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Abstract

This paper establishes several stability criteria for perturbed impulsive integro-differential equa-
tions with fixed moments of impulsive effect. By using a new comparison theorem, which connects
the solutions of perturbed system and the unperturbed one, some sufficient conditions for the stability
in terms of two measures are obtained for the perturbed system while unperturbed one dissatisfied
which because of the effect of the perturbed terms.
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1. Introduction

In the study of the nonlinear system, one of the most used techniques is the variation of
parameters when the unperturbed terms are smooth enough especially when they are lin-
ear, the other is the Lyapunov second method. Combining these two techniques, a flexible
mechanism-variation of Lyapunov second method is introduced, see [1].

Employing this introduction, a new comparison principle is presented, which connects
the solutions of the perturbed system and unperturbed one through the solutions of the
comparison system. This has been used by many authors, see [2—4]. For example, Devi [2]
considered the following impulsive differential system:

x'=F(,x), t#I,
x (1) = x(t) + I (x (1)),
x(ti§)=x0, 10>0, keN,

where 0K <t1 <--- <t <---andy, — oo ask — oo, F:[0,+00) x R — R" is
continuous on(t, tx+1] x R" andI,:R" — R", k =1,2,.... By using the variation of
Lyapunov second method together with the comparison theorem, the uniformly asymptot-
ical stabilities of such perturbed system are studied.

While many stability concepts are presented in the literature such as the Lyapunov sta-
bility, partial stability, conditional stability, relative stability and so on. In 1960, Movchan
[5] introduced the concept of stability in terms of two measures which unified the forgoing
stability concepts. Following his study, the theories of the stability in terms of two mea-
sures have been successfully developed and become important in the investigation of the
quality analysis, see [5-9].

In this paper, we consider the perturbed impulsive integro-differential equations

x'=F(t,x,Lix), t#t,
x(t) = x(te) + L (x (1)),
x(tg)=xo0, 100>0, keN,

wherery, F, I, are similar to the above system whilg is a kind of integral function. We
extend the Lyapunov stability for impulsive differential equations in [2] to the stability in
terms of two measures for this impulsive integro-differential equations through the vari-
ation of Lyapunov second method together with the comparison theorem. Obviously, the
results obtained in this paper generalize the ones in [2].

Some preliminaries are presented in Section 2 including definitions and concepts. An
new comparison theorem is also given in this section, which is important to complete
the main results of this paper. In Section 3, sufficient conditions for stability in terms of
two measures are given for perturbed impulsive integro-differential equations with fixed
moments of impulsive effect while the unperturbed one may fail to satisfy which because
of the effect of the perturbed terms. An example is also worked out at the end of the

paper.
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2. Preliminaries

Let Ry =[0, +00) andR" denotes the-dimensional Euclidean space with appropriate
norm| - ||.

Colllsi”der the following perturbed impulsive integro-differential equations with fixed
moments of impulsive effect:
x'=F(t,x,L1x), t#,
x(65) = x (1) + I (x (1), 1)
x(tf)=x0, t0>0, keN,
together with the unperturbed ones
y'=f@y Lay), t#u,
Y@ = y@) + Sy (@), )
y(tg)=x0, t0>0, keN,

where

Q) to<tr1r<--- <ty <---,andsy — oo ask — oo;

(2) F, f:Ry x R" x R" — R" are continuous of¥;_1, fx] x R" x R";

) Lix= ft; Ki(t,s,x(s))ds, K;: Ry x Ry x R* — R" are continuous ofity_1, tx] x
(tr—1, k] x R, i=1,2;

(4) Ik, Jx:R" — R".

Here we note that system (2), the unperturbed system is a systerni witlooth enough
or even the linear terms d@f in system (1). And suppose that the following hypoth¢sl3
holds:

(H) The solutiony(t) = y(t, to, xo) of (2) exists for allz > o, unique, continuous with
respect to the initial values andr) = xo, y(¢, fo, x0) is locally Lipschitzian inxg.

Let p be a real positive number and we give the following classes of functions for
convenience:
K= {a :[0, p) — R is continuous, strictly increasing and0) = 0};
PC={o:R; — R, is continuous offtt_1, #] ando (t) — o (1;") exists
ast — 1] };
PCK={¢:Ry x[0,p) > Ry, ¢(-,u) ePC
for eachu € [0, p), ¢(t,-) € K for eachr € R };
r= {h :Ry x R"— Re. Inf h(t,) =0, h(-.x) € PCfor eachr € R"

andh(z,-) € C(R", Ry) for eachr € R+};

S(h, p)={(t,x) € Ry x R": h(t,x) <p, he I'};
S(p)={x € R": (t,x) € S(h, p) for eachr € R, }.
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Definition 2.1. V (¢, x) belongs toVy if V (-, x) € PC for eachx € S(p), V (¢, x) is locally
Lipschitzian with respect to uniformly inz.

