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Objectives. The aim of this study was to evaluate myocardial
contrast echocardiography using aortic root injections with har-
monic imaging in experimental acute myocardial infarction to
determine the potential of this approach in the cardiac catheter-
ization laboratory.
Background. It would be desirable to have an adjunctive

procedure that could evaluate myocardial perfusion at the time of
cardiac catheterization in patients with acute myocardial infarc-
tion. A single injection of contrast medium in the aortic root would
provide complete information on myocardial perfusion in a cross
section of the heart. High quality images would provide on-line
assessment of myocardial perfusion without recourse to image
processing. These data could be very valuable for determining
patient management.
Methods. Perfusion defects on myocardial contrast echocardi-

ography were measured during coronary occlusion and reflow,
using fundamental and harmonic imaging in both continuous and
intermittent modes in nine open chest dogs. These defects were

compared with risk area on technetium-99m autoradiography and
infarct size on tissue staining.
Results. Whereas harmonic imaging increased myocardial

video intensity by more than twofold (p < 0.001) compared with
fundamental imaging after aortic root injection of contrast me-
dium, intermittent imaging was not superior to continuous imag-
ing. The improved signal to noise ratio of harmonic imaging
allowed on-line definition of risk area (r 5 0.98) and infarct size
(r 5 0.93) without recourse to off-line processing. Similar results
could be obtained with fundamental imaging only after off-line
processing.
Conclusions. Aortic root injections of contrast medium coupled

with harmonic imaging can be used to provide accurate on-line
assessment of risk area and infarct size during acute myocardial
infarction. These results have important implications for the
catheterization laboratory.

(J Am Coll Cardiol 1997;29:207–16)
q1997 by the American College of Cardiology

In the cardiac catheterization laboratory, direct intracoronary
injections of microbubbles have been used to assess myocardial
perfusion with contrast echocardiography in patients with
acute myocardial infarction (1–6). This approach requires
separate engagements of the left main and right coronary
arteries, as well as multiple injections of microbubbles, to

obtain information on myocardial perfusion in a single echo-
cardiographic cross section. An aortic root injection of micro-
bubbles can provide information on myocardial perfusion in
one cross section with a single injection, which may be more
expeditious and allow assessment of myocardial perfusion
without changing coronary hemodynamic variables (7–11).
Many patients currently undergo primary angioplasty as a

means of treating acute myocardial infarction (12). The deci-
sion to intervene and the success of the intervention are based
primarily on the appearance of the epicardial coronary artery,
which does not provide an accurate assessment of the status of
myocardial perfusion (13). An adjunctive procedure that could
define myocardial perfusion at the same time may provide
important information that may help in determining the need
for an intervention and evaluate its success (3–6).
The aim of the present experimental study was to evaluate

the ability of myocardial contrast echocardiography to accu-
rately assess myocardial perfusion using aortic root injections
of microbubbles during acute myocardial infarction. Technical
issues relating to the use of harmonic versus fundamental
imaging, as well as the value of off-line data analysis, were also
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evaluated. In addition, the safety of a coronary vasodilator
during acute myocardial infarction to unmask abnormalities of
coronary microvascular reserve after reflow was studied. The
overall purpose of the study was to determine whether these
approaches have potential application in the cardiac catheter-
ization laboratory during acute myocardial infarction.

Methods
Animal preparation. The protocol conformed to the “Po-

sition of the American Heart Association on Research Animal
Use” adopted by the Association in November 1984, and was
approved by the Animal Research Committee at the Univer-
sity of Virginia. Nine mongrel dogs were used for the study.
They were anesthetized with 30 mg/kg body weight of sodium
pentobarbital (Abbott Laboratories), intubated and mechani-
cally ventilated using a respirator pump (Harvard Apparatus,
model 607). A 7F polyethylene catheter was placed in each
femoral artery for duplicate reference sample withdrawal
during radiolabeled microsphere injection, and one of these
catheters was also used for arterial pressure monitoring. The
femoral veins were cannulated with 7F catheters for intrave-
nous infusion of fluids and drugs. Additional anesthesia was
administered during the experiment as needed.
A left lateral thoracotomy was performed, and the heart

