Strong Convergence of Averaged Approximants for Asymptotically Nonexpansive Mappings in Banach Spaces

Naoki Shioji*

Faculty of Engineering, Tamagawa University, Tamagawa-Gakuen, Machida, Tokyo 194, Japan
E-mail: shioji@eng.tamagawa.ac.jp

and

Wataru Takahashi

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152, Japan
E-mail: wataru@is.titech.ac.jp

Communicated by Frank Deutsch

Received November 18, 1996; accepted in revised form January 29, 1998

Let C be a closed, convex subset of a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable and let T be an asymptotically nonexpansive mapping from C into itself such that the set $F(T)$ of fixed points of T is nonempty. In this paper, we show that $F(T)$ is a sunny, nonexpansive retract of C. Using this result, we discuss the strong convergence of the sequence (x_n) defined by $x_n = \alpha_n x + (1 - \alpha_n) \frac{1}{n+1} \sum_{j=0}^{n} T_j x_n$ for $n = 0, 1, 2, \ldots$, where $x \in C$ and $\{\alpha_n\}$ is a real sequence in $(0, 1]$.

1. INTRODUCTION

Let C be a subset of a Banach space. A mapping T from C into E is said to be nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for each $x, y \in C$. A mapping T from C into itself is said to be asymptotically nonexpansive if there exists a sequence $\{k_n\}$ such that $\lim_{n \to \infty} k_n = 1$ and $\|T^n x - T^ny\| \leq k_n \|x - y\|$ for each $x, y \in C$ and $n = 0, 1, 2, \ldots$.

Let C be a closed, convex subset of a Banach space E. Let T be a nonexpansive mapping from C into itself such that the set $F(T)$ of fixed points of T is nonempty, let x be an element of C and for each t with $0 < t < 1$, let x_t be the unique point of C which satisfies $x_t = tx + (1 - t) Tx_t$. Browder

* Current address: Department of Mathematics, Faculty of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan. E-mail: shioji@math.sci.yu.nu.ac.jp.
[2] showed that \(\{x_n\} \) converges strongly to the element of \(F(T) \) which is nearest to \(x \) in \(F(T) \) as \(t \downarrow 0 \) in the case when \(E \) is a Hilbert space. Reich [8] extended Browder’s result to the case when \(E \) is a uniformly smooth Banach space and he showed that \(F(T) \) is a sunny, nonexpansive retract of \(C \), i.e., there exists a nonexpansive retraction \(P \) from \(C \) onto \(F(T) \) such that \(P(x + t(x - Px)) = Px \) for each \(x \in C \) and \(t \geq 0 \) with \(Px + t(x - Px) \in C \). Recently, using an idea of Browder [2], Shimizu and Takahashi [10] studied the convergence of another approximating sequence for an asymptotically nonexpansive mapping. Let \(T \) be an asymptotically nonexpansive mapping with Lipschitz constants \(\{k_n\} \) such that the set \(F(T) \) of fixed points of \(T \) is nonempty. Let \(0 < a < 1 \), let \(b_n = 1/n \sum_{j=0}^{n} (|1 - k_j| + e^{-j}) \) and let \(a_n = \frac{b_n - 1}{b_n - 1 + a} \) for \(n = 1, 2, \ldots \). Let \(x \) be an element of \(C \) and let \(x_n \) be the unique point of \(C \) which satisfies \(x_n = a_n x + (1 - a_n) \frac{1}{n+1} \sum_{j=0}^{n} T^j x_n \) for \(n = 1, 2, \ldots \). They showed that \(\{x_n\} \) converges strongly to the element of \(F(T) \) which is nearest to \(x \) in \(F(T) \) in the case when \(E \) is a Hilbert space.

In this paper, we extend Shimizu and Takahashi’s result to a Banach space. For an asymptotically nonexpansive mapping \(T \), we show that the set \(F(T) \) of fixed points of \(T \) is a sunny, nonexpansive retract of \(C \) and the sequence \(\{x_n\} \) defined above converges strongly to an element of \(F(T) \).

Our results are the following:

Theorem 1. Let \(C \) be a closed, convex subset of a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable and let \(T \) be an asymptotically nonexpansive mapping from \(C \) into itself such that the set \(F(T) \) of fixed points of \(T \) is nonempty. Then \(F(T) \) is a sunny, nonexpansive retract of \(C \).