Definition 2.2. Let V € Vj, then for any fixed > 1g, we define for(s, x) € (fx—1, fx) x
S(p), to<s <t,

D+V(s, y(t,s, x))

=|imsup£Vs+h,yt,s—|—h,x+hF(s,x,L1x) —V(s,y(@,s,x))]|,
h

h—0t

wherey(z, s, x) is any solution of (2) such that(s, s, x) = x.

Remark 2.1. Supposex(s) = x(s, fg, xo) iS any solution of system (1) such thats)
S(p) for some certain € R,.. Then for some certain such thatg <s < ¢, s # #, and
x = x(s), we have

D+V(s, y(t,s, x)) = Vs(s, y(t, s,x)) + Vy(s, y(t, s,x))
X [ys(t, s,x)+ yx(t, s, x)F (s, x, le)],

where

Vs(s, y(t, s,x)) =lim Sup%[V(s +h, y(t, s,x)) — V(s, y(t,s,x))],
h—0t

. Vs, y(t, h, hF(s,x, L — Vs, y(,s,
V, (s, y(t. 5, x)) = limsup (s, y(, s +h,x+hF(s,x, L1x))) (s, y(,s,x))
h— O+ y(t,s+h,x+hF(s,x,Lix)) — y(t, s, x)

)

. 1
yo(t,s,x) =limsup=[y(t,s +h,x) — y(t,5,x)],
h—ot N

. t,s, hF(s,x, L —y(,s,
ys(t,s,x)zllmsupy( S, X+ hEG, %, L)) =y, s x).
Ot hF(s,x, L1x)

Further suppose that(z, x, L1x) = f(¢, x, Lox) + R(¢, x, Lx) and the solution of sys-
tem (2) is differential with respect to the initial value. Then we have

(2, 10, x0) = P (¢, 0, X0),
9
%(L to, x0) = =P (t, t0, x0) - f(t0, X0, L2x0), 1t = to,

where @ (¢, 19, xg) is the fundamental matrix solution of the corresponding variational
equation. SeV (s, y) = | y||2 and we have

D+V(s, y(t, s,x)) = 2yT(t,s,x) -d(t,s,x)- R(s,x,Lx),

which shows how the perturbation terms affect the stability properties of the perturbed
system.



646 P. Wang, H. Lian / J. Math. Anal. Appl. 313 (2006) 642—653

Definition 2.3. Let hg, h € I'', then

() hois finer tham if there exits av* > 0 and a functiorp € PCK such that
ho(t,x) <A* implies h(t,x) < ¢(t, ho(t, x));
(1) Ao is uniformly finer thart if (I) holds with ¢ € K.

Definition 2.4. Let V € Vg andh, hg € I', thenV (¢, x) is said to be

(i) h-positive definite if there existsia> 0 and a functiorb € K such that
h(t,x) <A implies b(h(t,x)) < V(t,x);
(ii) weakly ho-decrescent if there exists\g > 0 and a functiorm € PCK such that
ho(t,x) <o implies V(r,x) <a(t, ho(t, x));
(iif) ho-decrescent if (ii) holds witlhy € K.

Definition 2.5. Let hg, h € I andx(¢) = x (¢, tg, xo) be any solution of (1), then system (1)
is said to be

(S1) (ho, h)-stable if for eackr > 0 there exists & = § (g, £) > 0 such that
ho(to, x0) <8 implies h(r,x(1)) <&, > 1o;

(S2) (ho, h)-uniformly stable if () holds withs independent ofy;
(Ss3) (ho, h)-attractive if there exists & = Jo(fp) > 0 and for eacte > 0, there exists
T = T(tg, ¢) > 0 such that

ho(to, x0) <80 implies h(t,x(t)) <e, t>10+T;

(Sa4) (ho, h)-uniformly attractive if (3) holds withs andT independent ofy;

(Ss) (ho, h)-asymptotically stable if it ighg, i)-stable andho, h)-attractive;

(Ss) (ho, h)-uniformly asymptotically stable if it ighg, h)-uniformly stable andhog, )-
uniformly attractive.