was suspended in a pericardial cradle. A 7F pigtail catheter was
inserted in the left carotid artery, and its tip was positioned in
the proximal aortic root. It was connected to a power injector
(model 3000, Liebel-Flarsheim Co.) for aortic root injection of
microbubbles during myocardial contrast echocardiography. A
7F catheter was placed in the left atrium for measurement of
pressures as well as for injection of technetium-99m–labeled
albumin macroaggregates.
The left jugular vein was cannulated with a thermodilution

pulmonary artery floatation catheter (Baxter-Edwards Labora-
tory), and its tip was advanced to the main pulmonary artery.
The proximal port of this catheter was used to measure right
atrial pressure. The catheter was attached to a computer
(model 9520A, Edwards Laboratory) for measuring cardiac
output using the thermodilution technique. The proximal or
mid portions of the left anterior descending and left circumflex
coronary arteries were dissected free from the surrounding
tissue, and a custom-designed screw occluder was placed
around one of them. A 2-mm ultrasound time of flight flow
probe (series SB, Transonics), was placed on each artery and
was connected to a digital flow meter (model T206, Transon-
ics) for continuous monitoring of coronary blood flow.
The arterial, left atrial and pulmonary artery catheters were

attached to fluid-filled transducers (Gould Electronics), which
in turn were connected to a multichannel physiologic recorder
(model ES2000, Gould Electronics). The flow meter was also
attached to the physiologic recorder. The recorder was inter-
faced with a 80386-based personal computer (model 2531,
DTK Inc.) by means of an eight-channel analog/digital conver-
tor (DAS-16, Metrabyte Corp.). Mean pressures and coronary
blood flow were sampled at 200 Hz using Labtech Notebook

(Labtech Technologies Corp.). After the experiment, the data
were transferred from Labtech Notebook to RS/1 (Bolt, Be-
ranek, and Newman) for further analysis.
Myocardial contrast echocardiography. Sonicated albumin

microbubbles (Albunex, Molecular Biosystems Inc.) were used
as the contrast agent (14). It has been shown (14,15) that this
product does not significantly alter systemic or coronary he-
modynamic variables in the doses used in this study. Although
the dose of microbubbles (1 to 5 ml) required for optimal
myocardial opacification (defined as the dose that resulted in
visually perceptible myocardial opacification without shadow-
ing) varied between dogs, it was held constant in each dog. The
microbubbles were power injected into the aortic root over
1.5 s during simultaneously performed echocardiography.
One of the aims of the study was to evaluate the influence

of harmonic imaging on our data quality. For this purpose, we
used a prototype ultrasound system (Hewlett-Packard Corp.)
that has a transducer with the capability to transmit ultrasound
at a mean frequency of 2 MHz but receive at both 2-MHz
(fundamental) and 4-MHz (harmonic) frequencies. We per-
formed fundamental and harmonic imaging both continuously
and intermittently (once every systole) by gating to the ECG
(16).
A saline bath served as an acoustic interface between the

transducer and the anterior surface of the heart. The trans-
ducer was placed within the bath using a clamp attached to the
procedure table, allowing imaging of the same short-axis plane
at each stage. The maximal dynamic range of 60 dB was used.
The system was set at the postprocessing mode where, as
defined by the manufacturer, the relation between backscatter
and video intensity is most linear (curve A).
Because tissue backscatter is much lower at harmonic

compared with fundamental frequencies, and because special
filters are used to minimize the amount of returning funda-
mental frequency displayed in the harmonic images, the re-
ceive gain was increased for harmonic imaging to produce
baseline images with the same myocardial gray scale as during
fundamental imaging. The gains were held constant for each
form of imaging (fundamental and harmonic) after their initial
optimization. Images were recorded on 1.25-cm videotape
using a high fidelity recorder (Panasonic AG-7350, Matsushita
Electric).
Our approach to the off-line analysis of contrast images has

