
Proof Search for the First-Order
Connection Calculus in Maude

Bjarne Holen, Einar Broch Johnsen and Arild Waaler 1

Department of Informatics, University of Oslo, Norway

Abstract

This paper develops a rewriting logic specification of the connection method for first-order logic, imple-
mented in Maude. The connection method is a goal-directed proof procedure that requires a careful control
over clause copies. The specification separates the inference rule layer from the rule application layer, and
implements the latter at Maude’s meta-level. This allows us to develop and compare different strategies for
proof search.

Keywords: First-order logic, connection method, rewriting logic, reflection, meta-programming, Maude

1 Introduction

The increasing use of logics in practical applications, and in particular non-classical
logics, poses challenges for automated reasoning. A key issue currently addressed by
the automated reasoning community, is how one can improve scalability of already
successful methods. Besides optimizing the implementations, this can primarily be
achieved in two ways: either by improving the proof calculus or by finding more
clever ways of applying the rules.

This observation motivates the Maude implementation of the connection calcu-
lus presented in this paper. The implementation addresses first-order logic (FOL)
without equality on clausal form. It is designed to satisfy two guiding principles.
First, it clearly separates a rule layer from a strategy layer that governs rule appli-
cation. Second, the set of rules that comprises the proof system is not restricted
to FOL only, but has also non-classical counterparts. This way the implementation
is part of a more wide-ranging project outlined in the discussion of future work in
Section 7, in which we intend to contribute with both improved calculi and with

1 Email: bjarneh@ifi.uio.no, einarj@ifi.uio.no, arild@ifi.uio.no

Electronic Notes in Theoretical Computer Science 238 (2009) 173–188

1571-0661/© 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.05.019

mailto:bjarneh@ifi.uio.no
mailto:einarj@ifi.uio.no
mailto:arild@ifi.uio.no
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

more flexible strategies for rule application. The present work can be taken as a
preliminary report from this activity.

Our focus on the strategy level makes Maude attractive as an implementation
platform. This is partly due to its support for reflection [6], which allows strategic
choices at run-time [5]. In particular, this gives a satisfying separation between
deduction and strategic choices, allowing us to experiment with different strategies
over the same deductive core. Ideally, theorem proving can be as simple as con-
structing a specification containing all the deductive rules (as rewrite rules), and
then rewriting an appropriate term. This also gives a close relationship between the
calculus and its specification.

The main rationale behind the isolation of a strategy layer is that more eas-
ily understood procedures are less error-prone than procedures in which rules and
strategies are intermixed. Moreover if one opts for the other extreme, i.e., to build
the strategy into the rules, the strategy will most likely be hard to modify. In prac-
tice one will often need to have a little of both, even if one tries to separate the
layers, since pruning the search space may in some cases be easier to implement by
means of inference rules than tacticals.

Our deductive platform implements the connection calculus [2,3], which is a
calculus in the tableau family. Like other tableau methods the connection calculus
is not limited to normal forms like clausal form, but unlike other tableau methods
it is goal-directed. This means that inference steps are driven by complementary
literals (in the sequent calculus these correspond to potential axioms), a feature
which in general makes the connection calculus much more efficient than calculi
that are driven by connectives, like analytic tableau calculi Goal-directed search is
particularly powerful for problems that contain many axioms that are not required
to prove the conjecture.

Although the connection method for FOL has been well documented, and imple-
mentations of it exist, specifying it in Maude is nevertheless non-trivial. Exploiting
Maude’s reflective properties we implement search strategies by explicitly operating
on a stack of search states, abstracting from, e.g., details of the underlying data
structures. While this level of abstraction is particularly useful for rapid proto-
typing, more optimized implementations should of course be sensitive to low-level
details. Clearly, more low-level implementation details may also be exploited by
search strategies.

Paper overview: Section 2 and 3 present the connection method, rewriting logic,
and Maude. Section 4 and 5 consider the connection method and proof search in
Maude. Section 6 discusses related work and Section 7 concludes.

2 The Connection Method: Paths through Matrices

This section briefly introduces the connection calculus. We assume a standard vo-
cabulary; in particular, a literal is any atomic formula P (t1, . . . , tn) or its negation,
and a clause is a conjunction of literals. A formula is in prenex disjunctive normal
form (PDNF) if it is a closed formula of the form ∃x1 . . .∃xn M, where the matrix

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188174

M is a disjunction of clauses. It is well-known that any FOL formula A can be
effectively transformed into a PDNF formula B, such that A is valid iff B is valid.
Hereafter, we assume that all input formulas are on PDNF. This matrix represen-
tation exploits graphical metaphors. To illustrate the idea let Ai, Bi, . . . , Ri be
literals. The PDNF formula

∃x1∃x2 . . .∃xn[(A1 ∧ A2 . . . Am) ∨ (B1 ∧ B2 . . . Bk) ∨ . . . ∨ (R1 ∧ R2 . . . Rj)]

is usually depicted as a matrix in which each clause has become a column:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

A2

...

