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1. Introduction

In the study of the nonlinear system, one of the most used techniques is the varia
parameters when the unperturbed terms are smooth enough especially when they
ear, the other is the Lyapunov second method. Combining these two techniques, a
mechanism-variation of Lyapunov second method is introduced, see [1].

Employing this introduction, a new comparison principle is presented, which con
the solutions of the perturbed system and unperturbed one through the solutions
comparison system. This has been used by many authors, see [2–4]. For example,
considered the following impulsive differential system:




x′ = F(t, x), t �= tk,

x(t+k ) = x(tk) + Ik(x(tk)),

x(t+0 ) = x0, t0 � 0, k ∈ N,

where 0� t0 < t1 < · · · < tk < · · · and tk → ∞ ask → ∞, F : [0,+∞) × Rn → Rn is
continuous on(tk, tk+1] × Rn andIk :Rn → Rn, k = 1,2, . . . . By using the variation o
Lyapunov second method together with the comparison theorem, the uniformly asy
ical stabilities of such perturbed system are studied.

While many stability concepts are presented in the literature such as the Lyapun
bility, partial stability, conditional stability, relative stability and so on. In 1960, Movc
[5] introduced the concept of stability in terms of two measures which unified the forg
stability concepts. Following his study, the theories of the stability in terms of two
sures have been successfully developed and become important in the investigatio
quality analysis, see [5–9].

In this paper, we consider the perturbed impulsive integro-differential equations




x′ = F(t, x,L1x), t �= tk,

x(t+k ) = x(tk) + Ik(x(tk)),

x(t+0 ) = x0, t0 � 0, k ∈ N,

wheretk , F , Ik are similar to the above system whileL1 is a kind of integral function. We
extend the Lyapunov stability for impulsive differential equations in [2] to the stabilit
terms of two measures for this impulsive integro-differential equations through the
ation of Lyapunov second method together with the comparison theorem. Obvious
results obtained in this paper generalize the ones in [2].

Some preliminaries are presented in Section 2 including definitions and concep
new comparison theorem is also given in this section, which is important to com
the main results of this paper. In Section 3, sufficient conditions for stability in term
two measures are given for perturbed impulsive integro-differential equations with
moments of impulsive effect while the unperturbed one may fail to satisfy which be
of the effect of the perturbed terms. An example is also worked out at the end
paper.
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2. Preliminaries

Let R+ = [0,+∞) andRn denotes then-dimensional Euclidean space with appropri
norm‖ · ‖.

Consider the following perturbed impulsive integro-differential equations with fi
moments of impulsive effect:


x′ = F(t, x,L1x), t �= tk,

x(t+k ) = x(tk) + Ik(x(tk)),

x(t+0 ) = x0, t0 � 0, k ∈ N,

(1)

together with the unperturbed ones


y′ = f (t, y,L2y), t �= tk,

y(t+k ) = y(tk) + Jk(y(tk)),

y(t+0 ) = x0, t0 � 0, k ∈ N,

(2)

where

(1) t0 < t1 < · · · < tk < · · ·, andtk → ∞ ask → ∞;
(2) F,f :R+ × Rn × Rn → Rn are continuous on(tk−1, tk] × Rn × Rn;
(3) Lix = ∫ t

t0
Ki(t, s, x(s)) ds, Ki :R+ × R+ × Rn → Rn are continuous on(tk−1, tk] ×

(tk−1, tk] × Rn, i = 1,2;
(4) Ik, Jk :Rn → Rn.

Here we note that system (2), the unperturbed system is a system withf smooth enough
or even the linear terms ofF in system (1). And suppose that the following hypothesis(H)

holds:

(H) The solutiony(t) = y(t, t0, x0) of (2) exists for allt � t0, unique, continuous with
respect to the initial values andy(t0) = x0, y(t, t0, x0) is locally Lipschitzian inx0.

Let ρ be a real positive number and we give the following classes of function
convenience:

K = {
a : [0, ρ) → R+ is continuous, strictly increasing anda(0) = 0

};
PC= {

σ :R+ → R+ is continuous on(tk−1, tk] andσ(t) → σ
(
t+k

)
exists

ast → t+k
};

PCK= {
φ :R+ × [0, ρ) → R+, φ(·, u) ∈ PC

for eachu ∈ [0, ρ), φ(t, ·) ∈ K for eacht ∈ R+
};

Γ =
{
h :R+ × Rn → R+, inf

x∈Rn
h(t, x) = 0, h(·, x) ∈ PC for eachx ∈ Rn

andh(t, ·) ∈ C
(
Rn,R+

)
for eacht ∈ R+

}
;

S(h,ρ) = {
(t, x) ∈ R+ × Rn: h(t, x) < ρ, h ∈ Γ

};
S(ρ) = {

x ∈ Rn: (t, x) ∈ S(h,ρ) for eacht ∈ R+
}
.
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Definition 2.1. V (t, x) belongs toV0 if V (·, x) ∈ PC for eachx ∈ S(ρ), V (t, x) is locally
Lipschitzian with respect tox uniformly in t .

