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A particular dimensional reduction of SU(2N) Yang–Mills theory on Σ × S2, with Σ a Riemann surface,
yields an S(U (N)× U (N)) gauge theory on Σ , with a matrix Higgs field. The SU(2N) self-dual Yang–Mills
equations reduce to Bogomolny equations for vortices on Σ . These equations are formally integrable if Σ

is the hyperbolic plane, and we present a subclass of solutions.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The generalization of abelian Higgs vortices to the non-abelian
case has recently gained much attention [1–3]. There are many
variants of non-abelian vortices, and in this Letter we shall inves-
tigate one of these, one that has not been explicitly investigated
before, but which has a mathematically elegant and symmetric
structure. All these types of vortices satisfy static, first order Bo-
gomolny equations, defined in two-dimensional space. Vortices are
most commonly studied on the plane R2, but the Bogomolny equa-
tions are not integrable there. The vortex equations on the hyper-
bolic plane H2 are, however, integrable [4–6]. The reason is that
these vortex equations arise by dimensional reduction of the self-
dual Yang–Mills equations on H2 × S2, where the curvatures on H2

and the 2-sphere S2 are opposite; moreover there is a conformal
equivalence H2 × S2 ∼= R4 − R1, and self-dual Yang–Mills is both
conformally invariant, and integrable on R4. The vortex equations
on R2 also arise by dimensional reduction of self-dual Yang–Mills,
this time on R2 × S2, but here there is no integrability. Solutions
exist despite this, but they are transcendental, and their existence
has to be established by methods of analysis, or numerics [7].

The dimensional reduction leading from self-dual Yang–Mills
fields to vortices arises by imposing spherical symmetry (i.e. SO(3)

symmetry) on the gauge field over the S2 factor of a Riemannian
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product 4-manifold Σ × S2, where Σ is a Riemann surface. The re-
sulting vortex equations are on Σ . Since SO(3) is non-abelian, the
dimensional reduction is non-trivial, and there are various possible
outcomes. Spherically symmetric SU(2) gauge fields were first pre-
sented in the 1970s in the context of monopoles and instantons.
A systematic understanding was achieved by Romanov et al. [8,9],
and a more general overview of symmetric gauge fields was given
in Ref. [10]. The mathematical basis for this can be traced back to
the earlier theorem of Wang [11], but the later work incorporated
dynamical aspects like the Yang–Mills action and field equations.

We will briefly review the general structure of SO(3)-symmetric
pure Yang–Mills fields with gauge group G on Σ × S2, and show
that the dimensionally reduced self-dual Yang–Mills equations are
Bogomolny equations for vortices on Σ , with a gauge group G
that is a subgroup of G . We then focus on an example where
G is a particularly large subgroup of G . Here G = SU(2N) and
G = S(U (N) × U (N)). This is at the opposite extreme from an-
other well-studied case, where G is particularly small, namely
G = U (1)2N−1 [12–14].

The Bogomolny equations on Σ involve a G-gauge potential and
also Higgs fields. The latter arise from the components of the orig-
inal G -gauge potential tangent (more accurately, co-tangent) to S2.
In our example, the Higgs field is a complex N × N matrix, gauge
transforming from the left and right by the two U (N) factors of G .
Our example is therefore closely related to the well-known non-
abelian vortex equations with an Nc × N f matrix of Higgs fields,
where there is a “colour” U (Nc) gauge group acting from the left,
and a “flavour” SU(N f ) global symmetry group acting from the
right. These colour–flavour theories arise naturally in supersym-
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metric gauge theories with eight supercharges [15]. It is usually
assumed that N f � Nc , to have a vacuum solution of zero energy,
where the colour and the flavour are locked together.

We will present our Bogomolny equations for both Σ = R2 and
Σ = H2. One Bogomolny equation implies that in a certain sense
the Higgs field is holomorphic. The free parameters of the holo-
morphic Higgs field are the moduli of the vortex solutions. The
other Bogomolny equations then reduce to gauge-invariant “master
equations”, a generalization of Taubes’ equation for abelian vor-
tices [7]. It is expected that the master equations have unique
solutions once the holomorphic Higgs field is fixed. In the hyper-
bolic case, Σ = H2, the master equations simplify, and are formally
completely integrable. However, we have not found a general ex-
plicit solution satisfying the boundary conditions. We do show,
however, that the explicitly known hyperbolic abelian vortices,
found by Witten [4], can be embedded as solutions in the non-
abelian system. These embedded abelian vortices are intrinsically
non-abelian, in the same sense as the well-known non-abelian vor-
tices in the Higgs phase [1–3].