Theorem 2. Let \(C \) be a closed, convex subset of a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable, let \(T \) be an asymptotically nonexpansive mapping from \(C \) into itself with Lipschitz constants \(\{k_n\} \) such that the set \(F(T) \) of fixed points of \(T \) is nonempty and let \(P \) be the sunny, nonexpansive retraction from \(C \) onto \(F(T) \). Let \(\{a_n\} \) be a real sequence such that

\[
0 < a_n \leq 1, \quad \lim_{n \to \infty} a_n = 0, \quad \text{and} \quad \lim_{n \to \infty} \frac{b_n - 1}{a_n} < 1,
\]

where \(b_n = 1/(n+1) \sum_{j=0}^{n} k_j \) for \(n = 0, 1, \ldots \). Let \(x \) be an element of \(C \) and let \(x_n \) be the unique point of \(C \) which satisfies

\[
x_n = a_n x + (1 - a_n) \frac{1}{n+1} \sum_{j=0}^{n} T^j x_n \tag{1.1}
\]
for } n \geq N_0, \text{ where } N_0 \text{ is a sufficiently large natural number. Then } \{x_n\} \text{ converges strongly to } P_x.

Remark. The inequality } \lim_{n \to \infty} \frac{a_n}{b_n} < 1 \text{ implies that there exists a natural number } N_0 \text{ such that } (1-a_n)b_n < 1 \text{ for } n \geq N_0. \text{ So for } n \geq N_0, \text{ there exists the unique point } x_n \text{ of } C \text{ which satisfies (1.1), since the mapping } T_n \text{ from } C \text{ into itself defined by } T_n u = a_n v + (1-a_n) 1/(n+1) \sum_{j=0}^n T_j v \text{ satisfies } \|T_n u - T_n v\| \leq (1-a_n) b_n \|u-v\| \text{ for each } u, v \in C.

In the case when } T \text{ is nonexpansive, we have the following:

Theorem 3. Let } C \text{ be a closed, convex subset of a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable, let } T \text{ be a nonexpansive mapping from } C \text{ into itself such that the set } F(T) \text{ of fixed points of } T \text{ is nonempty and let } p \text{ be the sunny, nonexpansive retraction from } C \text{ onto } F(T). \text{ Let } \{a_n\} \text{ be a real sequence such that } 0 < a_n \leq 1 \text{ and } a_n \to 0. \text{ Let } x \text{ be an element of } C \text{ and let } x_n \text{ be the unique point of } C \text{ which satisfies (1.1) for } n = 0, 1, \ldots. \text{ Then } \{x_n\} \text{ converges strongly to } P_x.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, all vector spaces are real and we denote by } \mathbb{N}, \text{ the set of all nonnegative integers. For a real number } a, \text{ we also denote } \max\{a, 0\} \text{ by } (a)_+. \text{ We denote by } \mathcal{A}^n, \text{ the set } \{\lambda = (\lambda_0, \ldots, \lambda_n); \lambda_0 \geq 0, \sum_{j=0}^n \lambda_j = 1\} \text{ for } n \in \mathbb{N}. \text{ For a subset } C \text{ of a Banach space, we denote by } \text{co } C, \text{ the convex hull of } C.

Let } E \text{ be a Banach space and let } r > 0. \text{ We denote by } B_r, \text{ the closed ball in } E \text{ with center } 0 \text{ and radius } r. \text{ } E \text{ is said to be uniformly convex if for each } \epsilon > 0, \text{ there exists } \delta > 0 \text{ such that } \|x+y\|/2 \leq 1 - \delta \text{ for each } x, y \in B_1 \text{ with } \|x-y\| \geq \epsilon. \text{ Let } C \text{ be a subset of } E \text{, let } T \text{ be a mapping from } C \text{ into } E \text{ and let } \varepsilon > 0. \text{ By } F(T) \text{ and } F_J(T), \text{ we mean the sets } \{x \in C : x = Tx\} \text{ and } \{x \in C : \|x-Tx\| \leq \epsilon\}, \text{ respectively. Let } k \geq 0. \text{ We denote by } \text{Lip}(C, k), \text{ the set of all mappings from } C \text{ into } E \text{ satisfying } \|Tx-Ty\| \leq k \|x-y\| \text{ for each } x, y \in C. \text{ We remark that } \text{Lip}(C, 1) \text{ is the set of all nonexpansive mappings from } C \text{ into } E. \text{ The following is a useful proposition due to Bruck [5]:}