Definition 2.2. Let V ∈ V0, then for any fixedt > t0, we define for(s, x) ∈ (tk−1, tk) ×
S(ρ), t0 � s < t ,

D+V
(
s, y(t, s, x)

)
= lim sup

h→0+

1

h

[
V

(
s + h,y

(
t, s + h,x + hF(s, x,L1x)

)) − V
(
s, y(t, s, x)

)]
,

wherey(t, s, x) is any solution of (2) such thaty(s, s, x) = x.

Remark 2.1. Supposex(s) = x(s, t0, x0) is any solution of system (1) such thatx(s) ∈
S(ρ) for some certains ∈ R+. Then for some certains such thatt0 � s < t , s �= tk and
x = x(s), we have

D+V
(
s, y(t, s, x)

) = Vs

(
s, y(t, s, x)

) + Vy

(
s, y(t, s, x)

)
× [

ys(t, s, x) + yx(t, s, x)F (s, x,L1x)
]
,

where

Vs

(
s, y(t, s, x)

) = lim sup
h→0+

1

h

[
V

(
s + h,y(t, s, x)

) − V
(
s, y(t, s, x)

)]
,

Vy

(
s, y(t, s, x)

) = lim sup
h→0+

V (s, y(t, s + h,x + hF(s, x,L1x))) − V (s, y(t, s, x))

y(t, s + h,x + hF(s, x,L1x)) − y(t, s, x)
,

ys(t, s, x) = lim sup
h→0+

1

h

[
y(t, s + h,x) − y(t, s, x)

]
,

ys(t, s, x) = lim sup
h→0+

y(t, s, x + hF(s, x,L1x)) − y(t, s, x)

hF (s, x,L1x)
.

Further suppose thatF(t, x,L1x) = f (t, x,L2x)+R(t, x,Lx) and the solution of sys
tem (2) is differential with respect to the initial value. Then we have


∂y
∂x0

(t, t0, x0) = Φ(t, t0, x0),

∂y
∂t0

(t, t0, x0) = −Φ(t, t0, x0) · f (t0, x0,L2x0), t � t0,

where Φ(t, t0, x0) is the fundamental matrix solution of the corresponding variatio
equation. SetV (s, y) = ‖y‖2 and we have

D+V
(
s, y(t, s, x)

) = 2yT (t, s, x) · Φ(t, s, x) · R(s, x,Lx),

which shows how the perturbation terms affect the stability properties of the pert
system.
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Definition 2.3. Let h0, h ∈ Γ , then

(I) h0 is finer thanh if there exits aλ∗ > 0 and a functionφ ∈ PCK such that

h0(t, x) < λ∗ implies h(t, x) � φ
(
t, h0(t, x)

);
(II) h0 is uniformly finer thanh if (I) holds with φ ∈ K .

Definition 2.4. Let V ∈ V0 andh,h0 ∈ Γ , thenV (t, x) is said to be

(i) h-positive definite if there exists aλ > 0 and a functionb ∈ K such that

h(t, x) < λ implies b
(
h(t, x)

)
� V (t, x);

(ii) weakly h0-decrescent if there exists aλ0 > 0 and a functiona ∈ PCK such that

h0(t, x) < λ0 implies V (t, x) � a
(
t, h0(t, x)

);
(iii) h0-decrescent if (ii) holds witha ∈ K .

Definition 2.5. Let h0, h ∈ Γ andx(t) = x(t, t0, x0) be any solution of (1), then system (
is said to be

(S1) (h0, h)-stable if for eachε > 0 there exists aδ = δ(t0, ε) > 0 such that

h0(t0, x0) < δ implies h
(
t, x(t)

)
< ε, t � t0;

(S2) (h0, h)-uniformly stable if (S1) holds withδ independent oft0;
(S3) (h0, h)-attractive if there exists aδ0 = δ0(t0) > 0 and for eachε > 0, there exists

T = T (t0, ε) > 0 such that

h0(t0, x0) < δ0 implies h
(
t, x(t)

)
< ε, t � t0 + T ;

(S4) (h0, h)-uniformly attractive if (S3) holds withδ andT independent oft0;
(S5) (h0, h)-asymptotically stable if it is(h0, h)-stable and(h0, h)-attractive;
(S6) (h0, h)-uniformly asymptotically stable if it is(h0, h)-uniformly stable and(h0, h)-

uniformly attractive.