More general explicit solutions could emerge from an applica-
tion of the formulae of Leznov and Saveliev [5]. These rely on a
good understanding of the structure of the gauge groups, but ap-
pear not to incorporate boundary conditions. The twistor approach
of Popov could be useful, but so far has not yielded explicit solu-
tions [6]. More promising, possibly, is the recent work of Manton
and Rink, in which hyperbolic abelian vortices are constructed in
a purely geometrical way, reproducing Witten’s solutions and also
giving novel solutions on surfaces Σ , other than H2, that have a
hyperbolic metric [16]. Finding a non-abelian generalization of this
approach would be useful and interesting.

2. Self-duality and Bogomolny equations

Bogomolny equations for vortices on a Riemann surface Σ

arise naturally by dimensional reduction of the self-dual Yang–
Mills equations on Σ × S2. Let z be a complex coordinate on Σ ,
and y the standard complex coordinate on S2 obtained by stere-
ographic projection (so that y = tan θ

2 eiϕ with θ,ϕ usual polar
coordinates). The metric on Σ × S2 is taken to be

ds2 = σ(z, z̄)dz dz̄ + 8

(1 + y ȳ)2
dy dȳ. (1)

σ is a generic conformal factor on Σ , and the second term de-
scribes a 2-sphere of fixed radius

√
2 and Gauss curvature 1

2 .
Let the gauge group be G , a compact Lie group with Lie alge-

bra g, whose complexification is g∗ . The Yang–Mills gauge potential
has components Az , Az̄ , A y , A ȳ with values in g∗ , but Az + Az̄
and i(Az − Az̄), being components in real directions, must be in g

itself,1 and similarly for A y , A ȳ .
We now suppose that the gauge potential is SO(3)-invariant

over the 2-sphere, S2. SO(3) does not act freely on S2. The isotropy
group at each point of S2 (the subgroup keeping that point fixed)
is SO(2). Let us focus on the particular point y = 0, and its SO(2)

isotropy group. For the gauge potential to be “invariant” at y = 0
and its infinitesimal neighbourhood, we mean that it is invari-
ant under a combined SO(2) rotation and gauge transformation.
To define the gauge transformation, we must identify a subgroup
SO(2)G in G (which can be chosen to be constant over Σ ). Let the
generator of SO(2)G be denoted by Λ, such that in the adjoint rep-

1 More explicitly, if G is a group of unitary matrices, with a Lie algebra g of anti-

hermitian matrices, then Az + Az̄ = −(Az + Az̄)
† and Az − Az̄ = (Az − Az̄)

† . So
Az and Az̄ are not in general anti-hermitian, but by adding or subtracting these
equations we see that Az̄ = −A†

z .
resentation of G , exp(2πΛ) is the identity. The combined action of
SO(2) then consists of rotations by α combined with gauge trans-
formations by exp(αΛ), and the gauge potential must be invariant
under this. Having chosen this lift of the SO(2)-action at y = 0,
one can show that the notion of an SO(3)-invariant gauge poten-
tial over Σ × S2 is completely fixed, and in a convenient choice of
gauge, the general invariant gauge potential on Σ × S2 is given by
the formulae [9,17,6]

Az = Az(z, z̄), (2)

Az̄ = Az̄(z, z̄), (3)

A y = 1

1 + y ȳ

(−Φ(z, z̄) − iΛ ȳ
)
, (4)

A ȳ = 1

1 + y ȳ

(
Φ̄(z, z̄) + iΛy

)
. (5)

Here, the dependence on z and z̄ is arbitrary, but the dependence
on y and ȳ is as shown. In addition, there are linear constraints,
arising from the SO(2) invariance at y = 0, namely

[Λ,Az] = [Λ,Az̄] = 0, (6)

[Λ,Φ] = −iΦ, [Λ,Φ̄] = iΦ̄. (7)

The interpretation of these constraints is that Az , Az̄ are compo-
nents of a gauge potential on Σ for the gauge group G which is
the centralizer of SO(2)G in G . Also, Φ , Φ̄ are scalar Higgs fields
on Σ which must lie in the ∓i eigenspaces of adΛ in g∗ . These
eigenspaces are representation spaces for G , so Φ , Φ̄ are Higgs
fields transforming under these representations of G .

