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SUMMARY

Metastasis is the leading cause of cancer-associated
death but has been difficult to study because it
involvesaseriesof rare, stochasticevents. Tocapture
these events, we developed a sensitivemethod to tag
and track pancreatic epithelial cells in amousemodel
of pancreatic cancer. Tagged cells invaded and
entered the bloodstream unexpectedly early, before
frank malignancy could be detected by rigorous
histologic analysis; this behavior was widely associ-
atedwithepithelial-to-mesenchymal transition (EMT).
Circulating pancreatic cells maintained a mesen-
chymal phenotype, exhibited stem cell properties,
and seeded the liver. EMT and invasiveness were
most abundant at inflammatory foci, and induction
of pancreatitis increased the number of circulating
pancreatic cells. Conversely, treatment with the im-
munosuppressive agent dexamethasone abolished
dissemination. These results provide insight into the
earliest events of cellular invasion in situ and suggest
that inflammation enhances cancer progression in
part by facilitating EMT and entry into the circulation.

INTRODUCTION

Each step in the metastatic cascade is highly inefficient. Only

a small fraction of cells from a primary tumor enter the circula-

tion, and less than 0.01% of these develop into metastases

(Gupta et al., 2005). It is thought that tumor cells pass through

several stages during which they sequentially acquire the ability

to invade through basement membrane(s), enter and exit the

bloodstream, and survive and grow in distant organs. Because

each of these events is rare, studies of the metastatic process

have relied heavily upon cells that have been cultured and
manipulated in vitro and reintroduced into recipient animals. As

a result, there remains considerable uncertainty regarding the

factors that influence each stage in vivo as well as the timing of

dissemination itself.

Clinical observations, mainly in the field of breast cancer, have

given rise to two major metastasis paradigms. The classical

model treats metastasis as the final step in a progressive

‘‘Darwinian’’ sequence, in which tumors acquire mutations that

promote invasive behavior and dissemination late in tumor

evolution (Cairns, 1975). This model has several conceptual

problems (Gupta et al., 2005; Klein, 2009) and fails to account

for two clinical observations: the appearance of metastatic

lesions years after resection of small tumors with no clinically

evident metastases at diagnosis (Pantel et al., 2008) and metas-

tases of unknown primary tumors, which account for as many as

4%–5% of all clinical metastases (Greco and Hainsworth, 2009).

An alternative model has been proposed that envisions metas-

tasis as an inherent feature of a tumor very early in its natural

history (Hellman, 1994; Klein, 2009). Although direct evidence

for this model is limited, recent studies of breast cancer are

consistent with the notion that metastatic seeding may be medi-

ated by cells that would not meet a standard definition of cancer

(Hüsemann et al., 2008; Podsypanina et al., 2008). Furthermore,

several small studies concluded that the presence of putative

disseminated tumor cells in the bone marrow of patients with

low-grade mammary tumors or carcinoma in situ correlates

with a worse outcome (Ignatiadis et al., 2011; Sänger et al.,

2011). The possibility that cellular dissemination leading to

metastasis occurs prior to the formation of an identifiable

primary tumor has significant clinical and biological implications.

One of the challenges in studying tumor cell dissemination has

been the identification of markers that distinguish cancer cells

from cells that normally reside in the bloodstream or at sites of

seeding. During malignant progression, it has been proposed

that carcinoma cells undergo an epithelial-to-mesenchymal

transition (EMT), in which they lose epithelial characteristics

and acquire invasive properties and stem cell-like features
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Figure 1. Lineage-Labeled Mouse Models of Pancreatic Cancer and Detection of EMT

(A) Schematic of the PKCY mouse model used in this study, which employs the KrasG12D (‘‘K’’), Pdx1-Cre (‘‘C’’), p53 (‘‘P’’), and RosaYFP (‘‘Y’’) alleles

(see Experimental Procedures). Cre-mediated activation of Kras and deletion of one allele of the p53 tumor suppressor are accompanied by recombination of the

YFP lineage label.

(B) Bright-field and fluorescent images of midgut organs from a CY mouse showing robust and specific fluorescence of the pancreas (outlined); some labeling is

also present in the duodenum.

(C) Time course of malignant progression in PKCY mice.

(D–F) Representative images of malignant progression. Prior to weaning, PKCY mice have histologically normal pancreata (D) but develop PanIN lesions (E) and

eventually PDAC (F).

(G–I) Images of pancreata from (D)–(F) stained with an antibody against YFP (green) and N-cadherin (N-cad, red); prior to weaning, scant N-cad staining is

seen (G).

(J and K) Fluorescent images of lineage-labeled cells derived from the pancreatic epithelium. In control (CY; Pdx-Cre; YFP) pancreata, YFP+ cells express

E-cadherin (E-cad; J) but not N-cad (K). Dotted lines indicate YFP� mesenchymal cells.
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(Polyak and Weinberg, 2009). Although several studies support

a physiologic role during tumor progression (Moody et al.,

2005; Trimboli et al., 2008), most studies of EMT in the context

of cancer biology have been conducted in vitro, and thus the

relevance of EMT to carcinogenesis continues to be debated

(Ledford, 2011). If EMT does play a crucial role in cancer cell

spread in vivo, then detection methods that rely on cellular

expression of epithelial markers alone are likely to provide an

incomplete picture of metastasis.

To understand the early events that accompany invasive

behavior, we developed a lineage-labeling system to detect

and isolate cells of pancreatic epithelial origin during stochastic

tumor progression. This system allowed us to determine the

kinetics of EMT and hematogenous dissemination during the

natural evolution of pancreatic ductal adenocarcinoma (PDAC)

in vivo and correlate cell phenotype with the acquisition of inva-

sive and tumor-initiating properties.

RESULTS

Enhanced Detection of EMT using Epithelial
Lineage Tracing
We used a Cre-lox-based mouse model of PDAC to study the

fate of pancreatic epithelial cells during various stages of tumor

progression (Bardeesy et al., 2006). The model relies on the

Pdx1-Cre transgenic strain (Gu et al., 2003) to generate

pancreas-specific mutations in Kras and p53, genes that are

mutated with high frequency in human pancreatic cancers (Hezel

et al., 2006). In order to track pancreatic epithelial cells during

tumor progression, we introduced a RosaYFP allele into the

mutant background, resulting in highly specific and efficient

(>95%) labeling (Figures 1A and 1B). Animals containing all four

alleles were referred to as PKCYmice. A secondmodel, in which

a single allele of p16Ink4a/Arf was deleted in place of p53 (IKCY;

Aguirre et al., 2003), was also employed and yielded similar

results (data not shown). The lineage-labeled mousemodels dis-

played similar histology as nonlabeled models, including the

development of pancreatic intraepithelial neoplasias (PanINs),

primary tumors, and metastases, with reproducible kinetics

(Figures 1C–1I). Because the Pdx1 promoter is active only in

endoderm-derived pancreatic cells (Gu et al., 2003), only the

epithelium was tagged by this method. Importantly, mesen-

chymal cells were never labeled under control conditions in

Pdx1-Cre; RosaYFP (CY) animals (Figures 1J and 1K).