Am

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

B2

...

Bk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1

R2

...

Rj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The existential quantifiers are implicitly present; all the variables inside literals can
be seen as existentially quantified outside of the matrix. A path through the matrix
is a set of literals, with one literal from each clause (or column).

A connection consists of two literals with the same predicate symbol and arity,
but only one contains a negation sign. The connection is σ-complementary if the
substitution σ unifies its two atomic formulas. A set of connections spans the matrix
if all paths through the matrix contain a connection from the set.

Example 2.1 The formula ∀xP (x) → P (a) ∧ P (b) receives the matrix representa-
tion below to the left; the two paths through the matrix to the right.

⎡
⎢⎣[¬P (x)]

⎡
⎢⎣

P (a)

P (b)

⎤
⎥⎦

⎤
⎥⎦ {¬P (x), P (a)} {¬P (x), P (b)}

In this particular case the two paths comprise a spanning set of connections. How-
ever, no substitution can make both of the connections complementary.

Clauses in a matrix can be copied, in which case all free variables are replaced
by fresh variables. The multiplicity μ for a matrix M is a function which assigns a
positive integer to each clause in M ; Mμ then results from M by, for each clause
C, adding μ(C) − 1 free variable copies of C to M . A PDNF formula with matrix
M is matrix provable if there is a set of σ-complementary connections which spans
Mμ, for a multiplicity μ and a substitution σ.

Matrix provability is a sound and complete characterization of validity in FOL
[4]. For the matrix in Example 2.1 it is easy to see that one can increase the

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188 175

multiplicity of the singleton clause to demonstrate matrix provability:

⎡
⎢⎣[¬P (x)] [¬P (y)]

⎡
⎢⎣

P (a)

P (b)

⎤
⎥⎦

⎤
⎥⎦

Given the substitution (x ← a, y ← b) both paths contain complementary connec-
tions. In this case the free variable copy adds little complexity as it only contains
one element; this would not be the case if the clause were larger.

Proof search with the connection calculus is a connection-driven path-exploring
process; the multiplicity is increased on demand and unification constrains the set
of potentially closing substitutions. Complete strategies must fairly balance the
incremental extension of partial paths (based on identification of new connections),
the update of partial substitutions (with new unifiers), and the addition of copies
of clauses. All implementations we know use iterative deepening, either on the
number of inferences or on proof depth; i.e., the search space is explored up to a
fixed multiplicity, which can gradually be increased. Our strategies will also use
iterative deepening and backtracking.

3 Rewriting Logic, Reflection, and Maude

A rewrite theory is a 4-tuple (Σ, E, L, R) where the signature Σ defines the term
language, E is a set of equations and membership sentences, L is a set of labels,
and R is a set of labeled rewrite rules [12]. Rewrite rules apply to terms of given
sorts (modulo equivalence), as specified in the membership equational logic theory
(Σ, E). A rule t −→ t′ if cond allows a local instance of pattern t to become
the corresponding instance of t′, where cond consists of rewrites, equations, and
memberships that must hold for the rule to apply.

Rewriting logic is reflective [6]; i.e., there is a finitely presented universal rewrite
theory U in which any finitely presented rewrite theory R can be represented (in-
cluding U itself). Let C and C ′ be configurations and R be a set of rewrite rules,
represented in U as C, C

′, and R, respectively. Denote by R � C → C ′ that C may
be rewritten to C ′ in the rewrite theory R. Using this notation, the equivalence
R � C → C′ ⇔ U � 〈R, C〉 → 〈R, C′〉, states that if a term C in the rewrite theory R
can be rewritten to a term C ′, then the meta-representation 〈R, C〉 of C in R can
be rewritten to the meta-representation 〈R, C ′〉 of C ′ in R in the universal rewrite
theory U .

Maude [5] is a tool for rewriting logic which includes facilities to meta-represent
a theory R and to apply rules from R to the meta-representation of a term C using
descent functions. Metalevel rewrite rules may be used to select which rule from R
to apply to which subterm of C by defining a function which takes as arguments
a finitely presented rewrite theory R, a term C, and a deterministic strategy S.
Further details on the theory and the use of reflection in rewriting logic and Maude
may be found in [5,6].

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188176

sorts FOLconstant FOLfunc FOLterm FOLtermlist Open Closed .

sorts Lit LitSet Clause ClauseSet Matrix SearchState Success Failure .

subsorts FOLconstant FOLfunc < FOLterm < FOLtermlist .

subsort Nat < FOLconstant .

subsorts FOLpredicate < Lit < LitSet .

subsort Clause < ClauseSet .

subsorts Open Closed < SearchState < SearchStateList .

op nil : → FOLtermlist .

op , : FOLtermlist FOLtermlist → FOLtermlist [assoc id: nil prec 77] .

op [] : Qid FOLtermlist → FOLfunc .

op () : Qid FOLtermlist → FOLpredicate .

op ¬ : Lit → Lit .

op none : → LitSet .

op , : LitSet LitSet → LitSet [assoc comm id: none] .

op noClause : → Clause .

op [] : LitSet → Clause .

op none : → ClauseSet .

op , : ClauseSet ClauseSet → ClauseSet [assoc comm id: none] .

op [] : ClauseSet → Matrix .

