
Journal of Algebra 324 (2010) 1219–1228

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The Wells exact sequence for the automorphism group of
a group extension

Ping Jin a,b,∗,1, Heguo Liu c,2

a School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China
b School of Mathematical Sciences, Shanxi University, Taiyuan 030006, PR China
c Department of Mathematics, Hubei University, Wuhan 430062, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 September 2008
Available online 11 June 2010
Communicated by Leonard L. Scott, Jr.

Keywords:
Automorphism
Group extension
Cohomology group
The Wells map

We obtain an explicit description of the Wells map for the
automorphism group of a group extension in the full generality
and investigate the dependency of this map on group extensions.
Some applications are given.

Crown Copyright © 2010 Published by Elsevier Inc.
All rights reserved.

1. Introduction

In recent years there has been considerable interest in the Wells sequence constructed in [8,10]
for the automorphism group of a group extension, involved with automorphisms of group extensions,
classifying spaces of finite groups, automorphism group rings of finite p-groups, and saturated fusion
systems over 2-groups, etc. See [2,3,5–7], for example. However, this sequence contains a set map,
known as the Wells map, which has not been well understood up to this point and consequently is
hard to apply.

The present paper is a continuation of the first author’ work [4] there we gave an explicit descrip-
tion of the Wells map in a special case. By developing some ideas on group actions due to Buckley [1],
we are now able to prove that the Wells map is a derivation (or equivalently, a 1-cocycle) in the full
generality. Further, this new description enables us to investigate the dependency of the Wells map
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on group extensions and to deduce some new applications for inducing automorphism pairs. It should
be pointed out that the method used in the paper is more conceptual, not computational as in [4].

To state our results, we need to fix the following notation which will be used throughout this
paper for convenience.

• Let Q and N be arbitrary groups and let χ : Q → Out N be a fixed group homomorphism which
can be realized as the coupling of an extension of N by Q .

• A = Z(N), the center of N regarded as a Q -module via χ .
• Der(Q , A), the group of derivations from Q into A. A map λ : Q → A is called a derivation

whenever (xy)λ = (xλ)y yλ for all x, y ∈ Q .
• H = H2(Q , A), the second cohomology group.
• C = Comp(χ), the group of all compatible pairs of automorphisms (θ,σ ) ∈ Aut N × Aut Q for χ .

Recall that an automorphism pair (θ,σ ) is said to be compatible for χ (in the sense of Wells [10])
if θ and σ satisfy the equation

θ̄−1xχ θ̄ = (
xσ

)χ

where x ∈ Q and θ̄ = θ(Inn N) denotes the image of θ in Out N .
• Extχ (Q , N), the set of equivalence classes [E ] of χ -extensions E . Here by a χ -extension, we mean

a group extension E : N � G � Q with the coupling χ .
• Aut E , the automorphism group of an extension E : N � G � Q , that is, the group of automor-

phisms of G that leave N invariant.
• Γ = C � H , the semidirect product under the natural action of C on H given in Section 2.

In addition, for any χ -extension E : N � G � Q , we shall always write

ρ(E ) : Aut E → C

for the restriction homomorphism, that is,

γ ρ(E ) = (γ |N , γ |Q ) ∈ C

where γ ∈ Aut E . This homomorphism provides a means of studying Aut E with Aut N and Aut Q
under control. The crucial question on automorphisms of group extensions is to decide whether a
given automorphism pair c = (θ,σ ) is inducible from E , that is, when c lies in the image Imρ(E ).

Now we give a new description of the Wells map in terms of group actions. Buckley [1, Theo-
rem 1.1] first considered the natural action of the group C on the set Extχ (Q , N), and proved that
the image of ρ(E ) coincides with the stabilizer of [E ] in C . In other words, he showed that (in our
notation) an element c ∈ C is inducible from a given χ -extension E if and only if [E ]c = [E ]. However,
in that paper Buckley did not consider the Wells map further. Actually, since the cohomology group
H acts regularly on Extχ (Q , N), as will be described explicitly in next section, it follows that there
exists a unique element h ∈ H such that [E ]c · h = [E ]. So, we have a set map ω(E ) : C → H defined
by the equation

[E ]c · cω(E ) = [E ]

for c ∈ C . This map has the property that c is inducible from E precisely when cω(E ) is trivial. Of
course, ω(E ) = ω(E ′) for equivalent extensions E and E ′ . Consequently, the Wells sequence for a
χ -extension E , constructed in [8] or [10], can be reformulated as the following exact sequence