Proposition 1. Let } C \text{ be a closed, convex subset of a uniformly convex Banach space. Then for each } R > 0, \text{ there exists a strictly increasing, convex, continuous function } \gamma: [0, \infty) \to [0, \infty) \text{ such that } \gamma(0) = 0 \text{ and}

\[
\gamma \left(\left\| \sum_{j=0}^n \lambda_j x_j - \sum_{j=0}^n \lambda_j T x_j \right\| \right) \leq \max_{0 \leq j < k \leq n} (\|x_j - x_k\| - \|T x_j - T x_k\|)
\]

for all } n \in \mathbb{N}, \lambda \in \mathcal{A}^n, x_0, \ldots, x_n \in C \cap B_R, \text{ and } T \in \text{Lip}(C, 1).
Let μ be a continuous, linear functional on l^{∞} and let $(a_0, a_1, \ldots) \in l^{\infty}$. We write $\mu_n(a_n)$ instead of $\mu((a_0, a_1, \ldots))$. We call μ a Banach limit [1] when μ satisfies $\|\mu\| = \mu(1) = 1$ and $\mu(a_{n+1}) = \mu(a_n)$ for each $(a_0, a_1, \ldots) \in l^{\infty}$.

For a Banach limit, we know that

$$\lim_{n \to \infty} a_n \leq \mu_n(a_n) \leq \lim_{n \to \infty} a_n \quad \text{for all} \quad (a_0, a_1, \ldots) \in l^{\infty}. \quad (2.1)$$

We also know the following from Lemma in [11] and its proof; see also [9, pp. 314-315]:

Proposition 2. Let C be a closed, convex subset of a uniformly convex Banach space E. Let $\{x_n\}$ be a bounded sequence of E, let μ be a Banach limit and let g be a real valued function on C defined by

$$g(y) = \mu_n \|x_n - y\|^2 \quad \text{for each} \quad y \in C.$$

Then g is continuous and convex, and g satisfies $\lim_{\|y\| \to \infty} g(y) = \infty$. Moreover, for each $R > 0$ and $\varepsilon > 0$, there exists $\delta > 0$ such that

$$g\left(\frac{y + z}{2}\right) \leq g(y) + \frac{g(z)}{2} - \delta$$

for all $y, z \in C \cap B_R$ with $\|y - z\| \geq \varepsilon$.

Let E^* be the topological dual of E. The value of $y \in E^*$ at $x \in E$ will be denoted by $\langle x, y \rangle$. We also denote by J, the duality mapping from E into 2^{E^*}, i.e.,

$$Jx = \{y \in E^* : \langle x, y \rangle = \|x\|^2 = \|y\|^2\} \quad \text{for each} \quad x \in E.$$

Let $U = \{x \in E : \|x\| = 1\}$. E is said to be smooth if for each $x, y \in U$, the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists. The norm of E is said to be uniformly Gâteaux differentiable if for each $y \in U$, the limit (2.2) exists uniformly for $x \in U$. E is said to be uniformly smooth if the limit (2.2) exists uniformly for $x, y \in U$. It is well known that if E is smooth then the duality mapping is single-valued and norm to weak star continuous. In the case when the norm of E is uniformly Gâteaux differentiable, we know the following from [12, Lemma 1]; see also [6, p. 586]:
Proposition 3. Let C be a convex subset of a Banach space E whose norm is uniformly Gâteaux differentiable. Let $\{x_n\}$ be a bounded subset of E, let z be a point of C and let μ be a Banach limit. Then

$$\mu_n \|x_n - z\|^2 = \min_{y \in C} \mu_n \|x_n - y\|^2$$

if and only if

$$\mu_n \langle y - z, J(x_n - z) \rangle \leq 0 \quad \text{for all } y \in C.$$

Let C be a convex subset of E, let K be a nonempty subset of C and let P be a retraction from C onto K, i.e., $Px = x$ for each $x \in K$. A retraction P is said to be sunny if $P(Px + t(x - Px)) = Px$ for each $x \in C$ and $t \geq 0$ with $Px + t(x - Px) \in C$. If the sunny retraction P is also nonexpansive, then K is said to be a sunny, nonexpansive retract of C. Concerning sunny, nonexpansive retractions, we know the following [3, 7]:

Proposition 4. Let C be a convex subset of a smooth Banach space, let K be a nonempty subset of C and let P be a retraction from C onto K. Then P is sunny and nonexpansive if and only if

$$\langle x - Px, J(y - Px) \rangle \leq 0 \quad \text{for all } x \in C \text{ and } y \in K.$$

Hence there is at most one sunny, nonexpansive retraction from C onto K.