Figure 1. The Maude specification of basic syntax.

4 The Connection Method in Maude: Basic Syntax

In the Maude implementation terms of FOL have sorts FOLconstant, FOLfunc,
FOLterm, and FOLpredicate, cf. Fig. 1. Constants are represented by lower case let-
ters, function and predicate symbols by quoted identifiers applied to lists of terms,
and variables by standard Maude variables. We assume that formulas are in PDNF
and define literals of sort Lit as (possibly negated) predicates. Literal disjunction
and conjunction are implicitly given by the matrix representation. Clauses of sort
Clause are sets of literals, a matrix of sort Matrix is a set of clauses. The matrix of
Example 2.1 is represented by

⎡
⎢⎣[¬P (x)]

⎡
⎢⎣

P (a)

P (b)

⎤
⎥⎦

⎤
⎥⎦ [[¬ ’P(X:FOLterm)], [’P(a), ’P(b)]]

The implementation that we propose operates on terms of sort SearchStateList, cf.
Fig. 2. A term of sort SearchState is of the form

〈active path, active clause, remaining matrix, substitution, copy index〉.
In the initial state 〈none; noClause; M ; none; 0〉 of a search through a matrix

M , the active path is empty, there is no active clause, the remaining matrix is
M itself, the substitution is empty, and the copy index is zero. The ordering of
literals in the active path is irrelevant, so the path is represented by a set of literals.
Since connections depend on a variable substitution, the search state contains a

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188 177

op 〈 ; ; ; ; 〉 : LitSet Clause Matrix ObjSubstitution Int → SearchState .

mb open stack : St: SearchStateList : Failure .

mb closed stack: nil : Success .

op open : → Open .

op closed : → Closed .

op nil : → SearchStateList .

op : SearchStateList SearchStateList → SearchStateList [assoc id : nil] .

Figure 2. The Maude specification of SearchState.

term of sort ObjSubstitution (with empty element none). This sort is an object
level representation of Maude’s sort Substitution; its terms associate terms of sort
FOLterm to variables. The final argument of a search state is an index used to
generate new variable names.

The connection method is formalized as a calculus by the rewrite rules of Fig. 3.
Note incidentally that to avoid matching large lists of search states against the
rewrite rules, we let the SearchState elements form a SearchStateList, which in turn
is treated as a stack. This way the search procedure developed in the sequel needs
only work with one SearchState element at a time. SearchState elements are pushed
onto the stack as deductive rules generate new elements; if the current SearchState
element is found to be connected, we pop a new element off the stack and proceed
with that element. The proof search terminates when the stack is empty.

Rule init selects an active clause from the matrix of the initial state. Given an
active clause, the search for connections can start. In rule reductionRule, there is a
literal Lit1 in the active path and a complementary literal Lit2 in the active clause
which are unifiable. In this case we remove the literal Lit2 known to contain a
complementary connection from the active clause, eliminating further investigation
of paths already known to be connected.

Rule extensionRule similarly compares a literal in the active clause to literals
in the remaining matrix, which allows an eager pruning of the search space. This
rule is a simplification rule; it can be simulated by reductionRule in combination
with extendPath, so it is not necessary for completeness. However, extensionRule

reduces the number of search states much more efficiently.
Rules reductionRule and extensionRule unify two literals (of opposite polari-

ties). For this purpose we currently use Maude’s built-in unification, by which a
successful unification returns a substitution and a natural number. The latter is a
variable index which can be passed between different unification problems in order
to avoid name clashes in variable names generated by the substitutions. In the
rules, unifyCompl(P,Q) is true if there is a unifier between the terms in literals P
and Q, and false otherwise. In contrast, mgu constructs the most general unifier
for the two literals, based on the substitution provided by Maude’s unification. To
distinguish free variables in a FOL term from variables constrained by unifiers, we
conventionally denote by F(N):FOLterm and by B(N):FOLterm the free and bound
variables indexed by N, respectively. The function newIndex provides a new vari-

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188178

able index, based on the two literals and the old index. The substitution is used
to propagate variable substitutions in the calculus, based on a most general unifier
for the free variables in literals. In the presentation, we omit the application of the
substitution; the new unifier is applied to all literals of the initial matrix between
rewrite steps.