0 → Der(Q , A) → Aut E ρ(E )−→ C
ω(E )−→ H .
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Here we remark that the map ω(E ) : C → H defined above coincides with the original one defined
in [8] or [10] after a routine calculation. So, for the sake of simplicity and clarity, we shall adopt ω(E )

as the definition of the Wells map for a χ -extension E in this paper. We note that in Theorem 2.1
of [6] there is a similar set map ε : C → H which works as the Wells map, defined by identifying [E ]
with an element of H . However it is not obvious that both maps are the same, since in general there
is not a canonical correspondence between Extχ (Q , N) and H (as a set).

The key to our approach is the study of the compatibility of three well-known group actions:
the action on the set Extχ (Q , N) of groups C and H respectively, and the action of C on H via
automorphisms. Our first main result combines the actions of C and H on Extχ (Q , N).

Theorem A. With the above notation, there exists a group action of the semidirect product Γ = C H on the set
Extχ (Q , N) defined by

[E ] · (ch) = [E ]c · h

for any χ -extension E , c ∈ C and h ∈ H. Furthermore, if C(E ) denotes the stabilizer of [E ] in Γ , then C(E ) is
a complement to H in Γ and the set {C(E ) | [E ] ∈ Extχ (Q , N)} is a single conjugacy class of subgroups of Γ .

In the situation of Theorem A, since C ∩ C(E ) is the stabilizer of [E ] in C for each χ -extension E ,
we may restate Theorem 1.1 of [1] as the following exact sequence

0 → Der(Q , A) → Aut E ρ(E )−→ C ∩ C(E ) → 1

which indicates the dependency on extensions and provides a useful tool in the study of inducing
automorphism pairs. To show the power of Theorem A, we shall give some of its applications. The
first one is immediate, which covers [4, Theorem A].

Corollary B. For any χ -extension E , the Wells map ω(E ) is a derivation from C into H under the natural
action of C on H. Further, if E ′ is another χ -extension, then there exists an element h ∈ H such that

cω(E ′) = cω(E )h
(
h−1)c

for all c ∈ C, that is, ω(E ) and ω(E ′) differ by an inner derivation.

Note that in the situation of Corollary B, the Wells map ω(E ) defines a unique element [ω(E )] ∈
H1(C, H), which we call the associated cohomology element with the coupling χ and denote by [χ ].
We shall exhibit an example in Section 4 to show that the group C does not coincide with C(E ) in
Γ for any χ -extension E in general. However, the cohomology element [χ ] can be used to obtain a
criterion. It might be interesting to mention that [χ ] ∈ H1(C, H) can be thought of as the obstruction
to every compatible pair being inducible in some extension. Compare this with [χ ] ∈ H3(Q , A), the
obstruction to the existence of some extension with coupling χ .

Corollary C. The following statements are equivalent:

(a) [χ ] vanishes in H1(C, H).
(b) C = C(E ) for some χ -extension E .
(c) There exists a χ -extension E such that ρ(E ) : Aut E → C is surjective.

We mention that Corollary C applies when χ is trivial or when N is abelian. Moreover, we let
s(χ) denote the number of equivalent classes of splitting χ -extensions and call s(χ) the splitting
index of χ . Then we shall prove that [χ ] vanishes whenever s(χ) = 1, which covers the case where
N is abelian and hence extends [7, Lemma 1.2].
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Next, we shall deal with an interesting case where [χ ] vanishes. For convenience we call an ele-
ment c ∈ C is absolutely inducible for χ if c is inducible from each χ -extension.

Theorem D. If [χ ] vanishes, then an element c ∈ C is absolutely inducible if and only if c acts trivially on H.

By definition, it is easy to verify that such pairs (θ,1Q ) must act trivially on H , where θ ∈
CAut N (Q χ , A), the group of those automorphisms of N that act trivially on Q χ and on A. More-
over, the extension constructed in Section 4 shows that the condition [χ ] = 0 in Theorem D cannot
be removed.

Finally, we shall give an application of Theorem A to finite groups.

Theorem E. Assume that both N and Q are finite groups. Let c ∈ C. If (o(c), |A|) = 1, then c is absolutely
inducible if and only if c acts trivially on H, in which case there is an automorphism ϕ ∈ Aut E for each χ -
extension E such that ϕ induces c and the orders o(ϕ) and o(c) are equal.