Initially, we looked for cancer cells that coexpressed an

epithelial marker and a mesenchymal marker, a standard

approach used to detect cells at an ‘‘intermediate stage’’ of

EMT. In the course of these studies, we used several mesen-

chymal markers (Figure S1 available online) but focused our

analysis on Zeb1 and Fsp1 as these markers serve as indepen-

dent predictors of mortality in patients with pancreatic cancer

(Brabletz et al., 2011; Wang et al., 2007). Using this method,
(L–Q) Images of sections from control (CY; L–N) or PDAC (PKCY; O–Q) pancreata c

E-cad (N and Q). Insets and arrowheads in (O)–(Q) show high-magnification view

derived (YFP+) cells that have acquired expression of the mesenchymal marker

marker E-cad (Q).

Scale bars denote 100 mm in (G)–(I) and (L)–(Q) and 10 mm in (J) and (K). See also
we detected tumor cells in tumor-bearing mice (‘‘PDAC mice’’)

that coexpressed either Zeb1 or Fsp1 and the epithelial marker

E-cadherin (E-cad; Figure 1O), indicating that such ‘‘bipheno-

typic’’ cells exist, albeit at a low frequency (<10%).

We then used the YFP lineage label to identify PDAC cells that

had completed an EMT. Because labeling was limited to cells of

epithelial origin,wedefinedEMTashavingoccurred if a cell coex-

pressed YFP and either Zeb1 (Figure 1P) or Fsp1 (Figure S1D)

and/or lacked E-cad (Figure 1Q) expression. Using this

approach, we observed that 42% of the lineage-labeled YFP+

cells in PKCY tumors had undergone EMT (Figure 1P); higher

rates of EMT (68%of all YFP+ cells) were found in the IKCYmodel

(data not shown). EMT was not detected in lineage-labeled CY

control mice by either method (Figures 1L–1N). Thus, genetic

lineage marking is a sensitive tool for distinguishing cells of

epithelial and mesenchymal origin and for the detection of EMT.

EMT in Premalignant Lesions
EMT has been proposed to be a prerequisite for invasion and

dissemination of carcinoma cells (Hanahan and Weinberg,

2011). To determine when EMT first occurs during PanIN-to-

carcinoma progression, we analyzed 8- to 10-week-old PKCY

mice. At these time points, only precancerous PanIN lesions

were present, and there was no histological evidence of PDAC

based on extensive H&E analysis (n = 18); these animals were

referred to as ‘‘PanINmice’’ solely to reflect the histological state

of the pancreas at these time points.

EMT was identified in premalignant lesions from both models

(Figures 2B, 2C, S1B, and S1C; data not shown). 2.7% and 6.8%

of all PanIN 2 and 3 lesions, respectively, contained at least one

YFP+Zeb1+ cell, whereas EMT was never observed in PanIN 1

lesions (Figures 2A and 2E). Similar results were noted with other

mesenchymal markers, including Fsp1, Slug, Snail1, and Sip1

(Figure S1). EMT was also prevalent in areas of acinar-to-ductal

metaplasia (ADM), particularly in lesions surrounded by abun-

dant inflammatory cells (Figures 2D and S2A). We refer to these

areas as ADMIs (acinar-to-ductal metaplasia with inflammation)

and determined that 15.8% of ADMIs had evidence of EMT in 8-

to 10-week-old PKCY PanIN mice (Figure 2E).

We sorted YFP+ cells and performed qPCR to confirm that

epithelium-derived pancreatic cells activated a mesenchymal

program at the transcriptional level (Figure 2F). Transcripts for

Zeb1, Fsp1, and N-cadherin were found in YFP+ cells from

tumor-bearing PKCY animals and PanIN animals but not in

YFP+ cells from CY control mice (Figure 2G; p < 0.01). These

data indicate that EMT occurs in PanIN lesions and ADMIs prior

to tumor formation.

Pancreatic Epithelial Cells Spread before
Tumor Formation
Cells that have undergone EMT acquire an invasive phenotype

in vitro (Polyak and Weinberg, 2009). Thus, we hypothesized
ostained with E-cad and Zeb1 (L andO); YFP and Zeb1 (M and P); and YFP and

s of cells that coexpress an epithelial and mesenchymal marker (O), epithelial-

Zeb1 (P), or epithelial-derived cells that have lost expression of the epithelial

Figure S1.
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Figure 2. EMT Precedes Tumor Formation

(A–D) In pancreata taken from 8- to 10-week-old PKCYmice, EMT is observed in regions of acinar-to-ductal metaplasia with inflammation (ADMI; D), PanIN 2 (B),

PanIN 3 (C), but not in PanIN 1 lesions (A). Arrows show individual YFP+ cells (green) that also express Zeb1 (red).

(E) Quantification of observations from (A)–(D), showing the percentage of each type of lesion having at least one cell that has undergone EMT; numbers reflect at

least ten medium-powered fields from each of five PanIN mice.

(F) Strategy for isolating YFP+ epithelially derived cells from the pancreas; the purity of the YFP+ population was confirmed by a repeat FACS analysis.

(G) Transcriptional analysis of sorted YFP+ pancreas cells from lineage-labeled CY control (n = 4), PanIN (n = 6), and PDAC (n = 5) pancreata.