Remark 2.2. When we endowig, & with explicit form, the(ho, h)-stability reduces to the
other stability such as

(1) setho(t,x) = h(t,x) = ||x||, then(hg, h)-stability means the corresponding Lyapunov
stability of the trivial solution;

(2) setho(t,x) =h(t, x) =|x —x*|, then(hg, h)-stability means the corresponding Lya-
punov stability of solution*;

(3) sethp(t, x) = ||x]|l, h(t,x) = |Ix|ls, 1< s < n, then(ho, h)-stability means the corre-
sponding partial stability of the trivial solution;

(4) setho(t,x) =h(t,x) =d(x, A), whereA € R", then(hg, h)-stability means the cor-
responding stability of an invariant sat

(5) setho(t,x) =d(x, A), h(t,x) =d(x, B), whereA C B C R", then(ho, h)-stability
means the corresponding stability of a conditionally invarianBsefith respect tA.
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In the following we always suppose thatt) = x (¢, to, x0), y(t) = y(t, tg, xo) are the
solutions of (1) and (2) such thatr) = xg, y(to) = yo, respectively.

Next, a comparison principle is presented which is necessary for completing our main
results.

Lemma 2.1. Suppose thafH) holds and

(i) V e Vp satisfies the inequalities fas, x) € S(h, p), to < s <,

DTV (s, y(t,5,x) < g(s, V(s, y(t,5,%)), t#I,
V@ y@ it x(9) <YV (e, y(@, tk, x (1)),
V(g . y(t. 15, x0)) < uo,

whereg (-, u) € PC for eachu € R, and v : R — R are nondecreasing functions
forall k e N;

(iiy r(¢) =r(t,to, uo) is the maximal solution of the following scalar impulsive differential
equation

u' =g, u), t#t,
M(t,:r) = Y (u(tx)), (3

u(ty) =uo >0,

existing on[zg, +00).

Then we have

V(t,x(t, 10, x0)) < r(t, to, ug), = fo.

Proof. Denotex(¢) = x(¢, fro, xo) any solution of system (1) satisfyingp, xo) € S(&, p).
Set

m(s) =V (s, y(t,s,x(s))), forro<s <,
wherem (t) = lim;_,;_gm(s). Thus we have

DVm(s) < g(s, m(s)), t#ty,

m(t") <y (mw)),

m(to) <ug, k=1,2,....

It follows from [6] thatm (s) < r (s, o, uo) for g < s < ¢, which implies that
V(s, y(t, s, x(s))) <r(s,to,ug), to<s<t.

Notice thaty(¢, ¢, x(t)) = x(¢) and we have
V(t,x(t, 10,x0)) = V(t, y(t. 1, x(1))) < r(t, 10, ug).

So the proof is complete.O
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Remark 2.3. u; (i =1, 2) are two different initial values, then from Lemma 2.1, we have
r(t,to,u) <r(t,to,uz), if ug <uo. (4)

Also wheng(t, u) andyy (u) are special (see [2]), we can get some explicit comparison
results which we omit here.

3. Stability criteria
Theorem 3.1. Suppose thatH) holds and

(A1) f(,0)=0, g(t,00=0andJ¢(0) =0, ¥ (0) =0forall k € N;
(A2) ho,h eI, ho(t,0)=0fort € Ry, ho is finer thank;
(A3) V eV, V(t,x) is h-positive definite and weakhp-decrescent fo(t, x) € S(h, p),
and
D+V(s, y(t, s,x)) < g(s, V(s, y(t, s,x))),
fors £, (s,x) € S(h, p), to<s <t

(Ag) V& ya. ol x@5) < vV, y(@. tr, x (@)
(As) there exists g € (0, p] such that

h(te, x(t)) < po implies (. x(t})) <p, k=12....

Then the stability of the trivial solution of systé®) and the(asymptotica) stability of the
trivial solution of (3) imply the(ho, h)-(asymptoticgl stability of systenfl).

Proof. Note thatx(t) = x(¢, ro, x0), y(t) = y(¢, to, x0), u(t) = u(t, tg, ug) are any solu-
tions of system (1), (2) and (3), respectively.
SinceV (¢, x) is h-positive definite ors (4, p), there exists @ € K such that

h(t,x) <p implies b(h(t, x)) <V, x). (5)

Also V (¢, x) is weaklyho-decrescent ankl is finer than, so there exists & > 0 and
a € PCK, ¢ € PCK such that

h(t,x) < (t,ho(r,x)) and V(t,x)<a(t, ho(t,x)), whenho(t,x) <ko, (6)

wherei is such that (5, Ao) < p.
Let 0< ¢ < po andip € Ry be given. Since the trivial solution of (3) is stable, for given
b(g) > 0, there exists & = §1(g, ¢) > 0 such that

O<ug<d1 implies u(t,tg,ug) <b(e), t=r1. @)