This extends [4, Theorem B] except for the uniqueness. Again Theorem E is not true without the
coprimeness condition, as indicated by the same example in Section 4.

Most notation used in this paper will be standard, see [9], for example.

2. Group actions and Theorem A

In this section, we shall review some known results of group actions and then prove Theorem A.

2.1. The action of H on Extχ (Q , N)

It is well known that the second cohomology group H = H2(Q , A) acts regularly on the set
Extχ (Q , N), see [8,9] for example. We shall give an explicit description for this regular action, which
will be crucial in the proof of Theorem A. The following is adopted from [8, Section 2] with a minor
change in notation.

Let E : N � G
π� Q be a χ -extension. Recall that a map λ : Q → G is called a transversal function

for E if λπ = 1 and 1λ = 1. For an element x in Q , denote by xξ the automorphism of N induced by
xλ by conjugation in G and we obtain a map ξ : Q → Aut N satisfying

axξ = (
xλ

)−1
axλ

for all a ∈ N and x ∈ Q . Also, if x and y are elements of Q , then xλ yλ and (xy)λ differ by an element
of N . Thus we have a map α : Q × Q → N such that

xλ yλ = (xy)λ(x, y)α.

Then (ξ,α) will be referred to as an associated pair for E . Moreover, let

G(ξ,α) = {
(x,a)

∣∣ x ∈ Q , a ∈ N
}
,

equipped with the binary operation

(x,a)(y,b) = (
xy, (x, y)α · ayξ · b

)
.

Then G(ξ,α) is a group. We write

E (ξ,α) : N � G(ξ,α) � Q
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for the corresponding extension. It is routine to check that the transversal function x �→ (x,1) gives
rise to the functions ξ and α as an associated pair for E (ξ,α).

After these preparations we can now describe the natural action of H on Extχ (Q , N). The follow-
ing result is a direct consequence of (2.12) in [8], which is of fundamental importance in the theory
of group extensions.

Lemma 2.1. Let (ξ,α) be an associated pair of functions for a χ -extension E . Then E is equivalent to the
constructed extension E (ξ,α) and (ξ,αβ) is also an associated pair of functions for a χ -extension where
β ∈ Z 2(Q , A). Furthermore, the operation

[E ] · [β] = [
E (ξ,α)

] · [β] = [
E (ξ,αβ)

]

will give rise to the regular action of H on Extχ (Q , N).

We mention that in the above lemma the product αβ is defined by

(x, y)(αβ) = (x, y)α(x, y)β

for all x, y ∈ Q , as H is written multiplicatively in this paper.

2.2. The action of C on Extχ (Q , N)

For a χ -extension E : N
ι

� G
π
� Q and a pair c = (θ,σ ) ∈ C , Buckley [1] defined the action of c on

E as (in our notation)

E c : N
θ−1ι
� G

πσ
� Q .

Lemma 2.2. With the above notation, the following statements hold:

(a) E c is also a χ -extension.
(b) If E ′ is a χ -extension, then [E ] = [E ′] if and only if [E c] = [(E ′)c]. This induces a natural action of C on

Extχ (Q , N) by setting [E ]c = [E c].
(c) If (ξ,α) is an associated pair of functions for E with respect to a transversal function λ : Q → G, then the

associated functions for E c with respect to the transversal function σ−1λ are ξ c and αc , where

xξ c = θ−1(xσ−1)ξ
θ and (x, y)αc = ((

xσ−1
, yσ−1)

α
)θ

for all x, y ∈ Q . In particular, the constructed extensions E (ξ c,αc) and E (ξ,α)c are equivalent.

Proof. All these are standard facts and the proof is straightforward, see [1,8] for the details. �
Furthermore, Buckley [1] proved that the pair c = (θ,σ ) is inducible from E if and only if E c is

equivalent to E , that is, [E ]c = [E c] = [E ]. So, the image of ρ(E ) : Aut E → C can be described as the
stabilizer of [E ] in C .