Bar graph data are presented as mean ± standard deviation (SD) in this and subsequent figures. *p < 0.01; **p < 0.001 by two-tailed Student’s t test in this and

subsequent figures, unless otherwise noted. Scale bars, 20 mm. See also Figure S2.
that cells that undergo EMT in PanIN mice might also have inva-

sive properties. Consistent with this notion, we identified indi-

vidual YFP+ cells that had traversed the basement membrane

and dissociated from any discernible pancreatic epithelial struc-

ture (a process we refer to as ‘‘delamination’’) in mice bearing

PanIN 2 and PanIN 3 lesions (Figures 3A and S2A). Most of these

cells expressed Zeb1 (Figure 3A, i–iii) and had acquired a fibro-

blast-like morphology, making them indistinguishable from

surrounding stromal cells by conventional histology (Figures

3A, 3B, and S2); a fraction of the delaminated YFP+ cells also
352 Cell 148, 349–361, January 20, 2012 ª2012 Elsevier Inc.
expressed Fsp1 (Figure S2A, insets). To rule out the possibility

that the Pdx1 promoter might be ectopically activated in mesen-

chymal cells during premalignant progression, we performed

lineage tracing in Mist1CreERT2 mice whose acinar cells had

been labeled by tamoxifen pulse. In the setting of experimental

pancreatitis (as described in greater detail below), Mist1CreERT2;

KrasG12D; RosaYFP pancreata contained fibroblast-like YFP+

cells that lacked E-cad expression (Figure S2B). Because

Mist1CreERT2 mediates labeling solely at the time of tamoxifen

administration (Habbeet al., 2008), this experimentdemonstrates



unambiguously that the labeledmesenchymal cells were derived

from pancreatic acinar cells in vivo.

To extend these studies, we performed immunostaining for

the Pdx1 transcription factor. Pdx1 is normally expressed at

high levels during pancreatic development and in adult b cells,

and it is commonly ‘‘reactivated’’ in human PanIN lesions and

in PDAC (Park et al., 2011). Pdx1 was widely expressed in PanIN

lesions and in a subset of YFP+ cells that had delaminated in

PanIN mice (Figure S3A). Consistent with these data, sections

of human pancreas that contained PanIN lesions (but no tumor)

exhibited scattered Pdx1+ cells that were separated from any

defined epithelial structure (Figures S3B–S3D). Thus, human

pancreatic cells may delaminate from PanIN lesions as they do

in the mouse model.

Because lineage tracing demonstrated that pancreatic cells

can cross the basement membrane before invasive behavior is

detectable by standard histology, we asked whether these cells

could also enter the bloodstream prior to tumor formation. In

tumor-bearing PDAC mice, YFP+ circulating pancreatic cells

(CPCs) were readily detected in the blood by flow cytometry

(Figure 3E). Surprisingly, CPCs were also abundant in the blood-

stream of 8- to 10-week-old PKCY PanIN mice (Figures 3C–3G).

Sorted YFP+ cells contained the recombined YFP allele (Fig-

ure 3H), expressed transcripts for YFP, Pdx1, and E-cad

(Figure 3I), and carried the Gly/Asp mutation at codon 12 of

the Kras cDNA (Figures 3J and 3K). Thus, cells derived from

the pancreatic epithelium are present in the circulation of mice

with no evidence of carcinoma.

These data raised the possibility that CPCs from PanIN mice

might seed distant organs. To assess this possibility, we first

examinedPDACmice as a positive control. Bright-field stereomi-

croscopy permitted detection of peritoneal, liver, or lung metas-

tases in 8/20 animals; use of the YFP lineage label enhanced

detection, revealing micrometastases in 16/20 PDAC mice (Fig-

ure 3L). Next, we analyzed 8- to 10-week-old PKCY PanIN

mice. Although no animals hadmacro- or micrometastases, liver

seeding by YFP+ cells was detected in 4/11 PanIN mice (Figures

3M and 3N); most were single cells located near blood vessels

and expressed neither Zeb1 nor E-cad (Figures 3M and 3N). By

contrast, 0/10 livers from lineage-labeled control CY mice

harbored YFP+ cells when examined by the same technique.

Characterization of CPCs
The number of YFP+ CPCs from PDAC mice depended on the

location of blood collection, with a roughly 3-fold increase in

abundance in the right side of the heart compared to the left

side (Figure 4A). Only 2/9 PDAC mice had evidence of lung

metastases, suggesting that the vast majority of CPCs do not

survive passage through the pulmonary circulation. To deter-

mine whether cells in the circulation exhibited an epithelial,

mesenchymal, or mixed phenotype, we stained CPCs with

a variety of markers in a flow cytometric assay. The epithelial

markers E-cad, CK19, and EpCAM were detected in fewer

than 20% of PanIN CPCs and fewer than 40% of PDAC CPCs

(Figure 4B). With the exception of Fsp1—which was detected

in only 1.1% of all PanIN CPCs compared to 45.2% in PDAC

CPCs (p < 0.01)—there were no statistically significant differ-

ences in cell-surface phenotype between CPCs from the two
groups (Figure 4B). Coimmunofluorescence for Zeb1 and

EpCAM revealed that approximately 40% of PDAC CPCs were

Zeb1+, 27% were EpCAM+, and 18% were double positive

(Figure S4), suggesting that most CPCs do not exhibit a ‘‘mixed’’

epithelial-mesenchymal phenotype. These data indicate that

CPCs from PDAC and PanIN animals are phenotypically similar

and that a large fraction maintains a mesenchymal phenotype

in the circulation.

CPCs Exhibit Features of Cancer Stem Cells
Cancer stem cells are functionally defined as cells that have

enhanced tumor-initiating capacity upon transplantation into

a permissive host. In human pancreatic tumors, this activity

may be contained within a CD24+CD44+ population of cells,

among others (Hermann et al., 2007; Jimeno et al., 2009; Li

et al., 2007). Because EMT in primary cells has been associated

with the acquisition of stem cell-like characteristics (Mani et al.,

2008), we hypothesized that CPCs might also exhibit features

of cancer stem cells. We compared the relative abundance of

CD24+CD44+ cells in pancreata and CPCs from PanIN and

PDAC mice. By fluorescence-activated cell sorting (FACS) anal-

ysis, 0.11% ± 0.32% and 0.30% ± 0.13% of sorted YFP+ cells

from PanIN and PDAC pancreata, respectively, expressed

both CD24 and CD44 (Figure 4C). By contrast, 23.1% ± 12.9%

and 46.4% ± 14.7% of sorted YFP+ CPCs from PanIN and

PDAC samples were found to be CD24+CD44+, representing

a greater than 100-fold enrichment when compared to the

source pancreas (Figure 4D).

We next assessed the survival and self-renewal properties of

CPCs directly by employing an in vitro pancreatosphere assay,

in which single YFP+ cells were cultured in attachment-free

conditions (Rovira et al., 2010). In both PanIN and PDAC mice,

YFP+ CPCs had significantly greater rates of clonal survival

and growth compared to YFP+ pancreas cells from the same

animal (Figures 4E and 4F; p < 0.05). Taken together, these

data suggest that during tumor evolution in vivo, bloodstream

entry is associated with enrichment of cells that have phenotypic

and functional features associated with pancreatic cancer stem

cells.