The self-dual Yang–Mills equations on Σ × S2, with metric (1)
and gauge group G , are

8

(1 + y ȳ)2
Fzz̄ = σ F y ȳ, (8)

Fz ȳ = 0, (9)

Fz̄ y = 0, (10)

where Fμν = ∂μAν − ∂ν Aμ + [Aμ, Aν ] for any coordinate in-
dices μ, ν . Substituting the SO(3)-invariant fields (2)–(5) into this
set of equations yields

Fzz̄ = σ

8

(
2iΛ − [Φ,Φ̄]), (11)

DzΦ̄ = 0, (12)

Dz̄Φ = 0, (13)

where Fzz̄ = ∂zAz̄ − ∂z̄Az + [Az,Az̄], DzΦ̄ = ∂zΦ̄ + [Az, Φ̄] and
Dz̄Φ = ∂z̄Φ + [Az̄,Φ]. It is consistent to interpret these as un-
constrained Bogomolny equations with gauge group G , and this is
seen explicitly if the linear constraints (6) and (7) are solved. For
example, both left- and right-hand sides of (11) are in the zero
eigenspace of adΛ, which is the Lie algebra of G .

We have so far presented the most general type of SO(3)-
invariant gauge field. There are two related reasons to restrict the
choice of Λ. The first comes from requiring that the vortex so-
lutions of the Bogomolny equations have finite energy. If Σ has
infinite area, as R2 and H2 do, then approaching infinity (the
boundary of Σ ), the solution must approach the vacuum. This
means that Fzz̄ = 0 there, and hence

2iΛ − [Φ,Φ̄] = 0. (14)

If we denote the vacuum values of Φ , Φ̄ by Φ0, Φ̄0 respectively,
then, combining (14) and the constraints (7), we have
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[Λ,Φ0] = −iΦ0, [Λ,Φ̄0] = iΦ̄0, (15)

[Φ0, Φ̄0] = 2iΛ. (16)

In other words, the elements Λ, Φ0, Φ̄0 generate an SO(3) sub-
group of G , which we denote by SO(3)G . The SO(2)G subgroup
generated by Λ is therefore not arbitrary, but must extend to
SO(3)G .

The related reason for restricting Λ applies in the case that
Σ = H2. Consider the action of SO(3) on R4 = R1 × R3. It acts
in the standard way on the R3 factor, with 2-spheres as generic
orbits. The conformal equivalence H2 × S2 ∼= R4 − R1 arises from
the manipulation of the R4 metric,

ds2 = dτ 2 + dr2 + r2(dθ2 + sin2 θ dϕ2) (17)

∼= 2

r2

(
dτ 2 + dr2) + 2

(
dθ2 + sin2 θ dϕ2). (18)

The first factor in (18) is the metric on H2 in the upper-half-plane
model, with r > 0, and the Gauss curvature is − 1

2 . In terms of the
complex coordinate2 z = τ + ir, the metric is 2

(Im z)2 dz dz̄. Now no-

tice that the τ -axis of R4, where r = 0, is excluded here. This is the
excluded R1, and it is the boundary of H2. To have well-defined
SO(3)-invariant, self-dual Yang–Mills fields on all of R4, the SO(3)

invariance must hold also on this line. But here the isotropy group
jumps – it is all of SO(3). So we need to be able to lift SO(3) to
a subgroup SO(3)G in G , and for consistency, Λ must be one gen-
erator of SO(3)G . In other words, in addition to Λ, there should
be two elements Φ0, Φ̄0 of g∗ , such that the algebra (15) and (16)
holds. As we saw above, this implies that the fields on H2 can ap-
proach vacuum values on the boundary. The lift of these fields to
H2 × S2 can then be extended to the τ -axis of R4, to give finite-
action self-dual Yang–Mills fields on R4.

From now on, we shall suppose that Λ is one generator of an
SO(3)G subgroup of G .

3. A maximally non-abelian example

Let us now choose G = SU(2N), whose Lie algebra consists of
2N × 2N , anti-hermitian traceless matrices. Λ can always be con-
jugated into the Cartan subalgebra of diagonal matrices

Λ = i

⎛
⎜⎜⎝

Λ1
Λ2

. . .

Λ2N

⎞
⎟⎟⎠ , (19)

with Λα real and
∑

Λα = 0. To obtain a large non-abelian cen-
tralizer of Λ and hence SO(2)G , we want as many as possible of
the Λα to be equal. The constraint [Λ,Φ] = −iΦ is satisfied by
the 2N × 2N matrices Φ , where the matrix element Φαβ can be
non-zero only if Λβ −Λα = 1. To obtain a large non-zero part of Φ ,
we want as many as possible of the differences Λβ − Λα to be 1.
Combining these requirements, the optimal choice is

Λ = i

2

(
1N 0
0 −1N

)
, (20)

where 1N is the unit N × N matrix. This gives a maximally large
gauge group and Higgs field after dimensional reduction.