Now, assume that the above χ -extension E : N
ι

� G
π
� Q splits, that is, there exists a homomor-

phism λ : Q → G such that λπ = 1Q . Let λ′ = σ−1λ. Since σ is an automorphism of Q , λ′ : Q → G
is a homomorphism. Clearly λ′(πσ ) = 1Q , which implies that E c also splits. We mention that such
two splitting extensions E c and E need not be equivalent in general, as indicated by the example
constructed in Section 4.
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2.3. The action of C on H

This action is also known, see [8], and we review some related results to establish our notation.
For any c = (θ,σ ) ∈ C and α ∈ Z 2(Q , A), define αc by the following rule

(x, y)αc = ((
xσ−1

, yσ−1)
α

)θ

for x, y ∈ Q . We may verify that αc ∈ Z 2(Q , A) and that the coboundaries B2(Q , A) are setwise
invariant under this action. This induces the desired action of C on H by setting [α]c = [αc].

By the above definition, it is clear that if θ ∈ CAut N (Q χ , A), that is, if θ centralizes Q χ and A,
then the pair (θ,1Q ) lies in C and acts trivially on Z 2(Q , A) and hence on H2(Q , A), as mentioned
in the Introduction.

Now, we are ready to prove Theorem A in the Introduction which we restate here for convenience.

Theorem 2.3. There exists a group action of the semidirect product Γ = C H on the set Extχ (Q , N) defined by

[E ] · (ch) = [E ]c · h

for any χ -extension E , c ∈ C and h ∈ H. Further, let C(E ) denote the stabilizer of [E ] in Γ . Then C(E ) is a
complement to H in Γ and the set {C(E ) | [E ] ∈ Extχ (Q , N)} is a single conjugacy class of subgroups of Γ .

Proof. To prove Γ acts on Extχ (Q , N) in the manner, it suffices to verify that ([E ] · h)c = [E ]c · hc for
any χ -extension E , c ∈ C and h ∈ H .

Choose an associated pair of functions (ξ,α) for E . By Lemma 2.2, we know that (ξ c,αc) is an as-
sociated pair of functions for E c and the constructed extensions E (ξ c,αc) and E (ξ,α)c are equivalent.
For any h ∈ H , we may write h = [β] for some β ∈ Z 2(Q , A). Then by Lemma 2.1, we have

([E ] · h
)c = ([

E (ξ,α)
] · [β])c

= [
E (ξ,αβ)

]c

= [
E
(
ξ c,αcβc)]

= [
E
(
ξ c,αc)] · [βc]

= [
E (ξ,α)

]c · [β]c

= [E ]c · hc

which proves that Γ acts on Extχ (Q , N) in the desired manner.
Fix a χ -extension E . Since H acts regularly on Extχ (Q , N) and C(E ) is the stabilizer of [E ] in Γ

by definition, it easily follows that Γ = C(E )H and C(E ) ∩ H = 1. Hence C(E ) is a complement to H
in Γ . For each χ -extension E ′ , we may write [E ′] = [E ] · h for some h ∈ H . Then C(E ′) = C(E )h and
the result follows. �
3. Applications

In this section, as applications of Theorem A we shall prove Corollaries B and C and Theorems D
and E from the Introduction.

Proof of Corollary B. In the situation of Theorem A, it is well known that complements of H in Γ

correspond to derivations from C to H , see [9, 11.1.2]. Let C(E ) correspond to λ ∈ Der(C, H). Then
C(E ) = {ccλ | c ∈ C}. Since C(E ) is the stabilizer of [E ] in Γ , we have [E ]c · cλ = [E ] · (ccλ) = [E ]. By
the definition of ω(E ) introduced in the Introduction, we have ω(E ) = λ, a derivation from C into H .
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Furthermore, if E ′ is another χ -extension, then we may write [E ′] = [E ] · h for some h ∈ H by the
regular action of H on Extχ (Q , N). Since C(E ) is the stabilizer of [E ] in Γ , it follows that C(E ′) =
C(E )h and cω(E ′) = cω(E )h(h−1)c for all c ∈ C . Hence cω(E ) and cω(E ′) differ by an inner derivation.
This completes the proof. �

As mentioned in the Introduction, we let [χ ] = [ω(E )] ∈ H1(C, H), the cohomology element asso-
ciated with the coupling χ . An interesting question is to decide when [χ ] vanishes.

Proof of Corollary C. For any χ -extension E , we have seen in the proof of Corollary B that the comple-
ment C(E ) of H in Γ corresponds to the Wells map ω(E ) ∈ Der(Q , A). So, the set of all complements
C(E ) correspond to the associated cohomology element [χ ] = [ω(E )] of H1(C, H). It follows from
[9, 11.1.3] that [χ ] vanishes if and only if C lies in the set of all complements C(E ), that is, C has the
form C(E ) for some χ -extension E . This proves the equivalence of statements (a) and (b).