Cells that Have Undergone EMT Have
Tumor-Initiating Properties
Although previous work has suggested a link between EMT and

increased tumor aggressiveness, most studies have relied on

in vitro manipulation of cancer cell lines to induce EMT (Wein-

berg, 2008). Such treatments could have a direct effect on cell

behavior apart from their EMT-inducing activity, and thus a direct

demonstration of the role of EMT in tumor progression is lacking.

We used our lineage-labeling system to isolate cells that had

either lost or retained E-cadherin expression to determine

whether an EMT in vivo is associated with tumor-initiating

capacity (Figure 5A).

First, we transplanted 100,000 YFP+E-cad+ or YFP+E-cad�

pancreatic cells from PDAC mice into the pancreata of NOD/

SCID animals (n = 5 for each group). After 3weeks, all transplants

gave rise to large tumors with local invasion and distant metas-

tasis regardless of E-cad status at the time of transplantation;

tumors were histologically similar, and YFP+ cells coexpressing
Cell 148, 349–361, January 20, 2012 ª2012 Elsevier Inc. 353
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Figure 3. Hematogenous Spread and Liver Seeding Precede Tumor Formation

(A and B) Images showing individual YFP+ cells (green) intermingled with stromal cells prior to tumor formation in a 10-week-old PKCY PanIN mouse (A).

Delaminated YFP+ cells have a spindle-shaped morphology and express Zeb1 (boxes i–iii); they are indistinguishable from surrounding Zeb1+YFP� stromal cells

by H&E staining of an adjacent section (B).

(C and D) FACS analysis of blood samples from age-matched CY control (C) and PKCY PanIN mice (D). YFP fluorescence and a stain for the leukocyte marker

CD45 are depicted on the x and y axes of the FACS plot. YFP+CD45� cells were seen in the blood of PanIN (D) and PDAC (not shown) animals (boxed area

indicates representative gating and absolute number of YFP+ cells).
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either Zeb1 or E-cad were found at comparable proportions in

both groups (Figures 5B–5E). This result suggests that tumor-

derived E-cad+ and E-cad� cells can each form tumors and

that there is significant plasticity between epithelial and mesen-

chymal states.

By contrast, we observed a dramatic effect of E-cad status

on tumor formation when cells from PanIN mice were trans-

planted: 4/6 animals transplanted with 100,000 YFP+E-cad�

cells formed tumors after 2 months, whereas 0/6 animals

transplanted with 100,000 YFP+E-cad+ cells formed tumors

over the same time period (Figures 5F–5I). Tumors derived

from E-cad� PanIN cells were heterogeneous with respect to

E-cad and Zeb1 expression (Figures 5H and 5I). By compar-

ison, E-cad+ transplanted animals had few detectable YFP+

cells at the 2 month time point, and almost all of the YFP+ cells

detected were Zeb1� (Figure 5F). Mice transplanted with

E-cad+ PanIN cells eventually developed tumors (with

a mean latency of 4 months after transplantation) that were

indistinguishable from the PDAC-derived tumors. Thus, func-

tional analysis of tumor-initiating capacity revealed that

E-cad� cells that have undergone EMT have a marked advan-

tage at the PanIN stage.

Inflammation Promotes EMT, Invasiveness,
and Dissemination
The emergence of PanIN lesions is associated with the appear-

ance of an inflammatory stroma characterized by activated fibro-

blasts andmyeloid-derived cells (Aguirre et al., 2003; Clark et al.,

2007). Inflammation is commonly correlated with tumor initiation

and progression (Coussens and Werb, 2002; Grivennikov et al.,

2010) and accelerates pancreatic carcinogenesis in adult Kras

mutant mice (Guerra et al., 2007, 2011). Our observation that

ADMIs have a high prevalence of EMT (Figure 3) led us to hypoth-

esize that inflammation contributes to EMT and dissemination at

the PanIN stage.

To address this possibility, we induced acute pancreatitis with

cerulein, a cholecystokinin analog that induces acinar cell death

(Siveke et al., 2008). Initially, KCY mice were analyzed to deter-

mine whether expression of oncogenic Kras alone facilitated

EMT and dissemination in response to acute pancreatitis. At

2 months of age, KCY mice had few PanIN lesions or inflamma-

tion at baseline; maximum PanIN grade found at this stage was

PanIN 1 (Figure 6B). As expected, cerulein treatment resulted in

the formation of ADMIs and accelerated PanIN formation

(compare Figures 6B and 6E; Figures S5A–S5D). Surprisingly,

cerulein treatment also resulted in a marked elevation in circu-
(E) Quantification of circulating YFP+ pancreatic cells (CPCs). Mean CPC numbers

and 97.3 ± 48.9 (PDAC, n = 18) (p < 0.001).

(F and G) Phase-fluorescent images showing epifluorescence of a sorted YFP+ c

(H) Genomic PCR showing the presence of the recombined YFP allele in YFP+ c

included as a positive control.

(I) Expression of transcripts encoding YFP, Pdx1, and E-cad, comparing sorted Y

(J and K) Sanger sequencing after PCR amplification of cDNA showing that YFP

highlighted).

(L–N) CPCs from 8- to 10-week-old PKCY animals seed the liver. (L) Micrometast

CPCs seed the liver at the PanIN stage (‘‘PanIN Liver’’); vascular lumens are out

Scale bar, 40 mm for (A and (B); 5 mm for (L)–(N). See also Figure S3.
lating cells, such that CPCs in 8-week-old cerulein-treated

KCY mice were almost as abundant as CPCs in vehicle-treated

PKCY mice of the same age (Figure 6G). Stated otherwise, cer-

ulein pancreatitis had nearly the same effect on CPC number as

the addition of a single floxed p53 allele. Similar changes were

observed in PKCY PanIN and PDAC mice treated with cerulein

(Figures 6C, 6F, S5E, and S5F), as well as control CY animals

treatedwith cerulein (Figures 6A and 6D), resulting in a significant

increase in CPC number across all groups following cerulein

treatment (p = 0.014 by two-way ANOVA; Figure 6G). CPCs

from cerulein-treated KCY mice exhibited a nearly 100-fold

enrichment of CD24+CD44+ cells compared to the source

pancreas, as had been observed for PanIN CPCs, although

this did not result in an increase in clonogenic growth for

KCY-derived CPCs in the pancreatosphere assay (Figures S4B

and S4C).