2 We use z = τ + ir here, exchanging the role of z and z̄ compared to z = r + iτ
in Ref. [4].
The constraints (6) and (7) are satisfied by fields of the form

Az =
(

Az 0
0 Ãz

)
, Az̄ =

(
Az̄ 0
0 Ã z̄

)
, (21)

Φ =
(

0 0
H 0

)
, Φ̄ =

(
0 H†

0 0

)
, (22)

where the non-zero parts are N × N blocks. The reduced gauge
group G is S(U (N) × Ũ (N)), i.e. U (N) × Ũ (N) with overall deter-

minant 1. The Lie algebra is that of SU(N)× S̃U(N)× U (1). The no-
tation ˜ conveniently distinguishes the factors of the gauge group
and the corresponding gauge potentials A and Ã.

There is an SO(3)G algebra here, satisfying (15) and (16), with
Λ as above and

Φ0 =
(

0 0
1N 0

)
, Φ̄0 =

(
0 1N

0 0

)
. (23)

Hence there is a zero-energy vacuum, with H = 1N , where the

SU(N) and S̃U(N) gauge groups are locked, instead of the colour–
flavour locking mentioned in the introduction.

Substituting the expressions (21) and (22) into the generic Bo-
gomolny equations (11)–(13), we find the Bogomolny equations for
the unconstrained fields

F zz̄ = σ

8

(−1N + H† H
)
, (24)

F̃ zz̄ = σ

8

(
1N − H H†), (25)

Dz H† = 0, (26)

Dz̄ H = 0, (27)

where F , F̃ are the field tensors of A, Ã, respectively, and Dz H† =
∂z H† + Az H† − H† Ãz , Dz̄ H = ∂z̄ H + Ã z̄ H − H Az̄ . These equations are
gauge invariant under G , with U (N) acting on H from the right,
and Ũ (N) acting from the left. So H is a Higgs field in the bifun-
damental representation of G .

Note that if the sizes N and N ′ of the two blocks of matrices in
Eqs. (20) and (21) were unequal, the Higgs fields coming from the
off-diagonal elements in Eq. (22) would not be square matrices. By
taking a trace, we can easily see that the corresponding Bogomolny
equations (24) and (25) would then not allow the vacuum solution
with vanishing field strengths F zz̄ = F̃ zz̄ = 0. This is another reason
why we should choose the symmetric situation which necessitates
the even size 2N of the starting unitary gauge group SU(2N).

4. Moduli matrix and master equations

Let us split the U (N) and Ũ (N) gauge potentials A and Ã into

their traceless SU(N) and S̃U(N) parts A(0) and Ã(0) , and a com-
mon U (1) part a. The Bogomolny equations now take the form

F (0)

zz̄ + i

2
1N fzz̄ = σ

8

(−1N + H† H
)
, (28)

F̃ (0)

zz̄ − i

2
1N fzz̄ = σ

8

(
1N − H H†), (29)

Dz̄ H = 0, (30)

where f zz̄ = ∂zaz̄ − ∂z̄az and Dz̄ H = ∂z̄ H + Ã(0)

z̄ H − H A(0)

z̄ − iaz̄ H .
We suppress Eq. (26), as this is just the hermitian conjugate
of (27). By taking the traceless and trace parts of Eqs. (28)
and (29), we could decompose the Bogomolny equations into a set

of coupled equations for the SU(N), S̃U(N) and U (1) parts. For the
rest of this section we drop the superscript (0), remembering that
capital A, F , etc., refer to SU(N).
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Let us define a real gauge parameter function ψ(z, z̄) and
SL(N,C) gauge parameter matrix functions S(z, z̄) and S̃(z, z̄) by

az̄ = − i

2
∂z̄ψ, Az̄ = S−1∂z̄ S, Ã z̄ = S̃−1∂z̄ S̃. (31)

Using these, the Bogomolny equation (30) for H can be solved in
terms of a holomorphic moduli matrix H0(z), as [3,18,19]

H(z, z̄) = e
1
2 ψ(z,z̄) S̃−1(z, z̄)H0(z)S(z, z̄). (32)

By defining the gauge invariant quantities Ω ≡ S S† and Ω̃ ≡ S̃ S̃†,
the matrix Bogomolny equations (28) and (29) can now be reex-
pressed as

∂z∂z̄ψ = σ

4

(
−1 + 1

N
eψ Tr

(
Ω̃−1 H0Ω H†

0

))
, (33)

∂z
(
Ω−1∂z̄Ω

)

= σ

8
eψ

(
H†

0Ω̃
−1 H0Ω − 1

N
1N Tr

(
Ω̃−1 H0Ω H†

0

))
, (34)

∂z
(
Ω̃−1∂z̄Ω̃

)

= −σ

8
eψ

(
Ω̃−1 H0Ω H†

0 − 1

N
1N Tr

(
Ω̃−1 H0Ω H†

0

))
. (35)

We call Eqs. (33)–(35) the master equations for the U (1), SU(N)

and S̃U(N) gauge groups, respectively. It has been shown that the
solution of the U (1) master equation (33) exists and is unique
for the given source Tr(Ω̃−1 H0ΩH†

0) [20]. Similarly, we conjec-
ture that the solution ψ , Ω , Ω̃ of the coupled U (1) and SU(N)

master equations (33)–(35) exists and is unique for a given moduli
matrix H0(z).