3. PROOF OF THEOREMS

To prove Lemmas 1, 2, 3 below, we use the methods employed in [4, 5].

Lemma 1. Let C be a closed, convex subset of a uniformly convex Banach space. Then for each $R > 0$ and $\varepsilon > 0$, there exists $\eta > 0$ such that

$$(\text{co}(F_e(T) \cap B_\varepsilon) + B_\eta) \cap C \subset F_e(T)$$

for all $T \in \text{Lip}(C, 1 + \eta)$.

Proof. Let $R > 0$. Then there exists a function γ which satisfies the conditions in Proposition 1. Let $\varepsilon > 0$. Choose $\eta > 0$ such that $(3 + \eta) \eta + (1 + \eta) \gamma^{-1}(2(1 + R) \eta) \leq \varepsilon$. Let $T \in \text{Lip}(C, 1 + \eta)$. Pick $\lambda \in A^n$, $x_0, \ldots, x_n \in F_e(T) \cap B_\varepsilon$ and $y \in B_\eta$ such that \(\sum_{i=0}^n \lambda_i x_i + y \in C\). Since \(1/(1 + \eta)\) $T \in \text{Lip}(C, 1)$, we have

$$\sum_{i=0}^n \lambda_i x_i + y \in C.$$

CONVERGENCE OF AVERAGED APPROXIMANTS
\[
\gamma \left(\frac{1}{1 + \eta} \right) \left\| T \left(\sum_{i=0}^{n} \lambda_i x_i \right) - \sum_{i=0}^{n} \lambda_i T x_i \right\|
\]
\[
\leq \max_{0 \leq i < j \leq n} \left(\|x_i - x_j\| - \frac{1}{1 + \eta} \|T x_i - T x_j\| \right)
\]
\[
\leq \max_{0 \leq i < j \leq n} \left(\|x_i - T x_j\| + \|x_j - T x_i\| + \frac{\eta}{1 + \eta} \|T x_i - T x_j\| \right)
\]
\[
\leq 2(1 + R) \eta.
\]

Hence we get
\[
\left\| \left(\sum_{i=0}^{n} \lambda_i x_i + y \right) - T \left(\sum_{i=0}^{n} \lambda_i x_i + y \right) \right\|
\]
\[
\leq \|y\| + \left\| \sum_{i=0}^{n} \lambda_i x_i - \sum_{i=0}^{n} \lambda_i T x_i \right\|
\]
\[
+ \left\| \sum_{i=0}^{n} \lambda_i T x_i - T \left(\sum_{i=0}^{n} \lambda_i x_i \right) \right\| + \left\| \left(\sum_{i=0}^{n} \lambda_i x_i \right) - T \left(\sum_{i=0}^{n} \lambda_i x_i + y \right) \right\|
\]
\[
\leq (3 + \eta) \eta + (1 + \eta) \gamma^{-1} (2(1 + R) \eta) \leq \varepsilon.
\]

Lemma 2. Let \(C \) be a closed, convex subset of a uniformly convex Banach space. Then for each \(p \in \mathbb{N} \), \(R > 0 \) and \(\varepsilon > 0 \), there exist \(\eta > 0 \) and \(N \in \mathbb{N} \) such that for each pair \(T \in \text{Lip}(C, 1 + \eta) \) and \(\{ x_{j,n} : n \in \mathbb{N}, j = 0, ..., p \} \subset C \cap B_R \) satisfying
\[
\frac{1}{n+1} \sum_{i=0}^{n} \|x_{j,n+1} - T x_{j,i}\| \leq \eta \quad \text{for all} \quad n \geq N \quad \text{and} \quad j = 0, ..., p,
\]
there holds
\[
\frac{1}{n+1} \sum_{i=0}^{n} \left\| \sum_{j=0}^{n} \lambda_j x_{j,n+1} - T \left(\sum_{j=0}^{n} \lambda_j x_{j,i} \right) \right\| \leq \varepsilon
\]
\[
\text{for all} \quad n \geq N \quad \text{and} \quad \lambda \in \Delta^p.
\]