been previously described (17,18). For fundamental imaging,
three precontrast end-diastolic images were averaged, and
three similar contrast-enhanced images depicting maximal
disparity in the opacification between the left circumflex and
left anterior descending coronary artery beds were also aver-
aged. The averaged precontrast and contrast-enhanced frames
were aligned, and the precontrast image was then digitally
subtracted from the contrast-enhanced image. The signal to
noise ratio of the harmonic images was favorable enough to
simply align one precontrast image with one contrast-enhanced
image before digital subtraction.
The video intensity scale in the subtracted images was

expanded to a dynamic range of 128 gray levels, whereby the
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pixel with the greatest contrast change was assigned a level of
128, and all others were assigned proportionally lower values.
Each pixel with a gray scale value of .10 (values #10 were
considered to represent noise) was relegated a color based on
the degree of contrast enhancement, where shades of red,
progressing to hues of orange, yellow and white, represent
incremental contrast opacification. Contrast defects were
planimetered and expressed as a percent of the left ventricular
short-axis slice (9).
Perfusion defect sizes were also measured from the gray-

scale contrast-enhanced image without digital processing. The
aim of this exercise was to determine whether any form of
imaging resulted in data of sufficient quality to allow an
accurate on-line assessment of perfusion defects, without
having to use sophisticated image processing techniques,
which, by the nature of their complexity, require off-line
analysis.
Using previously described methods (17,18), time-intensity

plots were also generated from images obtained at baseline
using the four imaging modalities (continuous and intermittent
fundamental, and continuous and intermittent harmonic) to
determine the influence of these imaging modalities on myo-
cardial peak video intensity and mean microbubble transit
rates. A gamma-variate function (y 5 Ate2at) was applied to
the background-subtracted time-intensity plots, where A is a
scaling factor, t is time, and a is proportional to the mean
myocardial microbubble transit rate. A/ae represents the peak
myocardial video intensity.
Technetium autoradiography. Approximately 30 min be-

fore reperfusion, 20 mCi of Tc-99m–labeled albumin macro-
aggregates were injected into the left atrium (19). After the
experiment, the heart slice corresponding to the echocardio-
graphic short-axis image was cut and placed on a clear plastic
sheet so that the endocardial and epicardial borders of the slice
could be traced. Radiographic images were obtained using
a gamma camera (Technicare 420, Ohio Nuclear) with a
parallel-hole collimator at a centerline peak of 147 keV and a
20% spectral window. The image was transferred from the
computer to X-ray film using a compact video imager (1020,
Matrix Instruments). The film was processed with a developer
(M35A, Eastman Kodak). A back-illuminated image of the
autoradiograph was captured into the off-line computer (Kon-
tron) using a video camera (66 series, Dage-MTI Corp.). The
risk area was planimetered and expressed as a percent of the
myocardial short-axis slice (20).
Infarct size determination. At the conclusion of the exper-

iment, the heart was excised, and a 1-cm slice corresponding to
the echocardiographic imaging plane was immersed in a
solution of 1.3% 2.3.5-triphnyltetrazolium chloride (Sigma
Corp.) and 0.2 mol/liter Sörensen’s buffer in distilled water, pH
7.4, at 378C for 20 min, followed by fixation in 10% formalin
(21). Video images of the basal and apical sides of the stained
slice were captured into the off-line computer (Kontron).
Infarct size was determined by planimetering the unstained
portions of the basal and apical sides of the specimen, taking

their average and expressing it as a percentage of the left
ventricular short-axis slice (22).
Experimental protocol. After acquiring hemodynamic and