Remark 2.2. When we endowh0, h with explicit form, the(h0, h)-stability reduces to the
other stability such as

(1) seth0(t, x) = h(t, x) = ‖x‖, then(h0, h)-stability means the corresponding Lyapun
stability of the trivial solution;

(2) seth0(t, x) = h(t, x) = ‖x − x∗‖, then(h0, h)-stability means the corresponding Ly
punov stability of solutionx∗;

(3) seth0(t, x) = ‖x‖, h(t, x) = ‖x‖s , 1 � s < n, then(h0, h)-stability means the corre
sponding partial stability of the trivial solution;

(4) seth0(t, x) = h(t, x) = d(x,A), whereA ∈ Rn, then(h0, h)-stability means the cor
responding stability of an invariant setA;

(5) seth0(t, x) = d(x,A), h(t, x) = d(x,B), whereA ⊂ B ⊂ Rn, then(h0, h)-stability
means the corresponding stability of a conditionally invariant setB with respect toA.
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In the following we always suppose thatx(t) = x(t, t0, x0), y(t) = y(t, t0, x0) are the
solutions of (1) and (2) such thatx(t0) = x0, y(t0) = y0, respectively.

Next, a comparison principle is presented which is necessary for completing our
results.

Lemma 2.1. Suppose that(H) holds and

(i) V ∈ V0 satisfies the inequalities for(s, x) ∈ S(h,ρ), t0 � s < t ,


D+V (s, y(t, s, x)) � g(s,V (s, y(t, s, x))), t �= tk,

V (t+k , y(t, t+k , x(t+k ))) � ψk(V (tk, y(t, tk, x(tk)))),

V (t+0 , y(t, t+0 , x0)) � u0,

whereg(·, u) ∈ PC for eachu ∈ R+ andψk : R+ → R+ are nondecreasing function
for all k ∈ N ;

(ii) r(t) = r(t, t0, u0) is the maximal solution of the following scalar impulsive differen
equation


u′ = g(t, u), t �= tk,

u(t+k ) = ψk(u(tk)),

u(t+0 ) = u0 � 0,

(3)

existing on[t0,+∞).

Then we have

V
(
t, x(t, t0, x0)

)
� r(t, t0, u0), t � t0.

Proof. Denotex(t) = x(t, t0, x0) any solution of system (1) satisfying(t0, x0) ∈ S(h,ρ).
Set

m(s) = V
(
s, y

(
t, s, x(s)

))
, for t0 � s � t,

wherem(t) = lims→t−0 m(s). Thus we have

D+m(s) � g
(
s,m(s)

)
, t �= tk,

m
(
t+k

)
� ψk

(
m(tk)

)
,

m(t0) � u0, k = 1,2, . . . .

It follows from [6] thatm(s) � r(s, t0, u0) for t0 � s � t , which implies that

V
(
s, y

(
t, s, x(s)

))
� r(s, t0, u0), t0 � s � t.

Notice thaty(t, t, x(t)) = x(t) and we have

V
(
t, x(t, t0, x0)

) = V
(
t, y

(
t, t, x(t)

))
� r(t, t0, u0).

So the proof is complete.�
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Remark 2.3. ui (i = 1,2) are two different initial values, then from Lemma 2.1, we ha

r(t, t0, u1) � r(t, t0, u2), if u1 � u2. (4)

Also wheng(t, u) andψk(u) are special (see [2]), we can get some explicit compar
results which we omit here.

3. Stability criteria

Theorem 3.1. Suppose that(H) holds and

(A1) f (t,0) = 0, g(t,0) = 0 andJk(0) = 0, ψk(0) = 0 for all k ∈ N ;
(A2) h0, h ∈ Γ , h0(t,0) = 0 for t ∈ R+, h0 is finer thanh;
(A3) V ∈ V0, V (t, x) is h-positive definite and weaklyh0-decrescent for(t, x) ∈ S(h,ρ),

and

D+V
(
s, y(t, s, x)

)
� g

(
s,V

(
s, y(t, s, x)

))
,

for s �= tk, (s, x) ∈ S(h,ρ), t0 � s < t;
(A4) V (t+k , y(t, t+k , x(t+k ))) � ψk(V (tk, y(t, tk, x(tk))));
(A5) there exists aρ0 ∈ (0, ρ] such that

h
(
tk, x(tk)

)
< ρ0 implies h

(
t+k , x

(
t+k

))
< ρ, k = 1,2, . . . .