To confirm that inflammation promotes EMT and blood-

stream entry, we employed a second paradigm of pancreatitis

and performed pancreatic duct ligation (PDL) on 8- to

10-week-old PKCY PanIN mice. One week after PDL, the

portion of the pancreas distal to the ligation was enlarged

and nodular compared to the proximal portion from the

same mouse or sham-treated PanIN mice (Figures S6A

and S6D). This resulted in inflammation, more advanced

PanINs, and a loss of epithelial markers (Figures S6B, S6C,

S6E, and S6F), as well as an increase in CPCs (Figure S6G;

p = 0.042, n = 7). Thus, both chemical and surgical methods

for inducing pancreatitis result in an increase in EMT and

CPC number.

Finally, we sought to determine whether inflammation is

necessary for EMT and bloodstream entry. We treated

10-week-old PKCY mice with dexamethasone (Dex), a potent

anti-inflammatory drug that has no effect on pancreatic histology

in control animals (Figures 6H and 6K). As expected, vehicle-

treated mice at this age had PanIN lesions with an inflammatory

stroma and evidence of EMT but no tumors (Figures 6I and 6J).

Daily treatment with Dex (10 mg/kg for 7 days) resulted in

a marked reduction in inflammation (Figures 6L and 6M; n = 6

each group). Remarkably, PanINs and ADMIs were almost

undetectable in these pancreata (Figures 6K–6M), and this

change in histology was associated with a significant drop in

CPC number compared to vehicle-treated controls (Figure 6N).

Importantly, neither cerulein nor Dex treatment of PanIN-derived

epithelial cells in vitro had any effect on morphology, prolifera-

tion, or expression of epithelial or mesenchymal markers

(Figures S6H–S6N).
(per ml blood) were 3.65 ± 3.76 (CY control, n = 13), 32.8 ± 26.2 (PanIN, n = 17),

ell.

ells but not YFP� cells. Pancreatic DNA containing the recombined allele was

FP+ and YFP� cells and measured by qPCR (±SD).
+ CPCs express a mutant Kras allele that harbors an altered codon 12 (G/A,

asis in a liver from a tumor-bearing mouse (‘‘PDAC Liver’’). (M and N) Individual

lined.
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Figure 4. CPC Characterization

(A) Quantification of CPCs after sampling from the left atrium or ventricle (‘‘Left’’) or right atrium or ventricle (‘‘Right’’) of the same animal (n = 3).

(B) Quantification of FACS staining for epithelial and mesenchymal markers in CPCs obtained from PanIN or PDAC mice (n = 6–8 for each data point).

(C and D) Quantification of YFP+ cells from the pancreas (C) and circulation (D) in PKCY PanIN and PDAC mice that stained positive for the putative pancreatic

cancer stem cell markers CD24 and CD44.

(E and F) Quantification of survival (E) or clonal growth (F) of YFP+ cells obtained from lineage-labeled control (CY), PanIN, and PDACmice in ultra-low attachment

wells. Bar graphs show the number of wells (out of 96 wells seeded with a single cell) exhibiting any live YFP+ cells (E, inset) or evidence of clonal growth (F, inset)

after 7 days.

p values for paired two-tailed Student’s t tests are shown. Scale bars, 10 mm. See also Figure S4.
DISCUSSION

Invasive Behavior Precedes Frank Tumorigenesis
Using in vivo lineage tracing, we found that EMT, migration of

epithelially derived cells into the stroma, bloodstream entry,

and seeding of the liver occur at a stage of pancreatic adenocar-

cinoma progression previously thought to be preinvasive based

on standard histological examination. The relevance of these

findings to patients is supported by our detection of delaminated
356 Cell 148, 349–361, January 20, 2012 ª2012 Elsevier Inc.
Pdx1+ cells adjacent to PanIN lesions in sections of human pan-

creata. Thus, our data support a model for pancreatic cancer

progression in which the seeding of distant organs occurs

before, and in parallel to, tumor formation at the primary site.

Such an interpretation is especially applicable to PDAC, as the

vast majority of patients with pancreatic cancer have metastatic

disease at the time of diagnosis. More than 75% of patients who

undergo surgical resection of small pancreatic tumors with clear

surgical margins and no evidence of metastasis die from
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Figure 5. Epithelial and Mesenchymal States Are Plastic

(A) Schematic of orthotopic transplantation experiments.

(B–E) Fluorescent images taken 3 weeks after transplantation of YFP+ cells from PDAC mice into NOD/SCID hosts. Tumors form in all mice regardless of E-cad

status (n = 5 for each condition). YFP+E-cad+ and YFP+E-cad� cells are present in both conditions (C and E), as are YFP+Zeb1+ and YFP+Zeb1� cells (B and D).

(F–I) Fluorescent images taken 8 weeks after transplantation of YFP+ cells from PanIN mice into NOD/SCID hosts. After transplantation of YFP+E-cad+ cells, no

tumors are found (n = 6); the few transplanted YFP+ cells that remain are Zeb1� and E-cad+ (F and G). Transplantation of YFP+E-cad� cells results in tumor

formation (H and I). Tumors contain both E-cad+ and E-cad� cells (I) as well as Zeb1+ and Zeb1� cells (H), providing direct evidence for MET.
metastatic disease within 5 years (Neoptolemos et al., 2004),

a finding that is consistent with early spread. Moreover, meta-

static PDAC has been documented in a cohort of patients who

underwent pancreatectomy for chronic pancreatitis and in

whom histologic analysis of the resected pancreas revealed

only PanIN lesions (Sakorafas and Sarr, 2003).

Recent genetic studies examining low-passage cell lines or

microdissected primary tumors and matched metastases have

concluded that metastasis is a late event in human PDAC

(Campbell et al., 2010; Yachida et al., 2010). In these studies,

a large proportion of mutations were shared among primary

andmetastatic lesions, leading to the conclusion that metastasis

constituted a terminal event in the disease process. However,
mathematical modeling of such phylogenetic relationships relies

on assumptions about proliferation and mutation rates at stages

of metastatic progression (e.g., micrometastasis) that are not

measured easily. Indeed, the notion that colonization occurs

early in PDAC is supported by the observation that proliferation

is significantly lower in metastatic lesions (Okimura et al., 2009)

compared to the primary tumor (Yachida et al., 2010), and yet

their sizes at the time of diagnosis are similar.