Proof. Let \(R > 0 \). Then there exists a function \(\gamma \) which satisfies the conditions in Proposition 1. Let \(p \in \mathbb{N} \) and let \(\varepsilon > 0 \). Then there exist \(\eta > 0 \) and \(N \in \mathbb{N} \) satisfying
\[
\eta + (1 + \eta) \gamma^{-1} \left(\frac{p(p+1)}{2} \left(\frac{2R}{N+1} + 2(1 + R) \eta \right) \right) \leq \varepsilon.
\]
Pick $T \in \text{Lip}(C, 1 + \eta)$ and $\{x_{j,i} : i \in \mathbb{N}, j = 0, ..., p \} \subset C \cap B_{R}$ satisfying (3.1). Let $n \gg N$ and $\lambda \in A^p$. Since

$$- \frac{1}{1 + \eta} \|Tx_{j,i} - Tx_{k,i}\| \leq - \|x_{j,i+1} - x_{k,i+1}\| + \|x_{j,i+1} - Tx_{j,i}\|$$

we get

$$\gamma \left(\frac{1}{n + 1} \sum_{i=0}^{n} \frac{1}{1 + \eta} \left(\sum_{j=0}^{p} \lambda_j T x_{j,i} - T \left(\sum_{j=0}^{p} \lambda_j x_{j,i} \right) \right) \right) \leq \frac{1}{n + 1} \sum_{i=0}^{n} \gamma \left(\sum_{j=0}^{p} \lambda_j T x_{j,i} - T \left(\sum_{j=0}^{p} \lambda_j x_{j,i} \right) \right)$$

$$\leq \frac{1}{n + 1} \sum_{i=0}^{n} \max_{0 \leq j < k \leq p} \left(\|x_{j,i} - x_{k,i}\| - \frac{1}{1 + \eta} \|Tx_{j,i} - Tx_{k,i}\| \right)$$

$$\leq \frac{1}{n + 1} \sum_{i=0}^{n} \sum_{0 \leq j < k \leq p} \left(\|x_{j,i} - x_{k,i}\| - \frac{1}{1 + \eta} \|Tx_{j,i} - Tx_{k,i}\| \right)$$

$$\leq \sum_{0 \leq j < k \leq p} \frac{\|x_{j,0} - x_{k,0}\| - \|x_{j,n+1} - x_{k,n+1}\|}{n + 1} + 2(1 + R) \eta$$

So we obtain

$$\frac{1}{n + 1} \sum_{i=0}^{n} \left(\sum_{j=0}^{p} \lambda_j x_{j,i+1} - Tx_{j,i+1} \right) \leq \sum_{j=0}^{p} \lambda_j \left(\frac{1}{n + 1} \sum_{i=0}^{n} \|x_{j,i+1} - Tx_{j,i}\| \right)$$

$$+ \frac{1}{n + 1} \sum_{i=0}^{n} \left(\sum_{j=0}^{p} \lambda_j Tx_{j,i} - T \left(\sum_{j=0}^{p} \lambda_j x_{j,i} \right) \right)$$

$$\leq \eta + (1 + \eta) \gamma^{-1} \left(\frac{p(p + 1)}{2} \left(\frac{2R}{N + 1} + 2(1 + R) \eta \right) \right) \leq \varepsilon.$$

The following is crucial to the proof of our theorems:
Theorem 3. Let C be a closed, convex subset of a uniformly convex Banach space. Then for each $r > 0$, $R \geq r$ and $\varepsilon > 0$, there exist $\eta > 0$ and $N \in \mathbb{N}$ such that for each $l \in \mathbb{N}$ and for each mapping T from C into itself satisfying $\sup \{ \| T^n x \| : n \in \mathbb{N}, x \in C \cap B_r \} \leq R$ and $T^l \in \text{Lip}(C, 1 + \eta)$, there holds

$$\left\| \frac{1}{m+1} \sum_{i=0}^{m} T^i x - \frac{1}{m+1} \sum_{i=0}^{m} T^i x \right\| \leq \varepsilon$$

for all $m \geq N$ and $x \in C \cap B_r$. Especially, for each $r > 0$ and for each asymptotically nonexpansive mapping T from C into itself with $F(T) \neq \emptyset$,

$$\lim_{l \to \infty} \lim_{m \to \infty} \sup_{x \in C \cap B_r} \left\| \frac{1}{m+1} \sum_{i=0}^{m} T^i x - \frac{1}{m+1} \sum_{i=0}^{m} T^i x \right\| = 0.$$

Proof. Let $r > 0$, let $R \geq r$ and let $\varepsilon > 0$. By Lemma 1, there exist $\eta > 0$ and $\xi > 0$ such that

$$(\text{co}(F(S) \cap B_R) + B_R) \cap C \subset F(S)$$

for all $S \in \text{Lip}(C, 1 + \eta)$ and

$$(\text{co}(F(S) \cap B_R) + B_\xi) \cap C \subset F(S)$$

for all $S \in \text{Lip}(C, 1 + \xi)$.