Rule extendPath branches the search by adding a search state in which the
active path is extended with a literal from the active clause. The other literals of
the active clause remain in a separate search state. The accumulated unification
is passed on to both search states. Two structural rules closedPath and openPath

simplify the list of SearchState elements (they play the role of open and closed leaf
nodes in the sequent calculus). Rule closedPath removes redundant search states
from the SearchStateList, whereas rule openPath terminates the proof search in the
case of a path with no connections. The latter rule should only be applied to the
final and non-empty clause of a matrix. Provided that extendPath has only been
applied when extensionRule is not applicable, no connection can be found for the
active path at this stage (although the formula can still be valid.)

vars Lit1 Lit2 : Lit . var Cl : Clause .

vars Path LSet1 LSet2 : LitSet . var ClSet : ClauseSet .

vars MGU Sub : ObjSubstitution . vars N N2 : Int .

var St : SearchState .

var StL : SearchStateList .

op stack : : SearchState SearchStateList → Search .

rl [init]: 〈none; noClause; [Cl, ClSet]; none; N〉 stack: nil

=⇒ 〈none; Cl; [ClSet]; none; N〉 stack: nil .

crl [reductionRule]: 〈Path, Lit1; [Lit2, LSet1]; [ClSet]; Sub; N〉 stack: StL

=⇒ 〈Path, Lit1; [LSet1]; [ClSet]; MGU; N2 〉 stack: StL

if MGU := mgu(Lit1, Lit2, N) ∧ N2 := newIndex(Lit1, Lit2, N) ∧ unifyCompl(Lit1, Lit2) .

crl [extensionRule]: 〈Path; [Lit1, LSet1];[[Lit2, LSet2],ClSet]; Sub; N〉 stack: StL

=⇒ 〈Path, Lit1; [LSet2]; [ClSet]; MGU ; N2〉
stack : 〈Path; [LSet1]; [[Lit2 ,LSet2],ClSet]; Sub; N2〉 StL

if MGU := mgu(Lit1, Lit2, N) ∧ N2 := newIndex(Lit1, Lit2, N) ∧ unifyCompl(Lit1, Lit2) .

rl [extendPath]: 〈Path; [Lit1, LSet1] ; [Cl, ClSet] ; Sub; N 〉 stack: StL

=⇒ 〈Path, Lit1; Cl; [ClSet]; Sub; N〉 stack: 〈Path; [LSet1]; [Cl , ClSet]; Sub; N〉 StL .

rl [closedPath]: 〈Path; [none]; [ClSet]; Sub; N〉 stack: St StL =⇒ St stack: StL .

rl [closedPath]: 〈Path; [none]; [ClSet]; Sub; N〉 stack: nil =⇒ closed stack: nil .

rl [openPath]: 〈Path; [Lit1, LSet1]; [none]; Sub; N〉 stack: StL =⇒ open stack: nil .

Figure 3. The connection calculus in Maude with an explicit notion of stack.

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188 179

Rule application must be strictly controlled to avoid unfair strategies. A case in
point is extendPath, which should only be applied when the rules that prune the
search space fail to apply. Such order constraint on the calculus will be handled by
means of a rewrite strategy. In Maude, strategies can be implemented as meta-level
rewrite theories applied to object-level theories, which is what we do in the next
section.

5 Implementing the Proof Search

We present the main components of the implementation separately, leading to the
formulation of a connection-based search procedure in Section 5.5. For simplicity,
this procedure assumes a fixed multiplicity and does hence not implement iterative
deepening. For a complete search procedure, all that is omitted in Section 5.5 is a
function which gradually increases the multiplicity.

5.1 A Function for Case-based Rewriting

Let l be a Qid and applyRule(M, t, l) a function which applies a rule with label l to a
term t in module M (simplifying Maude’s metaApply by assuming that the rewrite
may only occur at a unique position of t and ignoring the substitution). Following
Maude conventions, this function returns a term of sort ResultTriple?; if the rule
application succeeds it returns a term of the subsort ResultTriple. The standard
function getTerm : ResultTriple → Term returns the term resulting from the rule
application (the ResultTriple terms also includes a sort and a substitution). Let lab
be a label, and L1 and L2 be lists of labels. A case-based rewrite function cases(M,
T, L1) is defined as follows:

var M : Module . var T : Term .

vars L1 L2 : QidList . var lab : Qid .

op cases : Module Term QidList → Term .

op cases : Module Term QidList QidList → Term .

eq cases(M, T, L1) = cases(M, T, nil , L1) .

eq cases(M, T, L1, nil) = T .

ceq cases(M, T, L1, lab L2) =

if (RESULT :: ResultTriple) then

if (occurs(lab , ’ reductionRule ’ extensionRule ’ extensionRule2))

then cases(M, mguNewIndex(M, getTerm(RESULT)), nil, L1 lab L2)

else cases(M, getTerm(RESULT), nil, L1 lab L2) fi

else cases(M, T, L1 lab, L2) fi

if RESULT := applyRule(M, T, lab) .