Then the stability of the trivial solution of system(2) and the(asymptotical) stability of the
trivial solution of (3) imply the(h0, h)-(asymptotical) stability of system(1).

Proof. Note thatx(t) = x(t, t0, x0), y(t) = y(t, t0, x0), u(t) = u(t, t0, u0) are any solu-
tions of system (1), (2) and (3), respectively.

SinceV (t, x) is h-positive definite onS(h,ρ), there exists ab ∈ K such that

h(t, x) < ρ implies b
(
h(t, x)

)
� V (t, x). (5)

Also V (t, x) is weaklyh0-decrescent andh0 is finer thanh, so there exists aλ0 > 0 and
a ∈ PCK, φ ∈ PCK such that

h(t, x) � φ
(
t, h0(t, x)

)
and V (t, x) � a

(
t, h0(t, x)

)
, whenh0(t, x) < λ0, (6)

whereλ0 is such thatφ(t+0 , λ0) < ρ.
Let 0< ε < ρ0 andt0 ∈ R+ be given. Since the trivial solution of (3) is stable, for giv

b(ε) > 0, there exists aδ1 = δ1(t0, ε) > 0 such that

0< u0 � δ1 implies u(t, t0, u0) < b(ε), t � t0. (7)

While the trivial solution of (2) is also stable, so for thisδ1, there exists aδ2 =
δ2(t0, ε) > 0 such that

‖x0‖ < δ2 implies
∥∥y(t)

∥∥ < a−1(t0, δ1),
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while from condition (A2), without loss of generality, we have

h0
(
t+0 , x0

)
< δ2 implies h0

(
t+0 , y(t)

)
< a−1(t0, δ1). (8)

Choosingδ = δ(t0, ε) > 0 such thatδ < min{λ0, δ2}, then it follows from (5)–(8) that if
h0(t

+
0 , x0) < δ,

b
(
h
(
t+0 , x0

))
� V

(
t+0 , x0

)
� a

(
t+0 , h0

(
t+0 , x0

))
< a

(
t+0 , δ2

)
� δ1 � b(ε).

Which implies thath(t+0 , x0) < ε whenh0(t
+
0 , x0) < δ. We claim that

h
(
t, x(t)

)
< ε, wheneverh0

(
t+0 , x0

)
< δ. (9)

In fact, if (9) is false, there existst∗ > t0 such thath(t∗, x(t∗)) � ε. Forh ∈ Γ , we have
two cases:

CaseI: t0 < t∗ � t1. Without loss of generality we suppose thatt∗ = inf{t : h(t, x(t)) � ε}
and soh(t∗, x(t∗)) = ε. From Lemma 2.1, (4) and (7) we have

V
(
t∗, x

(
t∗

))
� r

(
t∗, t0,V

(
t+0 , y

(
t∗, t0, x0

)))
� r

(
t∗, t0, a

(
t0, h0

(
t+0 , y

(
t∗, t0, x0

))))
� r

(
t∗, t0, δ1

)
< b(ε).

On the other hand, from (5) we have

V
(
t∗, x

(
t∗

))
� b

(
h
(
t∗, x

(
t∗

))) = b(ε),

which is a contradiction.

CaseII: tk < t∗ � tk+1 for somek ∈ N . In this case, noticing the impulse effect, we ha

h
(
t∗, x

(
t∗

))
� ε and h

(
t, x(t)

)
< ε, t ∈ [t0, tk].

Since 0< ε < ρ0, it follows from condition (A5) that

h
(
t+k , x

(
t+k

)) = h
(
t+k , x(tk) + Ik(x)

)
< ρ,

and so there exists̃t ∈ (tk, t
∗] such that

ε � h
(
t̃ , x(t̃)

)
< ρ and h

(
t, x(t)

)
< ρ, t ∈ [t0, t̃). (10)

By using Lemma 2.1 and (7), we have

V
(
t̃ , x(t̃)

)
� r

(
t̃ , t0,V

(
t+0 , y(t̃ , t0, x0)

))
� r

(
t̃ , t0, a

(
t0, h0

(
t+0 , y(t̃ , t0, x0)

)))
� r(t̃ , t0, δ1) < b(ε).