While the trivial solution of (2) is also stable, so for thig, there exists &, =
82(fg, €) > 0 such that

Ixoll <82 implies |y@®)] <a (0, 82),
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while from condition (4&), without loss of generality, we have
ho(ty, x0) <82 implies ho(td, y()) <a (1o, 81). (8)

Choosings = §(#p, €) > 0 such that < min{ig, 82}, then it follows from (5)—(8) that if
ho(tg . x0) <8,

b(h(taL, xo)) < V(ta',xo) < a(ta', ho(tg',xo)) < a(tc')", 52) <81 < b(e).
Which implies thati(#5 , x0) < ¢ whenho(ty , x0) < 8. We claim that

h(t,x(t)) <&, wheneverho(ty, x0) <38. (9)
In fact, if (9) is false, there exist$ > 7o such that:(t*, x(t*)) > ¢. Forh € I', we have

two cases:

Casd: 19 < t* <t1. Without loss of generality we suppose thiat= inf{z: (¢, x (1)) > e}
and soh(t*, x(t*)) = e. From Lemma 2.1, (4) and (7) we have

V(t*, x (%))

< r(t*, fo, V(ta_, y(t*, fo, xo))) < r(t*, fo, a(to, ho(tg, y(t*, fo, xo))))
<r(t*,10,81) < b(e).
On the other hand, from (5) we have

V(t*, x(*)) = b(h(*, x (1)) = b(e),

which is a contradiction.

Casell: 1 <t* <141 forsomek € N. In this case, noticing the impulse effect, we have
h(t*,x(t*)) =¢e and h(t,x(t)) <e, 1€, i].
Since O< ¢ < po, it follows from condition (4) that
h(t,j'x(t,j)) = h(t,:L x(t) + Ik(x)) <p,
and so there existse (¢, t*] such that
e<h(i,x())<p and h(t,xt))<p, t€lto,0). (10)
By using Lemma 2.1 and (7), we have
V(7 x@) <r(f 10, V(g (. to. x0))) <7 (7. 10, a(to, ho(ty . ¥ (7, 10, x0))))
<r(t, to, 81) < b(e).

On the contrary, from (5) and (10) we haVér, x(f)) > b(h(f, x())) > b(e), which is
also a contradiction. Thus the claim is true for proving the /)-stability of system (1).

Next suppose further that the trivial solution of (3) is asymptotically stable. From above
we have thehg, h)-stability of system (1). Consequently from (9), taking= po, there
exists a* = §* (o, po) > 0 such that

ho(tg, xo) <8* implies h(t,x(1)) <po<p, t=>1to.
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To prove the(hg, h)-attractive of system (1), lep € R,.. The trivial solution of (3) is
attractive, so forg € R, there exists @g; = 6;(to) > 0 such that

up <8y implies  lim u(z, 10, ug) = 0.
—00
For thisdj, there exists @] = &7 (10, 83) > 0 such that

ho(tg_, xo) < 5; implies ho(ta_, y(t, to, xo)) < a_l(to, 83)
Choosing 0< 6o < min{s*, 83, 87}, and it is obviously thaip = do(0) independent of,
then by similar argument to the above, we can get that vhhe@L, x0) <8pandag — oo
b(h(t,x(®)) < V(t,x(@®) <r(t.t0, V(tg, y(t, 10, x0))) < r(t, 10, 83) — O,
which implies that lim_, o 2(z, x(t)) = 0 Whenho(tar,xo) < 8o, that is, system (1) is
(ho, h)-attractive. Hence it follows that the system (1}Ag, #)-asymptotically stable. O

Remark 3.1. Setho(z, x) = h(t, x) = | x|, then we can get the (asymptotical) stability of
the trivial solution of system (1), if further sétx = Lox = 0, we can get the results in [2].

Strengthen certain assumptions of Theorem 3.1 and we can obtain the uniform stability
criteria of the perturbed system (1).

Theorem 3.2. Assume that the conditions in Theor8rt hold except that

(Ag) justreplacinghg is finer thank with hg is uniformly finer tharh in (A2);
(A7) justreplacingV is weaklyhg-decrescent withv is ho-decrescent ifA3).

Then the uniform stability of the trivial solution of systé2) and the uniformlyasymp-
totical) stability of the trivial solution of(3) imply the (hg, h)-uniformly (asymptotical
stability of systen(l).