echocardiographic data at baseline, either the left circumflex
or left anterior descending coronary artery was occluded for 3
to 5 h to cause infarctions of varying sizes. Toward the end of
the occlusion period, contrast echocardiography was per-
formed, and Tc-99m–labeled albumin macroaggregates were
injected into the left atrium. Fifteen minutes after the release
of the occlusion, hemodynamic and echocardiographic mea-
surements were performed before and during hyperemia in-
duced by an intravenous infusion of 0.4 mg/kg per min of
WRC-0470 (Discovery Therapeutics Inc.) a novel adenosine-
A2a selective agonist (23). At the end of the experiment, the
dog was killed.
Statistical methods. Correlations between echocardio-

graphic perfusion defects, risk area and infarct size were made
using linear regression analysis. Comparisons between all
stages were made using repeated measures analysis of vari-
ance, and significant differences between two stages were
measured using the Student t test with the Bonferroni correc-
tion for a two-tailed p value.

Results
Risk area measurement. Figure 1A illustrates a Tc-99m

autoradiograph from one of the dogs. Figure 2 shows gray-
scale images acquired during continuous and intermittent
imaging using fundamental and harmonic modes. For the same
dose of microbubbles, harmonic imaging resulted in a greater
disparity in gray scale between the hypoperfused and normally
perfused myocardium. Consequently, the measurement of risk
area using this approach was more accurate than fundamental
imaging. Thus, as depicted in Figure 1B, the correlation
between risk area on Tc-99m autoradiography and perfusion
defects was closer with harmonic than with fundamental
imaging, although the difference between the two did not reach
statistical significance. The rate of ultrasound transmission
(continuously vs. once every cardiac cycle) did not affect these
results.
As illustrated in Figure 1C, when image processing and

color coding are used, the correlations between risk area
measured on Tc-99m autoradiography and myocardial contrast
echocardiography are not significantly different between har-
monic and fundamental imaging. However, the color-coded
images from fundamental imaging (Fig. 3, A and B), required
the averaging of three precontrast and three contrast-
enhanced images before digital subtraction. In contradistinc-
tion, only one precontrast and one contrast-enhanced image
were used for digital subtraction when harmonic imaging was
used (Fig. 3, C and D). The demarcation between perfused and
nonperfused myocardium was clearer on the color-coded
images when harmonic versus fundamental imaging was used.
The harmonic frequency in our study (4 MHz) was twice that
of the fundamental (2 MHz) frequency, allowing not only
better signal to noise, but also better spatial resolution.
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Figure 1. A, Technetium-99m autoradiograph from
a dog during coronary occlusion. The relation be-
tween risk area defined on autoradiography and
defect size on myocardial contrast echocardiography
(MCE) using (B) gray-scale and (C) color-coded
images acquired using fundamental (2 MHz) and
harmonic (4 MHz) frequencies. %LV 5 percent of
left ventricular short-axis slice.

Figure 2. Examples of gray-scale images
during coronary occlusion using contin-
uous and intermittent imaging at the
fundamental (A, B) and harmonic (C, D)
frequencies.
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Infarct size measurement. We previously showed (7,24)
that myocardial contrast echocardiography performed within
the first few hours after reflow underestimates infarct size. This
phenomenon is due to reactive hyperemia in the infarct bed
and is particularly relevant when there is no residual stenosis in
the infarct-related artery that can attenuate the hyperemic
response. It is for this reason that we used a coronary
vasodilator during reflow to create a relative flow deficiency
within the infarct zone compared with the normal bed, which
has been demonstrated to accurately reflect infarct size (7,22).
Figure 4A illustrates infarction in one of the dogs. Figure 5

shows gray-scale images acquired in the same dog during
fundamental and harmonic imaging using both continuous and
intermittent imaging. For the same dose of microbubbles,
harmonic imaging results in a greater disparity in gray scale
between the infarcted and normal myocardium than funda-
mental imaging. Consequently, the measurement of a perfu-
sion defect using harmonic imaging more accurately reflects
infarct size than that using fundamental imaging, although the
differences are not statistically significant (Fig. 4B). The rate of
ultrasound transmission (continuously vs. once every cardiac
cycle) did not influence the results. When image processing
and color coding are used, the correlation between infarct and
perfusion defect sizes is not significantly different between