The function cases(M, T, L1) repeatedly tries to apply the rules of module M to the
term T in the order given by the labels in the list L1. When no rule is applicable, the

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188180

function terminates and the term is returned. The function mguNewIndex distributes
information about variable bindings (mgu) and newly generated fresh variables, so
other SearchState elements can update their newIndex and substitute variables. This
is only relevant if the rewrite rule we are applying is a variable binding rule, hence
the occurs check.

5.2 A Strategy for Basic Search

The basic search component defines a strategy where an active clause is selected
by an init rule. Then, we recursively attempt to apply rules to the currently in-
vestigated SearchState element, respecting a given order and keeping track of sub-
stitutions and index values. Let gt and dt be wrapper functions for getTerm and
downTerm. The strategy terminates once it locates a path without connections. In
particular, it does not solve the matrix in Example 2.1.

var Mat : Matrix . var Mo : Module .

var N : Nat . var lab : Qid .

var L1 : QidList .

op init : Matrix → Term .

op strategy : Module Matrix QidList → Search .

op basicSearch : Matrix → Bool .

eq init (Mat)= upTerm(〈none; noClause; Mat ; none; 0〉 stack: nil) .

ceq strategy(Mo, Mat, lab L1) =

if (RESULT :: ResultTriple) then dt(cases(Mo, gt(RESULT), L1))

else open stack: nil fi ∗∗∗ return member of Failure sort when init rule fails

if RESULT := applyRule(Mo, init(Mat), lab) .

ceq basicSearch(Mat) = RESULT :: Success

if RESULT := strategy([’FOL−CONNECTION], Mat,

’ init ’ reductionRule ’closedPath ’openPath ’extensionRule ’extendPath) .

5.3 Static Free Variable Copies

We now address clause copying. The function below implements static copying ;
i.e., copies are introduced before the proof search begins. The presented function
makes a single copy of each clause with free variables, this can easily be modified
by increasing the last parameter of the strategy function.

∗∗∗ we extend init and strategy

op init : Matrix Nat → Term .

op strategy : Module Matrix QidList Nat → Search .

eq init (Mat, N) =

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188 181

upTerm(< none; noClause; staticCopy(Mat, N); none; sumFree(Mat) ∗ N > stack: nil) .

ceq strategy(Mo, Mat, lab L1, N) =

if (RESULT :: ResultTriple) then dt(cases(Mo, gt(RESULT), L1))

else open stack: nil fi

if RESULT := applyRule(M, init(Mat, N), lab) .

ceq staticCopySearch(Mat) = RESULT :: Success

if RESULT := strategy([’FOL−CONNECTION], Mat,

’ init ’ reductionRule ’closedPath ’openPath ’extensionRule ’extendPath, 1) .

Here, the auxiliary function sumFree : Matrix → Nat returns the number of free
variables inside the Matrix, and staticCopy : Matrix Nat → Matrix returns the matrix
with an additional N fresh copies of any clause that contains variables.

Example 5.1 These auxiliary functions work as follows:

red sumFree([[’P(X:FOLterm), ’R(Z:FOLterm,X:FOLterm)], [’Q(a,b)]]) .

result NzNat: 2

red staticCopy ([[¬(’P(X:FOLterm))], [’P(a),’P(b)]], 2) .

result Matrix: [[¬(’P(X:FOLterm))], [¬(’P(F0:FOLterm))],[¬(’P(F1:FOLterm))],[’P(a),’P(b)]]

5.4 Backtracking

A fair strategy requires that we keep track of the (number of) possible matches for
a rule in a term and decide on an order for trying the different matches. For this
purpose, we use the functionality provided by Maude’s metaApply to apply a rewrite
rule to the n’th matching position in a term. This way, we extend the case-based
rewrite strategy above with backtracking support:

sorts BackTrack BackTrackList .

subsort BackTrack < BackTrackList .

op { , , } : Qid Term Nat → BackTrack .

op nil : → BackTrackList .

op : BackTrackList BackTrackList → BackTrackList [assoc id: nil] .

op btrcases : Module Term QidList QidList → Term .

op btrcases : Module Term QidList QidList BackTrackList QidList → Term .

eq btrcases (M, T, L1, L2) = btrcases(M, T, nil , L1, nil , L2) .

eq btrcases (M, T, L1, nil , nil , L2) = T .

ceq btrcases(M, T, L1, lab L2, BTL, L3) =

if (RESULT :: ResultTriple) then

if (occurs(lab , L3)) ∗∗∗ this is a rule we should backtrack over

then btrcases(M, mguNewIndex(M, gt(RESULT)), nil, L1 lab L2, {lab, T, 1} BTL, L3)

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188182

else btrcases (M, mguNewIndex(M, gt(RESULT)), nil, L1 lab L2, BTL, L3) fi

else

btrcases (M, T, L1 lab, L2, BTL, L3)

fi

if RESULT := applyRule(M, T, lab) .

eq btrcases (M, T, L1, nil , { lab , T2, N } BTL, L3) =

if (dt(T) :: Failure) then

if (applyRule(M, T2, lab, N) :: ResultTriple)

then btrcases(M, mguNewIndex(M, gt(applyRule(M, T2, lab, N))),

nil , L1, {lab , T2, N+1} BTL, L3)

else

btrcases (M, T, L1, nil , BTL, L3)

fi

else T fi .