The statements (b) and (c) are clearly equivalent, since the image of ρ(E ) is C ∩ C(E ). The proof is
complete. �

Note that if χ is trivial, then C = Aut N × Aut Q and the direct product extension E0 : N � Q ×
N � Q clearly has the trivial coupling χ . In this case the restriction map ρ(E0) : Aut E0 → C must be
surjective, which implies that the associated cohomology element [χ ] is also trivial by Corollary C.

Also, if N is abelian, or more generally, if s(χ) = 1 (that is, all the splitting χ -extensions are
equivalent), then we have [χ ] = 0. To see this, let E0 be a χ -extension which splits. Then E c

0 also splits
for any c ∈ C (see the final paragraph in Section 2.2), which implies that E c

0 and E0 are equivalent.
So, each element of C is inducible from the χ -extension E0 and hence C ⊆ C(E0). Since both C and
C(E0) are complements of H in Γ , we may deduce that C = C(E0) and [χ ] = 0 by Corollary C.

Now, we turn to the case where [χ ] vanishes.

Proof of Theorem D. Since [χ ] vanishes in H1(C, H), we conclude from Corollary C that C = C(E ) for
some χ -extension E . By Theorem A, we see that an element c ∈ C is absolutely inducible if and only
if c lies in each conjugate of C in Γ , or equivalently c ∈ Ch for all h ∈ H . Note that the intersection of
all Ch coincides with the centralizer of H in C and the result follows. �
Proof of Theorem E. If c is absolutely inducible, then c ∈ C(E ) for all χ -extension E . By Theorem A,
all complements C(E ) form a conjugacy class of subgroups of Γ , which implies that c acts trivially
on H .

Conversely, assume that c acts trivially on H . For each χ -extension E , it follows from Corollary B
that the Wells map ω(E ) which, when restricted to 〈c〉, is a group homomorphism. It is well known
that the exponent of H must divide the exponent of A. So, c and H have coprime orders, which forces
the image cω(E ) must be trivial and hence c is inducible from E .

Finally, assume that E is a χ -extension from which c is inducible. Then c lies in the image of
the restriction ρ(E ) : Aut E → C . Let K denote the kernel of ρ(E ). Then K is isomorphic to Der(Q , A)

which has exponent dividing |A|. Thus c and K have coprime orders, which implies that there is some
ϕ ∈ Aut E such that ϕ induces c and o(ϕ) = o(c). The proof is now complete. �
4. Examples

In the final section, we shall construct two finite groups N, Q , and a nontrivial group homomor-
phism χ : Q → Out N with the following properties:

(i) C acts trivially on H but transitively on Extχ (Q , N).
(ii) C �= C(E ) for all χ -extensions E , or equivalently, ρ(E ) : Aut E → C is not surjective for each χ -

extension E .
(iii) Each χ -extension splits and |Extχ (Q , N)| = |H| > 1.
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(iv) For each χ -extension E , the corresponding Wells sequence can be strengthened as the following
exact sequence of groups and homomorphisms:

0 → Der(Q , A) → Aut E ρ(E )−→ C
ω(E )−→ H → 1.

In this case by (ii) and Corollary C, we see that the associated cohomology element [χ ] with χ
cannot vanish in H1(C, H). Fix a χ -extension E . Then by (ii) again there exists an element c of C
such that c /∈ Imρ(E ), which means that c is not absolutely inducible. However, the element c acts
trivially on H by (i). This proves that the conditions [χ ] = 0 and (o(c), |A|) = 1 in Theorem D and
Theorem E, respectively, cannot be removed.

Actually, we shall take the above group N to be the generalized quaternion group Q 2n+1 for n � 3.
So the following facts about automorphisms of Q 2n+1 will be needed.

Lemma 4.1. For n � 3, let

Q 2n+1 = 〈
a,b

∣∣ a2n = 1, b2 = a2n−1
, ab = a−1〉.

Then the following statements hold:

(a) Each automorphism θ of Q 2n+1 can be described as aθ = ai,bθ = ba j for (i, j) ∈ U (Z2n )× Z2n . In partic-
ular, Aut Q 2n+1 ∼= U (Z2n ) � Z2n , the holomorph of the cyclic group of order 2n.