harmonic and fundamental imaging (Fig. 4C). Despite this
finding, the demarcation between infarcted and normal myo-
cardium is clearer on the color-coded images using harmonic
than fundamental imaging (Fig. 6).
Effect of harmonic frequency and intermittent imaging on

peak myocardial video intensity and mean microbubble transit
rate. Table 1 illustrates the effect of harmonic and intermit-
tent imaging on the peak myocardial video intensity. Because
we adjusted the receive gain while using harmonic imaging, the
background myocardial video intensity was not different be-
tween fundamental and harmonic modes. However, the peak
video intensity was significantly (more the twofold) higher
during harmonic than fundamental imaging and was not
influenced by the rate of ultrasound transmission (continuosly
at 30 frames/s or intermittently once every cardiac cycle).
Table 1 also illustrates the effect of harmonic and intermit-

tent imaging on the mean microbubble transit rates obtained at
baseline. The mean microbubble transit rates tended to be
higher during harmonic than fundamental imaging, although
this difference did not reach statistical significance. Continuous
(30 frames/s) or intermittent (once every cardiac cycle) imag-
ing did not influence the measurement of mean microbubble
transit rate at either receive frequency.

Figure 3. Color-coded images dur-
ing coronary occlusion using con-
tinuous and intermittent imaging at
the fundamental (A, B) and har-
monic (C, D) frequencies. These
images correspond to the gray-
scale images in Figure 2.
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Hemodynamic effects of WRC-0470. Table 2 depicts heart
rate; mean aortic, left and right atrial pressures; and cardiac
output after reflow before and during maximal vasodilation
with WRC-0470. There was no effect of WRC-0470 on heart
rate or on left or right atrial pressures. A small decline (mean
of 10%) in mean aortic pressure and an increase in cardiac
output were noted during the infusion of this drug.

Discussion
The major new finding of this study is that the improved

signal to noise ratio of harmonic imaging provides excellent
gray-scale images from which accurate assessments of risk area
and infarct size can be made on-line. We also found that a
novel coronary vasodilator, WRC-0470, which is a selective
adenosine-A2a agonist, causes minimal hemodynamic changes
in the acute phase of myocardial infarction and successfully
unmasks coronary reserve abnormalities within the infarct
zone. In so doing, an accurate measurement of infarct size with
myocardial contrast echocardiography using aortic root injec-
tions of contrast medium can be achieved.
Feasibility of aortic root injections of contrast medium.

When myocardial contrast echocardiography was performed in
the cardiac catheterization laboratory in patients with acute
myocardial infarction, intracoronary injections of micro-
bubbles were used (1–6). For the most part, this route of
injection was dictated by the use of sonicated radiographic
contrast agents that have a half-life of only a few seconds,
barely enough to attempt a rapid intracoronary injection. The

safety of these bubbles when injected into the aortic root has
also been a concern.
The availability of precision microbubbles with a much

longer shelf-life and a good safety profile has now made aortic
root injections feasible (7–9). Unlike coronary injections that
require separate engagements of the left main and right
coronary arteries, as well as multiple injections of micro-
bubbles to assess myocardial perfusion in a single echocardio-
graphic cross section, an aortic root injection can provide
information regarding myocardial perfusion in one cross sec-
tion with a single injection (7–11). Single injections in two or
three different cross sections can provide a rapid and compre-
hensive evaluation of myocardial perfusion of the entire left
ventricle without causing any pertubation of coronary hemo-
dynamic variables, which in itself could affect assessment of
myocardial perfusion (25,26).
Aortic root injections have previously been used in experi-

mental studies with considerable success in models of infarc-
tion and reperfusion (9–11). Although this route has not been
used in patients with acute myocardial infarction, it has been
utilized in patients with chronic coronary artery disease (7,8).
Acheiving myocardial opacification at baseline with this ap-
proach has been disappointing (8). After hyperemia is induced,
myocardial perfusion is seen in a larger number of patients
because more bubbles enter the coronary circulation. How-
ever, the success rate of myocardial opacification with conven-
tional imaging, even with hyperemia, is not high enough to
allow its routine clinical use.
Compared with aortic root injections, during direct coro-