Our in vivo studies do not provide direct evidence that CPCs

from PanIN mice (and the corresponding liver-seeding cells)

ultimately give rise to metastases. Nevertheless, several lines

of evidence indicate that at least some of these cells may

be capable of doing so. First, CPCs found in the blood of
Cell 148, 349–361, January 20, 2012 ª2012 Elsevier Inc. 357
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Figure 6. Inflammation Augments EMT and Dissemination

(A–F) Fluorescent images of 8-week-old control Pdx1-Cre; Rosa YFP (CY; A and D), KrasG12D; Pdx1-Cre; Rosa YFP (KCY; B and E), and PanIN (C and F) pancreata

3 days after injectionwith vehicle (A–C) or cerulein (D–F) to induce acute pancreatitis (n = 3 for each condition). YFP+Zeb1+ cells present in PanINmice or observed

following cerulein treatment of CY and KCY mice are shown (C–F, insets).

(G) Quantification of CPC number after 3 days of treatment with vehicle or cerulein for micewith the indicated genotypes (n = 3 for each group; p < 0.05 comparing

the two groups of KCY mice by Student’s t test; p = 0.014 for the effect of cerulein versus control across all groups by two-way ANOVA).

(H–M) Images of 10-week-old control (H and K) and PanIN pancreata (I and J, L and M) after 7 days of treatment with vehicle (DMSO; H–J) or dexamethasone

(Dex; K–M) and analyzed 24 hr after the last injection. YFP+Zeb1+ cells are seen in vehicle-treated controls (J, inset) but not in Dex-treated animals (M, inset).

(N) Quantification of CPC number in vehicle- and Dex-treated PanIN mice (p = 0.029, n = 6 for each group).

See also Figure S6.
PanIN-bearing mice exhibit increased survival and self-renewal

properties in vitro, suggesting that they may be able to persist

for long periods of time in a foreign environment such as the liver.

Second, most PanIN-derived CPCs exhibit a YFP+E-cad� cell-

surface phenotype, which our transplantation experiments

showed was associated with enhanced tumor-initiating

capacity. Finally, a wealth of clinical and experimental data

from other systems is consistent with early spread (Weinberg,

2008). Additional experiments will be needed to prove that cells

that enter the circulation prior to the development of frank malig-

nancy have metastatic potential. Nevertheless, the finding by

routine histology that delaminating cells are indistinguishable

from surrounding stromal cells indicates that current histological

criteria to diagnose invasive PDACmay be inadequate. Our data

also suggest that the location of sampling within the peripheral

blood may influence the detection rate of circulating cells.
358 Cell 148, 349–361, January 20, 2012 ª2012 Elsevier Inc.
EMT, MET, and the Acquisition of Stem Cell
Characteristics
Lineage tracing enabled us to distinguish pancreatic cells that

had acquired mesenchymal characteristics from those that

retained an epithelial phenotype. The majority of labeled cells

that delaminated from the epithelium (i.e., locally invasive cells)

expressed Zeb1, indicating that they had undergone EMT. This

strong correlation between invasive behavior and the acquisition

of mesenchymal characteristics in vivo suggests that EMT is not

merely an epiphenomenon but rather represents a critical hurdle

that cells must clear to escape from their epithelial neighbors. At

present, the signals that initiate EMT in advanced PanINs and

ADMIs in vivo remain to be determined.

When PDAC cells were separated according to EMT status

(i.e., YFP+E-cad+ or YFP+E-cad�) and transplanted orthotopi-

cally into the pancreas, the resultant tumors were similar with



respect to their epithelial and mesenchymal composition. This

result demonstrates that an epithelial or mesenchymal pheno-

type is not a stable property of a malignant cell and provides

direct evidence for a mesenchymal-to-epithelial transition

(MET) in vivo. We also noted that orthotopically transplanted

YFP+E-cad� cells from 8- to 10-week-old PKCY PanIN mice

gave rise to tumors with a much shorter latency than the same

number of YFP+E-cad+ cells. One interpretation of this result is

that cells that have undergone EMT at the PanIN stage are

more tumorigenic; alternatively, the YFP+E-cad� population

may be enriched for a subset of cells with greater or more rapid

tumor-initiating properties. In either case, our findings highlight

the striking degree of plasticity that exists between epithelial

and mesenchymal states during tumor progression in vivo.

In the PKCY model, cells with a CD24+CD44+ phenotype—

a population possessing tumor-initiating properties by xenograft

assay (Li et al., 2007)—were significantly enriched in the circula-

tion compared to the pancreas. Accordingly, circulating cells

exhibited increased survival and self-renewal in low-attachment

conditions. Thus, our findings provide in vivo support for the

notion that EMT is associated with the initiation of a stem cell

program (Mani et al., 2008) and indicate that acquisition of

a CD24+CD44+ phenotype facilitates entry into the circulation

and/or survival within the bloodstream.

The development of technologies to identify circulating tumor

cells (CTCs) from patients represents an enormous advance in

metastasis research (Pantel et al., 2008). CTC number correlates

with clinical outcome and response to chemotherapeutics in

many cancers (Cristofanilli et al., 2004), and isolated dissemi-

nated cells can be interrogated for molecular changes that are

associated with an increased risk of death (Stoecklein et al.,

2008). CTC biology thus has both clinical utility and the potential

to advance our understanding of the metastatic cascade.

However, standard techniques for isolating CTCs rely heavily

upon the use of epithelial markers, particularly EpCAM, for

detection (Pantel et al., 2008). The presence of EpCAM-negative

YFP+ CPCs in our studies raises several possibilities: (1) stan-

dard methods that employ epithelial epitopes may not capture

all CTCs; (2) cells may enter the circulation after undergoing an

‘‘incomplete’’ EMT, in which residual expression of EpCAM is

maintained but not detected by flow cytometry; or (3) CTCs

may enter the bloodstream with a mesenchymal phenotype

and subsequently ‘‘revert’’ to an epithelial phenotype through

a process of MET.