On the contrary, from (5) and (10) we haveV (t̃, x(t̃)) � b(h(t̃, x(t̃))) � b(ε), which is
also a contradiction. Thus the claim is true for proving the(h0, h)-stability of system (1).

Next suppose further that the trivial solution of (3) is asymptotically stable. From a
we have the(h0, h)-stability of system (1). Consequently from (9), takingε = ρ0, there
exists aδ∗ = δ∗(t0, ρ0) > 0 such that

h0
(
t+, x0

)
< δ∗ implies h

(
t, x(t)

)
< ρ0 < ρ, t � t0.
0
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To prove the(h0, h)-attractive of system (1), lett0 ∈ R+. The trivial solution of (3) is
attractive, so fort0 ∈ R+ there exists aδ∗

0 = δ∗
0(t0) > 0 such that

u0 � δ∗
0 implies lim

t→∞u(t, t0, u0) = 0.

For thisδ∗
0, there exists aδ∗

1 = δ∗
1(t0, δ

∗
0) > 0 such that

h0
(
t+0 , x0

)
< δ∗

1 implies h0
(
t+0 , y(t, t0, x0)

)
< a−1(t0, δ∗

0

)
.

Choosing 0< δ0 < min{δ∗, δ∗
0, δ∗

1}, and it is obviously thatδ0 = δ0(t0) independent ofε,
then by similar argument to the above, we can get that whenh0(t

+
0 , x0) < δ0 and ast → ∞

b
(
h
(
t, x(t)

))
� V

(
t, x(t)

)
� r

(
t, t0,V

(
t+0 , y(t, t0, x0)

))
� r

(
t, t0, δ

∗
0

) → 0,

which implies that limt→∞ h(t, x(t)) = 0 whenh0(t
+
0 , x0) < δ0, that is, system (1) is

(h0, h)-attractive. Hence it follows that the system (1) is(h0, h)-asymptotically stable. �
Remark 3.1. Seth0(t, x) ≡ h(t, x) ≡ ‖x‖, then we can get the (asymptotical) stability
the trivial solution of system (1), if further setL1x ≡ L2x ≡ 0, we can get the results in [2

Strengthen certain assumptions of Theorem 3.1 and we can obtain the uniform s
criteria of the perturbed system (1).

Theorem 3.2. Assume that the conditions in Theorem3.1hold except that

(A6) just replacingh0 is finer thanh with h0 is uniformly finer thanh in (A2);
(A7) just replacingV is weaklyh0-decrescent withV is h0-decrescent in(A3).

Then the uniform stability of the trivial solution of system(2) and the uniformly(asymp-
totical) stability of the trivial solution of(3) imply the(h0, h)-uniformly (asymptotical)
stability of system(1).

Proof. SinceV (t, x) is h0-decrescent andh0 is uniformly finer thanh, there exists a
λ0 > 0 anda ∈ K , φ ∈ K such that

h(t, x) � φ
(
h0(t, x)

)
and V (t, x) � a

(
h0(t, x)

)
, whenh0(t, x) < λ0, (11)

whereλ0 is such thatφ(λ0) < ρ. Let 0< ε < ρ0 andt0 ∈ R+ be given. The trivial solution
of (3) is uniformly stable, then for givenb(ε) > 0, there exists aδ1 = δ1(ε) > 0 independen
of t0 such that

0< u0 < δ1 implies u(t, t0, u0) < b(ε), t � t0, (12)

whereb is the same as above. The trivial solution of (12) is also uniformly stable, the
this δ1, there exists aδ2 > 0 independent oft0 such that

h0
(
t+0 , x0

)
< δ2 implies h0

(
t+0 , y(t)

)
< a−1(δ1). (13)

Choosingδ such that 0< δ = δ(ε) < min{λ0, δ2}. Then with a similar argument t
Theorem 3.1, we can conclude that

h
(
t+0 , x0

)
< δ implies h

(
t, x(t)

)
< ε, t � t0,

whereδ is independent oft0, so the system (1) is(h0, h)-uniformly stable.
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here

f

So

1,

turbed

l

If further suppose that the trivial solution of (3) is uniformly asymptotically stable, t
exists aδ∗

0 > 0 independent oft0 and for any givenε ∈ (0, ρ0) there exists aT = T (ε) such
that for anyt0 ∈ R+,

0< u0 < δ∗
0 implies u(t, t0, u0) < b(ε), t � t0 + T (ε). (14)

Noticing that (2) is uniformly stable, so for thisδ∗
0, there exists aδ∗

1 > 0 independent o
t0 such that

h0
(
t+0 , x0

)
< δ∗

1 implies h0
(
t+0 , y(t, t0, x0)

)
< a−1(δ∗

0

)
.