(b) The automorphism θ in (a) is inner if and only if the corresponding pair (i, j) satisfies i = ±1 and 2 | j.
(c) Out Q 2n+1 is abelian. More precisely, Out Q 2n+1 ∼= Z2n−2 ⊕ Z2 .

Proof. The proof is a routine computation. �
Now, our example can be constructed as follows. Fix an integer n � 3 and let N = Q 2n+1 be the

generalized quaternion group with the presentation

N = 〈
a,b

∣∣ a2n = 1, b2 = a2n−1
, ab = a−1〉.

Let Q = {1, x} be a cyclic group of order 2. Take an automorphism τ of N of order 2 defined by
aτ = a1+2n−1

and bτ = b. Define a group homomorphism χ : Q → Out N by setting xχ = τ (Inn N).
Then, by Lemma 4.1 we know that χ is nontrivial, and we shall in turn verify the following assertions.

• C acts trivially on H .

In fact, since Out N is abelian (by Lemma 4.1) and Aut Q is trivial, it follows that the group C turns
out to be Aut N × {1Q }. This implies that C acts trivially on H , as Aut N clearly centralize the center
A of N .

• |Extχ (Q , N)| = |H| = 2.

Note that both Q and A are cyclic of order 2 and Q acts trivially on A via χ . The result follows.

• C acts transitively on Extχ (Q , N).

Let G = 〈τ 〉 � N be the semidirect product. We claim that the restriction

ρ : CAut G(G/N) → Aut N

is not surjective, where CAut G(G/N) denotes the group of those automorphisms of G that act trivially
on G/N .
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To see this, let θ ∈ Aut N . By Lemma 4.1, we may write

aθ = ai and bθ = ba j

for some (i, j) ∈ U (Z2n ) × Z2n . Since τ ∈ G has order 2, it easily follows that θ ∈ Imρ if and only if
there exists an element s ∈ N such that sτ = s−1 and the commutator [τ , θ] is an inner automorphism
of N induced by s via conjugation (see [10, Lemma 1] for example). From this we may deduce that
θ ∈ Imρ if and only if j is even. Hence |AutN : Imρ| = 2 and ρ cannot be surjective, as claimed.

Now, let E0 : N � G
π� Q denote the semidirect product extension with τπ = x. Then E0 has

the coupling χ and Aut E0 = CAut G(G/N), as Aut Q is trivial. Clearly C = Aut N × {1Q }. We deduce
that ρ(E0) : Aut E0 → C cannot be surjective and hence the Wells map ω(E0) : C → H is not trivial.
But C acts trivially on H and |H| = 2, it follows from Corollary B that ω(E0) must be a surjective
homomorphism. Therefore, we have the following exact sequence of groups and homomorphisms:

0 → Der(Q , A) → Aut E0
ρ(E0)−→ C

ω(E0)−→ H → 1. (1)

Furthermore, since Imρ(E0) = C ∩ C(E0) �= C , we conclude that C cannot leave [E0] invariant. This,
along with |Extχ (Q , N)| = 2, implies that C acts transitively on Extχ (Q , N).

• For any χ -extension E , ρ(E ) : Aut E → C cannot be surjective and the above sequence (1) also holds
for E .

From the transitivity of C on Extχ (Q , N), we see that C does not fix [E ] invariant and hence
C �= C ∩ C(E ). The result easily follows.

• All χ -extensions split.

Let τ ′ ∈ Aut N defined by aτ ′ = a−1+2n−1
and bτ ′ = b. Then o(τ ′) = 2. Let E ′ : N � Q �τ ′ N � Q

be the semidirect product extension. It is easy to verify that E ′ is a χ -extension but [E ′] �= [E0]. Since
|Extχ (Q , N)| = 2, it follows that E0 and E ′ are the full representatives of all χ -extensions. This proves
that all χ -extensions split, as wanted.

We conclude this paper with a remark. Actually, the above sequence (1) also provides a coun-
terexample to Theorem B of [4] to show that there condition (c) cannot be removed. Since then each
automorphism of E0 clearly centralizes A and Out N is abelian, it is easy to verify that this sequence
becomes into the following exact sequence of groups and homomorphisms:

0 → Der(Q , A) → CAut G(Q , A) → CAut N
(

Q χ , A
) → H → 1

which implies that some element of CAut N (Q χ , A) cannot be extended to G with trivial action on Q .
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