Figure 4. A, Infarct size obtained on triphenyl-
tetrazolium chloride staining of the heart. Rela-
tion between infarct size by triphenyltetrazolium
chloride and perfusion defect size on myocardial
contrast echocardiography (MCE) in the pres-
ence of coronary vasodilator using gray-scale
images acquired with fundamental (2 MHz) and
harmonic (4 MHz) frequencies (B). The same
comparison, based on color-coded images, is pre-
sented in C. %LV 5 percent of left ventricular
short-axis slice.
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nary injections, microbubbles are delivered into the myocardial
microcirculation in sufficient concentrations to result in images
with a high signal to noise ratio, even with conventional
imaging. An accurate estimation of both risk area (20,22) and
infarct size can therefore be made using this approach (22,24).
By comparison, when they are injected into the aortic root,
only a small fraction of bubbles enter the coronary microcir-
culation, resulting in images with a poor signal to noise ratio,
which as demonstrated in our study causes an underestimation
of both risk area and infarct size. The limitation in image
quality can be overcome by image processing techniques that
enhance the signal to noise ratio. Although highly effective
(9,24), these methods are time-consuming and require off-line
analyses, precluding an immediate assessment of myocardial
perfusion in the cardiac catheterization laboratory.
Fundamental versus harmonic imaging. Bubbles exposed

to their resonant frequency can develop nonlinear oscillations,
where their alternate expansion and contraction are unequal.
When this phenomenon occurs, the backscatter emitted by the
bubble contains harmonics (27,28). Harmonic imaging takes
advantage of the ability of bubbles to resonate in the ultrasound
field using transducers that can emit one frequency (the funda-
mental frequency) and receive another frequency (the harmonic
frequency). Because microbubbles resonate significantly more
than tissue or blood, which comprise the background, the signal to
noise ratio is enhanced. When we increased the receive gain
during harmonic imaging to bring the baseline myocardial video

intensity to the level obtained on fundamental imaging, for the
same dose of microbubbles, the background-subtracted myocar-
dial video intensity was more than two-fold higher during har-
monic than fundamental imaging.
This increase in signal to noise ratio is enough to provide

excellent gray-scale images from which an accurate assessment
of risk area and infarct size can be made. More important, this
assessment can be performed on-line, with a clear visual
assessment of perfusion defects in real time, without being
dependent on image processing techniques. For quantitative
assessment, an image can be frozen, and perfusion defect size
can be planimetered and expressed as a percent of the left
ventricular short-axis slice. This approach provides a very
practical advantage in the cardiac catheterization laboratory,
where decisions often need to be made immediately.
Using intracoronary injections of contrast medium in the

cardiac catheterization laboratory, we previously demonstrated
(2,3) the importance of defining the spatial distribution of
collateral perfusion within the infarct zone. It is possible that
this information could also be obtained with an aortic root
injection. Although we did not study this issue in our current
experiments, others have previously reported (10,11) that
collateral perfusion can be assessed using intraaortic injections
of bubbles.
Influence of intermittent imaging. It has recently been

demonstrated (16,29) that when microbubbles are injected
intravenously, intermittent imaging resulted in greater myocardial