Inflammation Promotes EMT and Dissemination
Inflammation has a well-established role in promoting tumor

progression (Grivennikov et al., 2010). Using two models of

pancreatitis, we have demonstrated that inflammation induces

EMT in CY and KCY animals and results in an increase in CPC

number across all genotypes tested. Although mice bearing

a single mutant Kras allele seemed to have the greatest increase

in CPC number following cerulein treatment, even nonmutant

pancreatic cells underwent EMT and entered the circulation in

the setting of inflammation. This latter observation is quite

surprising, as hematogenous spread has not been thought to

occur in adult animals in the absence of a tumor. Phenotypically

normal cells injected into the bloodstream can seed distant
organs and persist for long periods of time until stimulated to

grow (Podsypanina et al., 2008), and in both mice and humans,

chronic pancreatic inflammation is strongly associated with

pancreatic cancer (Grover and Syngal, 2010; Guerra et al.,

2007). Our study suggests that inflammation may promote

cancer progression through two independent mechanisms: by

facilitating changes in the microenvironment at the primary site

of neoplasia and by facilitating invasion and dissemination by

increasing cellular access to the circulation.

There is likely to be heterogeneity among pancreatic epithelial

cells at the PanIN stage, and it is possible that bloodstream entry

prior to the development of a recognizable tumor is facilitated by

loss of the second allele of p53 in PKCY mice. However, the

increase of CPCs in KCY and CY mice (which bear no cancer-

promoting mutations) following experimental pancreatitis

suggests that loss of this tumor suppressor gene is not required

for bloodstream entry. Interestingly, although pancreatitis

augmented CPC number in KCY animals, these cells did not

have the same clonal growth properties exhibited by PKCY

CPCs (compare Figure S4C with Figure 4F), supporting the

notion that p53 loss enhances the survival and/or self-renewal

of circulating cells.

Finally, we have demonstrated that the inflammatory stroma is

necessary for EMT and dissemination. Treatment of 10-week-

old PKCY mice with dexamethasone for 1 week resulted in an

almost complete elimination of PanIN lesions in the pancreas

and loss of YFP+ cells from the blood, underscoring a critical

requirement for the inflammatory stroma in the maintenance of

premalignant PanIN lesions. Similar regression of murine PanIN

disease was also seen after treatment with the cyclooxygenase-

inhibitor sulindac (Guerra et al., 2011). Our findings have implica-

tions for the management of individuals at high risk for pancre-

atic cancer, including patients with hereditary pancreatitis or

kindreds with inherited pancreatic cancer. If dissemination and

seeding of pancreatic epithelial cells precede the detection of

a tumor in humans, as they do in the mouse model, a window

of opportunity may exist for prophylactic therapy in high-risk

patients. Indeed, anti-inflammatory drugs have proven moder-

ately successful at reducing mortality due to several cancers,

including PDAC (Rothwell et al., 2011).
EXPERIMENTAL PROCEDURES

Mouse Strains and Experimental Treatment

The behavior of mutant strains bearing various allele combinations of Pdx1-

Cre, KrasG12D, p16/p19fl, and p53fl has been described previously (Aguirre

et al., 2003; Bardeesy et al., 2006; Hingorani et al., 2003). To perform lineage

tracing, we introduced a RosaYFP reporter allele into these mutant back-

grounds to generate a panel of compound mutant strains: Pdx1-Cre; RosaYFP

(‘‘CY’’), Pdx1-Cre; KrasG12D; RosaYFP (‘‘KCY’’), Pdx1-Cre; KrasG12D; p16/

p19fl/+; RosaYFP (‘‘IKCY’’), and Pdx1-Cre; KrasG12D; p53fl/+; RosaYFP

(‘‘PKCY’’). All experiments involving the KCY model employed mice between

8 and 10 weeks of age. For studies involving mice harboring only PanIN

lesions by histologic analysis (‘‘PanIN’’ mice), PKCY animals were sacrificed

at 8–10 weeks of age based on prior observations regarding tumor progres-

sion (Bardeesy et al., 2006); no PKCY mice (out of 18 examined) had evidence

of carcinoma at this time point (see Extended Experimental Procedures for

details of histological analysis by a pancreatic pathologist [A.M.]).

For PDAC mice, animals were examined three times per week for evidence

of morbidity and sacrificed when they exhibited limited physical activity,
Cell 148, 349–361, January 20, 2012 ª2012 Elsevier Inc. 359



depressed response to toe pinch, dehydration, and/or abdominal enlargement

from ascites. More than 90% of IKCY and PKCY mice were 34–38 weeks of

age or 16–20 weeks of age, respectively, at the time of sacrifice.

Experimental pancreatitis was elicited with cerulein as described (Siveke

et al., 2008), and specimens were obtained after 3 days of treatment. Three

to four CY, KCY, PanIN PKCY, and PDAC PKCY were used for cerulein and

vehicle (PBS) treated cohorts. Orthotopic transplantations were performed

on NOD/SCID mice by injecting 1 3 105 sorted pancreas cells as previously

described (Mohammad et al., 1998). PKCY PanIN mice aged 10 weeks were

treated with seven daily injections of dexamethasone or vehicle (DMSO) as

described (Stairs et al., 2011) and analyzed 24 hr later.

Cell Staining

For experiments involving flow cytometry and sorting of pancreatic cells, at

least 25% of the tissue was saved for histologic analysis and was processed

and stained as described in the Extended Experimental Procedures.

Pancreatosphere Assay

YFP+ blood or pancreatic cells from the samemousewere sorted into ultra-low

attachment 96-well plates (Corning) at 1 cell per well, confirmed by micros-

copy. Cells were grown as previously described (Rovira et al., 2010) and as-

sayed at 5 days for clonal growth of fluorescent cells (defined as clusters of

cells >3 cell widths in diameter) or presence of live YFP+ cells (singlets or

doublets). Three to four mice were analyzed for each category.

Additional information can be found in the Extended Experimental

Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and two tables and can be found with this article online at doi:10.

1016/j.cell.2011.11.025.
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Hüsemann, Y., Geigl, J.B., Schubert, F., Musiani, P., Meyer, M., Burghart, E.,

Forni, G., Eils, R., Fehm, T., Riethmüller, G., and Klein, C.A. (2008). Systemic

spread is an early step in breast cancer. Cancer Cell 13, 58–68.
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et al. (2009). A direct pancreatic cancer xenograft model as a platform for

cancer stem cell therapeutic development. Mol. Cancer Ther. 8, 310–314.

Klein, C.A. (2009). Parallel progression of primary tumours and metastases.

Nat. Rev. Cancer 9, 302–312.

Ledford, H. (2011). Cancer theory faces doubts. Nature 472, 273.

Li, C., Heidt, D.G., Dalerba, P., Burant, C.F., Zhang, L., Adsay, V., Wicha, M.,

Clarke, M.F., and Simeone, D.M. (2007). Identification of pancreatic cancer

stem cells. Cancer Res. 67, 1030–1037.

Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks,

M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The epithelial-

mesenchymal transition generates cells with properties of stem cells. Cell

133, 704–715.

Mohammad, R.M., Dugan, M.C., Mohamed, A.N., Almatchy, V.P., Flake, T.M.,

Dergham, S.T., Shields, A.F., Al-Katib, A.A., Vaitkevicius, V.K., and Sarkar,

F.H. (1998). Establishment of a human pancreatic tumor xenograft model:

potential application for preclinical evaluation of novel therapeutic agents.

Pancreas 16, 19–25.

Moody, S.E., Perez, D., Pan, T.C., Sarkisian, C.J., Portocarrero, C.P., Sterner,

C.J., Notorfrancesco, K.L., Cardiff, R.D., and Chodosh, L.A. (2005). The tran-

scriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell

8, 197–209.

Neoptolemos, J.P., Stocken, D.D., Friess, H., Bassi, C., Dunn, J.A., Hickey, H.,

Beger, H., Fernandez-Cruz, L., Dervenis, C., Lacaine, F., et al; European Study

Group for Pancreatic Cancer. (2004). A randomized trial of chemoradiotherapy

and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 350,

1200–1210.

Okimura, A., Hirano, H., Nishigami, T., Ueyama, S., Tachibana, S., Fukuda, Y.,

Yamanegi, K., Ohyama, H., Terada, N., and Nakasho, K. (2009). Immunohisto-

chemical analyses of E-cadherin, beta-catenin, CD44s, and CD44v6 expres-

sions, and Ki-67 labeling index in intraductal papillary mucinous neoplasms

of the pancreas and associated invasive carcinomas. Med. Mol. Morphol.

42, 222–229.

Pantel, K., Brakenhoff, R.H., and Brandt, B. (2008). Detection, clinical rele-

vance and specific biological properties of disseminating tumour cells. Nat.

Rev. Cancer 8, 329–340.

Park, J.Y., Hong, S.M., Klimstra, D.S., Goggins, M.G., Maitra, A., and Hruban,

R.H. (2011). Pdx1 expression in pancreatic precursor lesions and neoplasms.

Appl. Immunohistochem. Mol. Morphol. 19, 444–449.
Podsypanina, K., Du, Y.C., Jechlinger, M., Beverly, L.J., Hambardzumyan, D.,

and Varmus, H. (2008). Seeding and propagation of untransformed mouse

mammary cells in the lung. Science 321, 1841–1844.

Polyak, K., and Weinberg, R.A. (2009). Transitions between epithelial and

mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev.

Cancer 9, 265–273.

Rothwell, P.M., Fowkes, F.G., Belch, J.F., Ogawa, H., Warlow, C.P., and

Meade, T.W. (2011). Effect of daily aspirin on long-term risk of death due to

cancer: analysis of individual patient data from randomised trials. Lancet

377, 31–41.

Rovira, M., Scott, S.G., Liss, A.S., Jensen, J., Thayer, S.P., and Leach, S.D.

(2010). Isolation and characterization of centroacinar/terminal ductal progen-

itor cells in adult mouse pancreas. Proc. Natl. Acad. Sci. USA 107, 75–80.

Sakorafas, G.H., and Sarr, M.G. (2003). Pancreatic cancer after surgery for

chronic pancreatitis. Dig. Liver Dis. 35, 482–485.

Sänger, N., Effenberger, K.E., Riethdorf, S., Van Haasteren, V., Gauwerky, J.,

Wiegratz, I., Strebhardt, K., Kaufmann,M., and Pantel, K. (2011). Disseminated

tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int. J.

Cancer 129, 2522–2526.

Siveke, J.T., Lubeseder-Martellato, C., Lee, M., Mazur, P.K., Nakhai, H.,

Radtke, F., and Schmid, R.M. (2008). Notch signaling is required for exocrine

regeneration after acute pancreatitis. Gastroenterology 134, 544–555.

Stairs, D.B., Bayne, L.J., Rhoades, B., Vega, M.E., Waldron, T.J., Kalabis, J.,

Klein-Szanto, A., Lee, J.S., Katz, J.P., Diehl, J.A., et al. (2011). Deletion of

p120-catenin results in a tumor microenvironment with inflammation

and cancer that establishes it as a tumor suppressor gene. Cancer Cell 19,

470–483.

Stoecklein, N.H., Hosch, S.B., Bezler, M., Stern, F., Hartmann, C.H., Vay, C.,

Siegmund, A., Scheunemann, P., Schurr, P., Knoefel, W.T., et al. (2008). Direct

genetic analysis of single disseminated cancer cells for prediction of outcome

and therapy selection in esophageal cancer. Cancer Cell 13, 441–453.

Trimboli, A.J., Fukino, K., de Bruin, A., Wei, G., Shen, L., Tanner, S.M., Crea-

sap, N., Rosol, T.J., Robinson, M.L., Eng, C., et al. (2008). Direct evidence

for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 68,

937–945.

Wang, F., Sloss, C., Zhang, X., Lee, S.W., and Cusack, J.C. (2007). Membrane-

bound heparin-binding epidermal growth factor like growth factor regulates

E-cadherin expression in pancreatic carcinoma cells. Cancer Res. 67, 8486–

8493.

Weinberg, R.A. (2008). Mechanisms of malignant progression. Carcinogenesis

29, 1092–1095.

Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., Kamiyama,M., Hru-

ban, R.H., Eshleman, J.R., Nowak, M.A., et al. (2010). Distant metastasis

occurs late during the genetic evolution of pancreatic cancer. Nature 467,

1114–1117.
Cell 148, 349–361, January 20, 2012 ª2012 Elsevier Inc. 361


	EMT and Dissemination Precede Pancreatic Tumor Formation
	Introduction
	Results
	Enhanced Detection of EMT using Epithelial Lineage Tracing
	EMT in Premalignant Lesions
	Pancreatic Epithelial Cells Spread before Tumor Formation
	Characterization of CPCs
	CPCs Exhibit Features of Cancer Stem Cells
	Cells that Have Undergone EMT Have Tumor-Initiating Properties
	Inflammation Promotes EMT, Invasiveness, and Dissemination

	Discussion
	Invasive Behavior Precedes Frank Tumorigenesis
	EMT, MET, and the Acquisition of Stem Cell Characteristics
	Inflammation Promotes EMT and Dissemination

	Experimental Procedures
	Mouse Strains and Experimental Treatment
	Cell Staining
	Pancreatosphere Assay

	Supplemental Information
	Acknowledgments
	References