If our current rule applies, the number of the next potential matching position
is stored in the BackTrackList. Backtracking is then a matter of calling the search
function with the elements of the backtrack-term, which are now stored in a list.
Note that we can select the members of the label list; i.e., the rewrite rules to which
backtracking should apply.

op strategy : Module Matrix QidList QidList Nat → Search .

op backtrackSearch : Matrix → Bool .

ceq strategy(Mo, Mat, lab L1, L2) =

if (RESULT :: ResultTriple) then dt(btrcases (Mo, gt(RESULT), L1, L2))

else open stack: nil fi

if RESULT := applyRule(Mo, init(Mat), lab) .

ceq backtrackSearch(Mat) = RESULT :: Success

if RESULT := strategy([’FOL−CONNECTION], Mat,

’ init ’ reductionRule ’closedPath ’openPath ’extensionRule ’extendPath,

’ reductionRule ’ extensionRule) .

5.5 Dynamic Free Variable Copies

In this section we consider a strategy for proof search in which the copies of clauses
with free variables are added dynamically when deductive rules are applied. The
main advantage of a dynamic scheme is that copies are created on demand. This
limits the number of possible connections, in contrast to the a priori fixed number
of copies provided by staticCopySearch. The idea is to make variables as free as
possible, such that variable bindings occurring during unification affect as few vari-
ables as possible. For this purpose, clause copying will be associated with the rules
which activate a new clause during the search.

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188 183

rl [init2]: 〈Path; noClause; [Cl, ClSet]; Sub; N〉 stack: StL

=⇒ 〈Path; Cl; [copyClause(Cl, N), ClSet]; Sub; cntFree(Cl) + N〉 stack: StL.

crl [extensionRule2]: 〈Path; [Lit1, LSet1]; [[Lit2, LSet2], ClSet]; Sub; N〉 stack: StL

=⇒ 〈Path,Lit1; [LSet2]; [ClSet]; MGU; N2〉 stack: 〈Path; [LSet1]; [Cl,ClSet]; Sub; N2〉 StL

if (unifyCompl(Lit1, Lit2)) ∧ MGU := mgu(Lit1, Lit2, N)

∧ N2 := newIndex(Lit1, Lit2, N) + cntFree([Lit2 , LSet2])

∧ Cl := copyClause([Lit2, LSet2], newIndex(Lit1, Lit2 , N)) .

First, the rule init2 modifies the initialization rule (init) which selects the active
clause from the initial matrix. The difference from the previous init rule is that
a copy of the selected clause is placed in the remaining matrix. Recall that the
function copyClause provides a fresh copy of the input clause, that newIndex provides
a new variable index based on the two literals and the old index, and that the
function cntFree counts the number of free variables in a clause. Next, we modify
the rule extensionRule, which prunes the search by locating connections between
elements in the active clause and the remaining matrix. Here, a fresh clause is
generated and added to the second search state.

Example 5.2 The use of rule extensionRule2 is illustrated as follows:

〈Q(a); [P(X), U(c)]; [[¬P(b), R(Y)], [S(Z)]]; empty; 7〉
=⇒ 〈Q(a), P(X); [R(Y)]; [[S(Z)]]; (X ← b); 8〉

〈Q(a); [U(c)]; [[¬P(b), R(F7)], S(Z)]; empty; 8〉

The index of the SearchState elements is increased due to the free variable inside
the clause that is copied. The main idea is that binding the variable Y should
not affect the clauses left in the remaining matrix when the substitution is applied.
Since a fresh copy of this clause is allowed, we replace the original clause with a copy
to avoid name capture. Note that the original version of the clause could be left
inside the remaining matrix as well. An iterative procedure where original versions
of the clauses are left inside the remaining matrix is needed for completeness of the
connection method.

By selecting the initial active SearchState element with rule init2 and replacing
extensionRule with extensionRule2 in basicSearch, we get a search strategy dy-

namicCopySearch which incorporates a possible solution for dynamic fresh clause
copies. (Note that there are several options for when to introduce copies; e.g., ex-

tendPath could also copy the activated clause.) In order to include backtracking
over the variable binding rewrite rules, we define a strategy dynamicCopyBacktrack

combining the backtracking strategy given in Section 5.4 with the new rule set. The
strategy function is used once again, it should be noted that backtracking over the
init-rules have not been presented, this is however only a minor detail to implement.

