipartite plane cubic map 
Mn,. We will say that M has been decomposed into the maps MLk and Mn,. 

Proposition 6. Each bipartite plane cubic map of connectivity 2 has at least eight 
quadrilaterals. 

Proof. Each of the maps M,* and Mn, has at least six quadrilaterals. The 
construction of each of the maps from Lk and Ri involves the addition of two 
faces; therefore, each must contain four quadrilaterals of the original map. Since 
any map of connectivity 2 can be decomposed in this manner the proposition is 
established. 

Corollary. Let M be a bipartite plane cubic map with fewer than eight quadrilater- 
als. Then M is 3-connected. 

In light of the decomposition process the following proposition is clear. 

Proposition 7. Let M be a bipartite plane cubic map of connectivity 2. Suppose M is 
decomposed into the maps MLk and Mn,. Then M is Hamiltonian if and only if ML, 

and Mn, each have a Hamiltonian cycle passing through the respective edges xkyk 
and wizi. 
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Clearly, for M to be non-Hamiltonian either there is no Hamiltonian cycle in 
M,+ passing through xkykr or there is no Hamiltonian cycle in MRi passing through 
wizi. In light of Proposition 2, it is clear that the smallest non-Hamiltonian 
bipartite plane cubic map of connectivity 2 must decompose into two maps ML, 
and Mn,, where one is the map N in Fig. 1 and the other is the cube. This map is 
shown in Fig. 7. 

Proposition 8. Let M be a bipartite plane cubic map of connectivity 2 and having 

exactly eight quadrilaterals. Then M is Hamiltonian. 

Proof. Since each map in the decomposition of M contains four quadrilaterals 
of the original map, the two faces formed by adding either xkyk or WiZi must be 
quadrilaterals, hence leaving the maps ML, and MR, with six each. By Proposition 
4 we can find Hamiltonian cycles in these two maps passing through xkyk and wizi. 
By Proposition 7 these can be extended to form a Hamiltonian cycle in M. 

3. Conclusion 

In working on the conjecture of Barnette (see [6]) that every 3-connected 
bipartite plane cubic map is Hamiltonian, one soon finds that the ability to find 
Hamiltonian cycles through specified edges in such maps is of primary impor- 
tance. Indeed, it is fairly easy to show that the notions are equivalent (see [4, p. 
2171). Also, in searching for an inductive procedure to prove the conjecture it is 
difficult to avoid maps having connectivity 2. In [4] the author proves that there is 
a Hamiltonian cycle through any specified edge in a bipartite plane cubic map 
having exactly six quadrilaterals. The proof depends on the decomposition process 
described here for maps of connectivity 2. 

Finally, notice that the map in Fig. 7 has twelve quadrilaterals. Considering the 
nature of non-Hamiltonian plane cubic maps which have been found in the past, 
the following conjecture is not unreasonable. 

Conjecture 1. Every bipartite plane cubic map having connectivity 2 and fewer 
than twelve quadrilaterals is Hamiltonian. 

YO 

Fig. I. 
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If we combine this with Barnette’s conjecture, we have the following stronger 
conjecture. 

Conjecture 2. Every bipartite plane cubic map with fewer than twelve quadrilaterals 
is Hamiltonian. 

The proof of Conjecture 2 in the nine quadrilateral case depends on the ability 
to find a Hamiltonian cycle through any specified edge in a bipartite plane cubic 
map having exactly seven quadrilaterals. As yet, this is unproved. 
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