Proof. Since V (¢, x) is ho-decrescent andg is uniformly finer thanh, there exists a
Ao > 0anda € K, ¢ € K such that

h(t,x) < p(ho(t,x)) and V(r,x)<a(ho(r,x)), Whenho(t,x) < Ao, (12)

whereig is such thatp (Lg) < p. Let 0< ¢ < pg andrg € R be given. The trivial solution
of (3) is uniformly stable, then for givein(e) > 0, there exists & = §1(¢) > 0 independent
of g such that

O<ug<§y implies u(t, o, ug) <b(s), t=to, (12)

whereb is the same as above. The trivial solution of (12) is also uniformly stable, then for
this 81, there exists d > 0 independent ofy such that

ho(tg, x0) <82 implies ho(tg, (1)) <a=*(50). (13)

Choosings such that O< § = §(¢) < min{Ag, §2}. Then with a similar argument to
Theorem 3.1, we can conclude that

h(tg.x0) <8 implies h(t,x(t)) <e, =10,
wheres is independent of, so the system (1) iGi, #)-uniformly stable.
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If further suppose that the trivial solution of (3) is uniformly asymptotically stable, there
exists a5 > 0 independent af and for any giver € (0, po) there exists & = T'(¢) such
that for anyr € R,

O<up<38y implies u(r,10,u0) <b(e), t=>to+T(e). (14)

Noticing that (2) is uniformly stable, so for thig, there exists &} > 0 independent of
fo such that

ho(tg, x0) <85 implies ho(tg, y(t, to, x0)) < a~*(83).

Uniformly asymptotically stability of system (3) implies its asymptotically stability. So
system (1) igho, h)-uniformly stable. Foe = pg, there exists &* = §*(pp) such that

ho(tg . x0) <8* implies h(r,x(1)) <po<p, t=to. (15)

Choosings such that O< 8o < min{s*, &3, 87}, with a similar argument to Theorem 3.1,
we can get that wheho(tg , xo) < o,

h(t,x(t)) <e, t>t0+T,

wheredg andT are independent af, that is, system (1) is uniformly attractive.
So system (1) i$ho, h)-uniformly asymptotically stable. O

4. Example

In this section, we present a simple but an illustrative example. Consider the perturbed
impulsive integro-differential equations
xp=e ’xf—i— lexzft Fi(t,u, x1(u)) du + 2x1, t#t;

x5 = e_’xg + Qxlxz fto Fo(t,u, xo(u))du + ixz, t#t;

(16)
x1(tf) =dixa(t),  x1(to) = x10 > 0;
xo(t) =daxa(ty), x2(t0) =x20>0, k=12,...,
whereftz Fi(t,u,xi(u))du <0, foranyrg <s <t,i=1,2,and|dy| <1, |do|] <1
Here we consider the unperturbed system without impulse

f=ey3 10) = x10;
Y} )’é y1(t0) 10 (17)
yo=e""y3, yi(to) = x20.

By direct calculation, we have the solution of (17) given by

X10
1t 11242 (e —e10)]3/2
y(t, to, x0) = <y1( ; 0,x10)> _ ([ 2 (e~'—e10)] ) ,

2(%, 10, X20) 20
Y [1+2x3y(e~" —e~10)]1/2

which exists for alk > 1o such that|xo| < v/e0/2 (xo = (x10, X20)7 ) and the fundamental
matrix solution of the corresponding variational equations is

L 0
[1+2x2 (e~ —e~10)]3/2 )

0 1
[1+2x2 (e~ —e~10)]3/2

D(t, 19, x0) = (
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SetV (t,x) = |lx||2 = x2+x5 andho(t, x) = h(t,x) = ||x| = (x?+x3)Y/2. Itis obvious
thatV is differentiable so we have

D+V(s, y(t,s, x))
= 2yT(t, s, x)D(t,s,x)R(s, x, Lx)

= xf(s) (xZ/SFl(t u xl(u)) du+x2(s)>
- 2 —t __ —s 2 2 ’ £ 1
[14 2x5(s)(e™" —e )] ]
x3(s) . [ ,
T oo e\ Fawraw) dus
5

1o
- xf(s) Xg(s)
T L4236 e — e [+ 202 (s) (et — )]
< V(s, y(t, s,x))z;
Vi (5 1 (1)
B dix3 (1) d5x3 (1)
C 142423 () (e — ey 1+ 2d3x3(n) (e — e~ik)
<AV (1, y(t, e, x (1)),

whered = max|d|, |d>|}.
Then the comparison equation is given as follows:

W' =u? 1+,
u(ty) = du(y), (18)
u(tg)=uo, 10>0, keN.

It is easy to get that Eq. (18) is stable. So from Theorem 3.1, we can conclude that if
ly(z, to0, x0) || < uo, the impulsive integro-differential system (16) is stable.
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