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188184

Search SET044-5 SYN057-1 SYN005-1.010 SYN101-1.020.020 PUZ005-1

4/8/6 5/13/4 11/10/20 17/37/24 51/112/56

basic S, 8ms F, 8ms S, 24ms S, 80ms F, 6680ms

basic ∗ S, 20ms F, 8ms S, 24ms S, 396ms F, 61563ms

static copy S, 28ms F, 16ms S, 36ms S, 296ms F, 11452ms

static copy ∗ F, 64ms F, 16ms S, 32ms S, 21241ms -

backtracking S, 8ms F, 1132ms S, 24ms S, 84ms -

backtracking ∗ S, 24ms F, 504ms S, 20ms S, 412ms -

static copy,
backtrack
over init rule

F, 248ms S, 40ms S, 44ms S, 312ms -

dynamic copy F, 8ms F, 8ms S, 24ms S, 88ms S, 224ms

dynamic copy,
backtracking

S, 56ms S, 80ms S, 32ms S, 88ms S, 228ms

Figure 4. Sample results from strategy application. The size of each formula is suggested by its number of
clauses/literals/variables (given in row 2 of the table).

ceq dynamicCopySearch(Mat) = RESULT :: Success

if RESULT := strategy([’FOL−CONNECTION], Mat,

’ init2 ’ reductionRule ’closedPath ’openPath ’extensionRule2 ’extendPath) .

ceq dynamicCopyBacktrack(M, ClSet) = RESULT :: Success

if RESULT := strategy([’FOL−CONNECTION], Mat,

’ init2 ’ reductionRule ’closedPath ’openPath ’extensionRule2 ’extendPath,

’ init2 ’ reductionRule ’ extensionRule2) .

5.6 Comparison of Search Strategies

In order to compare search functions we apply the previously defined functions to a
selection of formulas from the TPTP library [15]. The proof search was done on a
laptop with a 1.7 GHz CPU and 1 Gb RAM running Linux. The results of the search
strategy applications for some representative formulas are presented in Fig. 4. In
the figure, S denotes that the proof search succeeded in proving the formula, and F
that the search failed to prove the formula. As previously mentioned, extensionRule
can be excluded. The three first proof searches have also been performed without
this rule (marked with ‘∗’). We also considered a proof search where backtracking
only applies to the init-rule and took one static copy of the free variable clauses
prior to the proof search. In addition, the figure provides the time in milliseconds
for each proof search to terminate. Open entries represent that the search did not
produce any result within five minutes. Note that the formulas selected in Fig. 4
are all valid and easy to prove in state of the art systems. However, they also show
that the behavior of the different strategies defined for the connection calculus are
easy to compare using rewriting logic and Maude.

Most notable are perhaps the negative results produced by the different strate-
gies, which allow the strengths of these simple strategies to be compared. The
strategies are listed in the figure in increasing strength. Surprisingly, dynamicCopy-
Search has bad performance on SET0044-5; this is due to the choice of variable

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188 185

binding and is solved by backtracking in dynamicCopyBacktrack. Although the ba-
sicSearch is obviously not complete it provides a useful insight into the time needed
for efficient verification, due to its simplicity. Therefore, it may be interesting to
compare strategies with more overhead to basicSearch. For the formulas in the fig-
ure, staticCopySearch performs surprisingly well. However, the significant overhead
due to the initial extension of the matrix results in much slower results for large
formulas such as PUZ005-1. The figure finally suggests that backtracking and the
dynamic clause copies inserted during rule application adds little overhead. In par-
ticular, when backtracking or additional clause copies are not needed, the additional
time needed with these strategies seems acceptable.

6 Related Work

A broad range of computational and deductive systems have been specified using
rewriting logic and Maude; for examples, see [5]. In particular, the ITP tool is a
theorem prover developed in Maude [7], exploiting reflection. In contrast to our au-
tomated proof search, ITP is an interactive prover developed for inductive reasoning
about specifications in membership equational logic. A strategy language has been
proposed for Maude [11,8] in which strategies may be composed using strategy com-
binators. The approach provides a nice separation of concerns between computation
and control. Our strategies for cases and btrcases are examples of strategies which
could potentially be expressed in this language. However our backtracking strategy
allows the user to specify that backtracking applies to a specific subset of the rules
of the rewrite theory, a feature which reduces the size of the search at runtime. Cur-
rently the strategy language is implemented at the meta-level and only supported
by Full Maude. Thus, it does not fit directly with the connection calculus that we
have presented here. However, a low-level integration of the strategy language with
Maude will make it an interesting tool for further extensions of our work. Such an
implementation is under development [8].

This work extends our previous work on the connection calculus for propositional
logic [10]. We are not aware of any attempts to design a theorem prover for FOL
in Maude using a system with a level of sophistication that is comparable to the
connection calculus. The system and strategy we implement in this paper is closely
related to the Prolog theorem prover leanCoP [14]. This is an implementation
which takes full advantage of Prolog’s backtracking and unification scheme, a feature
which allows extremely compact code, but also makes it more difficult to control
backtracking.