Choose $r > 0$ and $p \in \mathbb{N}$ such that $Rr \leq \xi/3$, $r \leq \xi$ and $2R((p+1) \leq r^2/2$. By Lemma 2, there exist $\eta > 0$ and $N \in \mathbb{N}$ such that for each $S \in \text{Lip}(C, 1 + \eta)$ and $\{ x_{j,n} : n \in \mathbb{N}, j = 0, ..., p \} \subset C \cap B_R$ satisfying

$$\frac{1}{n+1} \sum_{i=0}^{n} |x_{j+1,i} - Sx_{j,i}| \leq \eta \quad \text{for all} \quad n \geq N \quad \text{and} \quad j = 0, ..., p,$$

there holds

$$\frac{1}{n+1} \sum_{i=0}^{n} \left| \sum_{j=0}^{p} \lambda_j x_{j+1,i} - S \left(\sum_{j=0}^{p} \lambda_j x_{j,i} \right) \right| \leq \frac{r^2}{2}$$

for all $n \geq N$ and $\lambda \in A^p$.

We may assume $\eta \leq \xi$ and $PR/(N+1) \leq \xi/3$. Let $l \in \mathbb{N}$ and let T be a mapping from C into itself satisfying $\sup \{ \| T^n x \| : n \in \mathbb{N}, x \in C \cap B_r \} \leq R$ and $T^l \in \text{Lip}(C, 1 + \eta)$. We may assume $l \neq 0$. Let $x \in C \cap B_r$. Set $y^*_n = T^{*n} x$ for $n \in \mathbb{N}$ and $q = 0, ..., l-1$. We remark from the hypothesis of T that $\| y^*_n \| \leq R$ for $n \in \mathbb{N}$ and $q = 0, ..., l-1$. Let $n_l = 1/(p+1) \sum_{i=0}^{p} y^*_j$, for $i \in \mathbb{N}$ and $q = 0, 1, ..., l-1$. Let $n \geq N$ and let $q \in \{ 0, 1, ..., l-1 \}$. Since $y^*_{j+1,i} = T^j y^*_i$ for $j = 0, 1, ..., p$, we get
\[
\frac{1}{n+1} \sum_{i=0}^{n} (w_i^q - T^i w_i^q) \leq \frac{1}{n+1} \sum_{i=0}^{n} (w_i^q - w_{i+1}^q) + \frac{1}{n+1} \sum_{i=0}^{n} (w_{i+1}^q - T^i w_i^q) \\
\leq 2R \frac{\tau^2}{p+1} \leq \tau^2.
\]

Set \(A_q^* = \{ i \in \{0, \ldots, n\} : ||w_i^q - T^i w_i^q|| \geq \tau \} \) and \(B_q^* = \{0, \ldots, n\} \setminus A_q^* \). Then we have \(\#A_q^* \leq \tau \), where \(\#A_q^* \) is the cardinality of the set \(A_q^* \). Since

\[
\left| \frac{1}{n+1} \sum_{i=0}^{n} y_i^q - \frac{1}{n+1} \sum_{i=0}^{n} w_i^q \right| \\
\leq \left| \frac{1}{n+1} \sum_{i=0}^{n} y_i^q - \frac{1}{n+1} \sum_{i=0}^{n} w_i^q \right| + \left| \frac{1}{n+1} \sum_{i=B_q^*}^{n} w_i^q - \frac{1}{\#A_q^*} \sum_{i=A_q^*}^{n} w_i^q \right| \\
\leq \frac{2R}{n+1} \frac{\tau^2}{p+1} \leq \frac{\tau^2}{p+1},
\]

we have

\[
\left| \frac{1}{n+1} \sum_{i=0}^{n} y_i^q - \frac{1}{\#B_q^*} \sum_{i=B_q^*}^{n} w_i^q \right| \\
\leq \left| \frac{1}{n+1} \sum_{i=0}^{n} y_i^q - \frac{1}{n+1} \sum_{i=0}^{n} w_i^q \right| + \left| \frac{1}{n+1} \sum_{i=B_q^*}^{n} w_i^q - \frac{1}{\#B_q^*} \sum_{i=B_q^*}^{n} w_i^q \right| \\
\leq \frac{2R}{n+1} \frac{\tau^2}{p+1} \leq \frac{\tau^2}{p+1}.
\]