Figure 5. Examples of gray-scale images
15 min after reflow in the presence of a
coronary vasodilator. The images were
acquired using continuous and intermit-
tent imaging at the fundamental (A, B)
and harmonic (C, D) frequencies.
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opacification than continuous imaging. The microbubble destruc-
tion caused by ultrasound was minimized by occasional rather
than constant ultrasound transmission, resulting in increased
myocardial signal. Whether the same effect is seen with aortic
root injection of microbubbles is not known. We found that
whereas the background-subtracted myocardial peak video inten-
sity was more than twofold higher during harmonic than funda-
mental imaging (Table 1), there was no difference in the peak
video intensities at either receive frequency during intermittent or
continuous imaging. Similarly, whereas the measured micro-
bubble transit rates tended to be higher (although not significantly
so) during harmonic than fundamental imaging (Table 1), there
were no differences in the transit rates during intermittent or
continuous imaging.

These results indicate that, unlike the setting of a venous
injection (16,29), there is no advantage to using intermittent over
continuous imaging during aortic root injection of microbubbles.
This finding may be related to the smaller concentration of
microbubbles in the myocardium during venous than during

Figure 6. Examples of color-coded images 15 min after reflow in the
presence of a coronary vasodilator. The images were acquired using
continuous and intermittent imaging at fundamental (A, B) and
harmonic (C, D) frequencies. These images correspond to the gray-
scale images in Figure 5.

Table 1. Effect of Harmonic and Intermittent Imaging on Baseline
Peak Myocardial Video Intensity and Mean Microbubble Rates

Fundamental Imaging Harmonic Imaging

Cont Int Cont Int

Videointensity
Background 51 6 15 52 6 14 49 6 16 48 6 14
Peak 80 6 17 83 6 19 123 6 20* 118 6 23*
Background
subtracted

29 6 8 31 6 13 76 6 20* 73 6 20*

Microbubble transit rate
(s21)†

1.06 6 0.20 1.11 6 0.24 1.26 6 0.25 1.33 6 0.42

*p , 0.01 versus fundamental imaging. †No significant difference between
stages in the nine dogs. Data presented are mean value 6 SD. Cont 5
continuous; Int 5 intermittent.
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aortic root injections such that destruction of even a portion of
them causes their concentration to fall below the threshold of the
echocardiographic system. It is also possible that during venous
injections, bubbles are exposed to ultrasound during their transit
through the right and left heart, where they may be subjected to
destruction or alterations even before they enter the myocardium.
Such is usually not the case with aortic root injections because in
most views, the aorta is not included in the same cross section as
the myocardium. The practical advantage of this finding is that
during aortic root injections of contrast medium, harmonic imag-
ing can be performed in real time without loss of any information
in the temporal domain.
Use of a coronary vasodilator. The basis for perfusion

defects after reflow is the “no-reflow” phenomenon, which is seen
in the center of the infarction and is associated with dense cellular
necrosis and microvascular damage (30). Areas surrounding this
region, but still within the infarct boundary, may have normal to
hyperemic flow, especially when there is no significant residual
stenosis of the infarct-related artery (31,32). A marker of perfu-
sion may therefore underestimate infarct size. However, despite
the presence of hyperemia, microvascular reserve is impaired
within the infarct zone (33,34), and measuring regions with
abnormal flow reserve can provide an accurate assessment of
infarct size after reflow (9,27,35). The results of the present study
confirm our previous observations that myocardial contrast echo-
cardiography, when combined with a coronary vasodilator, pro-
vides an accurate assessment of infarct size in the first few hours
after reflow (7,24,32).
The use of a coronary vasodilator during the acute phases

of myocardial infarction raises questions of safety. Hypoten-
sion is frequent with nonselective coronary vasodilators, such
as dipyridamole (36) and adenosine (37). In a patient with
chronic stable angina, the side effects of these drugs are well
tolerated (36,37). However, in patients with acute myocardial
infarction, the earliest administration of one of these drugs for
myocardial perfusion imaging has traditionally been 3 to 4 days
after the event (38). To define infarct size in the cardiac
catheterization laboratory, it would be necessary to give the
vasodilator within minutes after reflow.
One approach would be the direct injection of the vasodi-