The tableaux workbench [1] and LoTREC [9] are initiatives that are similar to
ours, in the sense that they support high-level specification of proof systems and
strategies. They are, however, limited to tableau methods, which are not goal-
directed, and their strategy languages are much more restricted than what Maude’s
meta-level provides.

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188186

7 Conclusion and Future Work

The paper presents a rewriting logic approach to the implementation of a connection-
driven search engine for FOL. A rewrite theory is defined for the connection method,
and variations of search strategies are explored at the Maude meta-level. This fa-
cilitates comparison and experimentation with strategies for proof search, as these
control the same underlying rewrite theory.

The motivation behind the current work is to develop a deduction platform in
Maude that supports flexible strategies. In future work we enable incorporation
of contextual knowledge about assumption sets into search procedures, a feature
which supports the design of special-purpose theorem provers. We also intend to
operate both on a meta-level (the usual level of strategies) and at a meta-meta-
level, the latter in order to select, refine and compose new strategies at run-time.
This adaptive behaviour can be guided by information about the search history in
addition to the present configuration of the search.

Our long-term perspective is to contribute to the design of efficient domain-
specific reasoning algorithms for expressive non-classical logics. In contrast to, say,
the formalization of mathematical reasoning, many applications are characterized
by a large set of premises with fairly shallow logical structure. For example, ontolo-
gies with more than 100 000 concepts are not unusual, often with simple concept
definitions. We believe that a goal-directed method like the connection method has
potential in such contexts, along with domain-specific search strategies. The fact
that the connection method does not require any normal form makes it attractive
also for non-classical logics. For intuitionistic logic, for instance, the connection-
based theorem prover ileanCoP by far outperforms any other implementation [13].
Matrix characterisations already exist for a number of non-classical logics [16], and
a future ambition is to gradually extend the current work to more sophisticated
logics and more complex strategies.

Acknowledgement

We are grateful to Jens Otten for interesting discussions on proof search for the
connection method and to Steven Eker for giving us access to Maude alpha-versions
with unification support. This paper was written while Einar Broch Johnsen was
enjoying the hospitality of the United Nations University - International Institute
for Software Technology in Macau.

References

[1] P. Abate and R. Goré. The tableaux work bench. In Proc. TABLEAUX 2003, LNCS 2796, pages
230–236. Springer, 2003.

[2] P. B. Andrews. Refutations by matings. IEEE Trans. Computers, 25(8):801–807, 1976.

[3] W. Bibel. An approach to a systematic theorem proving procedure in first order logic. Computing,
12:43–55, 1974.

[4] W. Bibel. Automated Theorem Proving. Vieweg, Wiesbaden, 2nd edition, 1987.

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188 187

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F. Quesada. Maude:
Specification and programming in rewriting logic. Theoretical Computer Science, 285:187–243, Aug.
2002.

[6] M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical Computer Science,
285:245–288, Aug. 2002.

[7] M. Clavel, M. Palomino, and A. Riesco. Introducing the ITP tool: a tutorial. Journal of Universal
Computer Science, 12(11):1618–1650, 2006.

[8] S. Eker, N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Deduction, strategies, and rewriting. In Proc.
STRATEGIES 2006, ENTCS 174: 3–25. Elsevier, July 2007.

[9] O. Gasquet, A. Herzig, D. Longin, and M. Sahade. LoTREC: Logical tableaux research engineering
companion. In Proc. TABLEAUX 2005, LNCS 3702, pages 318–322. Springer, 2005.

[10] B. Holen, E. B. Johnsen, and A. Waaler. Representing strategies for the connection calculus in rewriting
logic. In Proc. FTP 2005, pages 130–141, Aug. 2005. Tech. rep. 13/2005, Inst. für Informatik,
Universität Koblenz-Landau.

[11] N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for Maude. In Proc. WRLA
2004, ENTCS 117: 417–441. Elsevier, Jan. 2005.

[12] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96:73–155, 1992.

[13] J. Otten. Clausal connection-based theorem proving in intuitionistic first-order logic. In Proc.
TABLEAUX 2005, LNCS 3702, pages 245–261. Springer, 2005.

[14] J. Otten and W. Bibel. leanCoP: lean connection-based theorem proving. Journal of Symbolic
Computation, 36(1–2):139–161, 2003.

[15] G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated
Reasoning, 21(2):177–203, 1998.

[16] A. Waaler. Connections in nonclassical logics. In J. A. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning, pages 1487–1578. Elsevier and MIT Press, 2001.

B. Holen et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 173–188188

	Introduction
	The Connection Method: Paths through Matrices
	Rewriting Logic, Reflection, and Maude
	The Connection Method in Maude: Basic Syntax
	Implementing the Proof Search
	A Function for Case-based Rewriting
	A Strategy for Basic Search
	Static Free Variable Copies
	Backtracking
	Dynamic Free Variable Copies
	Comparison of Search Strategies

	Related Work
	Conclusion and Future Work
	Acknowledgement
	References