So by \(1/\#B_q^* \sum_{i=B_q^*}^{n} w_i^q \in \text{co } F_q(T^i) \cap B_R \), we get

\[
\frac{1}{n+1} \sum_{i=0}^{n} y_i^q \in \text{co } (F_q(T^i) \cap B_R) \cap C \subset F_q(T^i)
\]

for all \(n \geq N \) and \(q = 0, 1, \ldots, l-1 \). Let \(m \geq h(N+1) \). Choose \(n \in \mathbb{N} \) and \(s \in \{0, \ldots, l-2\} \) such that \(m = h(n+1) + s \). Then \(n \geq N \). Hence we obtain

\[
\frac{1}{m+1} \sum_{i=0}^{m} T^i x = \frac{n+2}{m+1} \sum_{q=0}^{n} \left(\frac{1}{n+2} \sum_{i=0}^{n+1} y_i^q \right) + \frac{n+1}{m+1} \sum_{q=s+1}^{l-1} \left(\frac{1}{n+1} \sum_{i=0}^{n} y_i^q \right) \\
\in \text{co } (F_q(T^i) \cap B_R) \cap C \subset F_q(T^i)
\]

for all \(m \geq h(N+1) \) and \(x \in C \cap B_r \).

In the rest of this section, we assume that C, T, $\{k_n\}$, $\{a_n\}$, $\{b_n\}$, x and $\{x_n\}$ are as in Theorem 2, we set $a = \lim_n (b_n - 1)/a_n$ and we set $x_n = x$ for $n = 0, 1, \ldots, N_0 - 1$.

Lemma 4. Let $\{x_n\}$ be a subsequence of $\{x_n\}$ and let μ be a Banach limit. Then there exists the unique element z of C satisfying
\[
\mu_i \|x_n - z\|^2 = \min_{y \in C} \mu_i \|x_n - y\|^2
\]
and the point z is a fixed point of T.

Proof. From Proposition 2, it is easy to see that there exists the unique element z of C satisfying (3.2). If we can show $\lim_n T^{n} z = z$, then z is a fixed point of T.

Suppose $\lim_n T^{n} z \neq z$. Then there exists $\varepsilon > 0$ such that for each $m \in \mathbb{N}$, there exists $l \geq m$ satisfying $\|T^l z - z\| > \varepsilon$. Set $R = \sup\{\|T^m z\| : m \in \mathbb{N}\}$. By Proposition 2, there exists $\delta > 0$ such that
\[
\mu_i \left\| x_n - \frac{x + y}{2} \right\|^2 \leq \frac{1}{2} \left(\mu_i \|x_n - x\|^2 + \mu_i \|x_n - y\|^2 \right) - \delta
\]
for all $x, y \in C \cap B_R$ with $\|x - y\| > \varepsilon$. By the property of ε, $\lim_n k_i \leq 1$ and Lemma 3, there also exists $l \geq m$ satisfying $\|T^l z - z\| > \varepsilon$, $(k_i^2 - 1)\mu_i \|x_n - z\|^2 < \delta$ and $\mu_i \|x_n - T^l z\|^2 < \mu_i \|T^l x_n - T^l z\|^2 + \delta$. From (3.3), we have
\[
\mu_i \left\| x_n - \frac{T^l z + z}{2} \right\|^2 \leq \frac{1}{2} \left(\mu_i \|x_n - T^l z\|^2 + \mu_i \|x_n - z\|^2 \right) - \delta
\]
\[
= \mu_i \|x_n - z\|^2 + \frac{1}{2} (k_i^2 - 1)\mu_i \|x_n - z\|^2 - \delta
\]
\[
< \mu_i \|x_n - z\|^2.
\]
So we get a contradiction. This completes the proof.

Lemma 5.
\[
\langle x_n - x, J(x_n - z) \rangle \leq \frac{(b_n - 1) + a_n}{a_n} \|x_n - z\|^2
\]
for all $n \geq N_0$ and $z \in F(T)$.