Uniformly asymptotically stability of system (3) implies its asymptotically stability.
system (1) is(h0, h)-uniformly stable. Forε = ρ0, there exists aδ∗ = δ∗(ρ0) such that

h0
(
t+0 , x0

)
< δ∗ implies h

(
t, x(t)

)
< ρ0 < ρ, t � t0. (15)

Choosingδ such that 0< δ0 < min{δ∗, δ∗
0, δ∗

1}, with a similar argument to Theorem 3.
we can get that whenh0(t

+
0 , x0) < δ0,

h
(
t, x(t)

)
< ε, t � t0 + T ,

whereδ0 andT are independent oft0, that is, system (1) is uniformly attractive.
So system (1) is(h0, h)-uniformly asymptotically stable. �

4. Example

In this section, we present a simple but an illustrative example. Consider the per
impulsive integro-differential equations



x′
1 = e−t x3

1 + 1
2x1x

2
2

∫ t

t0
F1(t, u, x1(u)) du + 1

2x3
1, t �= tk;

x′
2 = e−t x3

2 + 1
2x2

1x2
∫ t

t0
F2(t, u, x2(u)) du + 1

2x3
2, t �= tk;

x1(t
+
k ) = d1x1(tk), x1(t0) = x10 � 0;

x2(t
+
k ) = d2x2(tk), x2(t0) = x20 � 0, k = 1,2, . . . ,

(16)

where
∫ s

t0
Fi(t, u, xi(u)) du � 0, for anyt0 � s < t , i = 1,2, and|d1| � 1, |d2| � 1.

Here we consider the unperturbed system without impulse{
y′

1 = e−t y3
1, y1(t0) = x10;

y′
2 = e−t y3

2, y1(t0) = x20.
(17)

By direct calculation, we have the solution of (17) given by

y(t, t0, x0) =
(

y1(t, t0, x10)

y2(t, t0, x20)

)
=

( x10
[1+2x2

10(e
−t−e−t0)]1/2

x20
[1+2x2

20(e
−t−e−t0)]1/2

)
,

which exists for allt � t0 such that‖x0‖ <
√

et0/2 (x0 = (x10, x20)
T ) and the fundamenta

matrix solution of the corresponding variational equations is

Φ(t, t0, x0) =
( 1

[1+2x2
10(e

−t−e−t0)]3/2 0

0 1

)
.

[1+2x2
20(e

−t−e−t0)]3/2
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that if

tain J.

Anal.

ondon
SetV (t, x) = ‖x‖2 = x2
1 +x2

2 andh0(t, x) = h(t, x) = ‖x‖ = (x2
1 +x2

2)1/2. It is obvious
thatV is differentiable so we have

D+V
(
s, y(t, s, x)

)
= 2yT (t, s, x)Φ(t, s, x)R(s, x,Lx)

= x2
1(s)

[1+ 2x2
1(s)(e−t − e−s)]2

(
x2

2

s∫
t0

F1
(
t, u, x1(u)

)
du + x2

1(s)

)

+ x2
2(s)

[1+ 2x2
2(s)(e−t − e−s)]2

(
x2

1

s∫
t0

F2
(
t, u, x2(u)

)
du + x2

2(s)

)

�
x4

1(s)

[1+ 2x2
1(s)(e−t − e−s)]2 + x4

2(s)

[1+ 2x2
2(s)(e−t − e−s)]2

� V
(
s, y(t, s, x)

)2;
V

(
t+k , y

(
t, t+k , x

(
t+k

)))
= d2

1x2
1(tk)

1+ 2d2
1x2

1(tk)(e−t − e−tk )
+ d2

2x2
2(tk)

1+ 2d2
2x2

2(tk)(e−t − e−tk )

� d2V
(
tk, y

(
t, tk, x(tk)

))
,

whered = max{|d1|, |d2|}.
Then the comparison equation is given as follows:


u′ = u2, t �= tk,

u(t+k ) = d2u(tk),

u(t+0 ) = u0, t0 � 0, k ∈ N.

(18)

It is easy to get that Eq. (18) is stable. So from Theorem 3.1, we can conclude
‖y(t, t0, x0)‖ � u0, the impulsive integro-differential system (16) is stable.
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