lator into the coronary arteries to avoid the systemic side
effects of the drug (39). However, intracoronary injections of
drugs are tedious to perform, and because of the short half-life
of adenosine or papaverine, the drug would have to be infused
for each coronary injection of microbubbles. It would also
require two femoral punctures—one for the aortic root cath-
eter and another for the coronary infusion catheter. A much

simpler approach would be the use of a systemic agent that is
safe and has minimal side effects. WRC-0470 is a novel
adenosine-A2a agonist, which at the correct dose, causes
coronary vasodilation with minimal effects on smooth muscles
not present in the coronary arteries (22). Even in our anesthe-
tized dogs, where reflexes are abolished, the decrease in aortic
pressure was minimal. In a conscious human, no change in
blood pressure or heart rate would be anticipated. It is
therefore likely that this or a similar agent could be used safely
in the setting of acute myocardial infarction.
Limitations of aortic root injections. Successful myocardial

opacification from aortic root injections of microbubbles re-
quires optimal positioning of the catheter in the aortic root.
This can be accomplished with fluoroscopy and test injections
of microbubbles. Despite optimal positioning, the dose of
contrast agent needed for myocardial opacification varied, and
no standard dose can be recommended. Different doses have
to be tried at baseline, and the best dose is that which achieves
mild but perceptible myocardial opacification. More intense
opacification invariably results in attenuation, if not at base-
line, then surely during hyperemia.
Albunex is pressure sensitive, and care must be taken not to

unduly expose it to aortic pressure. To preserve the micro-
bubbles, the stopcock connecting the catheter to tubing con-
taining the contrast agent should be closed until just before
injection. Because of the fragility of Albunex, it cannot be
injected very rapidly. We injected it over 1.5 s, encompassing
the time taken for an entire cardiac cycle. If a rapid (0.3 s)
injection can be synchronized to diastole, it would make
opacification more reproducible but will require more robust
microbubbles. Adequate images may not be available in all
patients using transthoracic echocardiography. Intracardiac
echocardiography may allow similar, if not better, quality
images. Finally, apical views were not obtained in the present
study, although they are most useful for assessing the regional
distribution of myocardial perfusion in the cardiac catheteriza-
tion laboratory (3–5).
Conclusions. The results of this study indicate that it is

possible to obtain accurate information regarding risk area during
coronary occlusion and infarct size after reperfusion by myocar-
dial contrast echocardiography using aortic root injections of
contrast medium. Fundamental imaging imprecisely estimates
both risk area and infarct size without the use of off-line image
analysis, because of suboptimal signal to noise ratio. This limita-
tion is overcome by harmonic imaging, which can provide excel-
lent gray-scale images from which an accurate assessment of risk
area and infarct size can be made on-line. Use of a selective

Table 2. Hemodynamic Effects of WRC-0470 During Reflow

HR
(beats/min)

CO
(liters/min)

Mean AoP
(mm Hg)

Mean RAP
(mm Hg)

Mean LAP
(mm Hg)

Before drug 123 6 21 2.2 6 1.3 88 6 12 9 6 4 14 6 5
During drug 124 6 19 3.0 6 1.5* 75 6 8* 9 6 3 14 6 3

*p , 0.01. Data presented are mean value 6 SD. AoP 5 aortic pressure; CO 5 cardiac output; HR 5 heart rate;
LAP 5 left atrial pressure; RAP 5 right atrial pressure.
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adenosine-A2a agonist, which has minimal hemodynamic effects
and successfully unmasks coronary reserve abnormalities within
the infarct zone, can provide accurate and safe assessment of
infarct size with myocardial contrast echocardiography. These
findings can form the basis for the use of aortic root injections of
contrast medium in the cardiac catheterization laboratory in
patients with acute myocardial infarction.
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