Proof. Let $n \geq N_0$ and let $z \in F(T)$. Since $a_n(x_n - x) = (1 - a_n)(1/(n + 1) \sum_{j=0}^n T^j x_n - x_n)$ and $z \in F(T)$, we get
\[
\langle x_n - x, J(x_n - z) \rangle = \frac{1 - a_n}{a_n} \left(\frac{1}{n+1} \sum_{j=0}^{n} T^j x_n - x_n, J(x_n - z) \right)
\]
\[
= \frac{1 - a_n}{a_n} \left(\frac{1}{n+1} \sum_{j=0}^{n} T^j x_n - \frac{1}{n+1} \sum_{j=0}^{n} T^j z, J(x_n - z) \right)
+ \langle z - x_n, J(x_n - z) \rangle
\]
\[
\leq \frac{1 - a_n}{a_n} \left(\frac{1}{n+1} \sum_{j=0}^{n} k_j \|x_n - z\|^2 - \|x_n - z\|^2 \right)
\]
\[
\leq \frac{(b_n - 1)}{a_n} \|x_n - z\|^2.
\]

Lemma 6. Each subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) contains a subsequence of \(\{x_{n_k}\} \) converging strongly to an element of \(F(T) \).

Proof. Let \(\{x_{n_k}\} \) be a subsequence of \(\{x_n\} \) and let \(\mu \) be a Banach limit. There exists \(z \in F(T) \) satisfying (3.2). By Lemma 5, we get \(\mu, \langle x_n - x, J(x_n - z) \rangle \leq (a.+ \mu, \|x_n - z\|^2 \right)^2 \). This inequality and Proposition 3 yield

\[
\mu, \|x_n - z\|^2 \leq \frac{1}{1 - (a_+) \mu, \langle x - z, J(x_n - z) \rangle \leq 0.
\]

By (2.1), there exists a subsequence of \(\{x_{n_k}\} \) converging strongly to \(z \).

Now we can prove our theorems.

Proof of Theorem 1. Taking, for example,

\[
a_n = \begin{cases}
\frac{1}{n+1} & \text{if } b_n \leq 1, \\
\sqrt{b_n - 1} & \text{if } 1 < b_n \leq 2, \\
1 & \text{if } 2 < b_n,
\end{cases}
\]

we may assume \(a \leq 0 \) only in this proof. First we shall show that \(\{x_{n_k}\} \) converges strongly to an element of \(F(T) \). By Lemma 6, we know that each subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) contains a subsequence of \(\{x_{n_k}\} \) converging strongly to an element of \(F(T) \). Let \(\{x_{n_k}\} \) and \(\{x_{m_k}\} \) be subsequences of \(\{x_n\} \) converging strongly to elements \(y \) and \(z \) of \(F(T) \), respectively. We shall show \(y = z \). From Lemma 5, we have \(\langle x_{n_k} - x, J(x_{n_k} - z) \rangle \leq (b_n - 1)_+ / a_n \|x_{n_k} - z\|^2 \). So we get \(\langle y - x, J(y - z) \rangle \leq 0 \). By the same argument, we have \(\langle z - x, J(z - y) \rangle \leq 0 \). Adding these inequalities, we get \(\|y - z\|^2 \leq 0 \),
i.e., \(y = z \). So \(\{ x_n \} \) converges strongly to an element of \(F(T) \). Hence we can define a mapping \(P \) from \(C \) onto \(F(T) \) by \(Px = \lim_{n \to \infty} x_n \), since \(x \) is an arbitrary point of \(C \). By the argument above, we have \(\langle x - Px, J(z - Px) \rangle \leq 0 \) for all \(x \in C \) and \(z \in F(T) \). Therefore \(P \) is the sunny, nonexpansive retraction by Proposition 4.

Proof of Theorem 2. Let \(\{ x_n \} \) be a subsequence of \(\{ x_n \} \) converging strongly to an element \(y \) of \(F(T) \). We shall show \(y = Px \). By Lemma 5, we have \(\langle x_n - x, J(x_n - Px) \rangle \leq (b_n - 1) \| x_n - Px \|^2 \). So we get \(\langle y - x, J(y - Px) \rangle \leq (a_n) + \| y - Px \|^2 \). Hence we obtain

\[
(1 - (a_n)) \| y - Px \|^2 \leq \langle x - Px, J(y - Px) \rangle \leq 0
\]

by Proposition 4. From \(a < 1 \), we have \(y = Px \). Hence by Lemma 6, \(\{ x_n \} \) converges strongly to \(Px \).

Proof of Theorem 3. Since \(T \) is nonexpansive, we have \(k_n = 1 \) for all \(n \in \mathbb{N} \) and hence \(\lim \limits_{n \to \infty} (b_n - 1)/a_n = 0 < 1 \). So we obtain the desired result by Theorem 2.

REFERENCES