Note that the moduli matrix is defined up to holomorphic
gauge equivalence by SL(N,C) transformations from the left and
right,

H0(z) → Ṽ (z)H0(z)V (z), S → V −1(z)S, S̃ → Ṽ (z) S̃,

(36)

with V (z), Ṽ (z) holomorphic in z, and of unit determinant. This
moduli matrix formalism is very similar to the case of the U (N)

gauge theory with N flavours of Higgs fields in the fundamen-
tal representation [3,18,19], except that here we have two gauge

groups SU(N), S̃U(N) besides a U (1) gauge group.
Transposing the SU(N) master equation (34), we observe that

the S̃U(N) master equation (35) can be obtained by the transfor-
mation

H0 ←→ H T
0 , Ω̃−1 ←→ Ω T . (37)

The same transformation also gives (34) from (35). This implies
that for a symmetric moduli matrix H0 = H T

0 , the solution has the
symmetry Ω̃−1 = Ω T .

On R2, where σ = 1, we cannot expect the master equations
to be integrable. However on the hyperbolic plane H2, where
σ = 2

(Im z)2 , the equations are formally integrable [5,6]. Possibly

this also applies to the multi-flavour U (N) gauge theory on H2,
but this has not been established. It is interesting to observe that
in the hyperbolic case, the explicit factor of σ can be eliminated
from the Bogomolny equations and the master equations [5]. This
is because σ satisfies the Liouville equation ∂z∂z̄(logσ) = 1

4 σ , and
if we make the transformation ψ → ψ ′ = ψ + logσ , the master
equations become
∂z∂z̄ψ
′ = 1

4N
eψ ′

Tr
(
Ω̃−1 H0Ω H†

0

)
, (38)

∂z
(
Ω−1∂z̄Ω

)

= 1

8
eψ ′

(
H†

0Ω̃
−1 H0Ω − 1

N
1N Tr

(
Ω̃−1 H0Ω H†

0

))
, (39)

∂z
(
Ω̃−1∂z̄Ω̃

)

= −1

8
eψ ′

(
Ω̃−1 H0Ω H†

0 − 1

N
1N Tr

(
Ω̃−1 H0Ω H†

0

))
. (40)

If further, by analogy with Eq. (31), we define a′̄
z = − i

2 ∂z̄ψ
′ , then

a′̄
z = az̄ − i

2
∂z̄(logσ), (41)

and ψ → ψ ′ , az̄ → a′̄
z amounts to a complexified U (1) gauge trans-

formation.

5. Vacuum and non-abelian vortices

We revert here to the notation of Section 3, where the U (N)

gauge fields are not split up.
The vacuum of our model is given by the constant solution of

the Bogomolny equations

H =

⎛
⎜⎜⎝

1
1

. . .

1

⎞
⎟⎟⎠ , A = 0, Ã = 0. (42)

This vacuum is invariant under the diagonal gauge group SU(N)d,
which is therefore the unbroken local gauge invariance. This con-
trasts with the multi-flavour U (N) model, which is in a Higgs
phase, as the gauge group is fully broken in the vacuum.

Exact vortex solutions are obtained using the ansatz

H =

⎛
⎜⎜⎝

h(1)

1
. . .

1

⎞
⎟⎟⎠ , Az̄ =

⎛
⎜⎜⎝

ia(1)

z̄
0

. . .

0

⎞
⎟⎟⎠ , (43)

with Ã z̄ = −Az̄ so that one has an S(U (N)× Ũ (N)) gauge potential.
The Bogomolny equations (24) and (27) in this case reduce to

i f (1)

zz̄ = σ

8

(−1 + ∣∣h(1)
∣∣2)

, (44)

∂z̄h(1) − 2ia(1)

z̄ h(1) = 0, (45)

where f (1)

zz̄ = ∂za(1)

z̄ − ∂z̄a(1)
z , and Eqs. (25) and (26) give nothing

further.
Setting h(1) = e

1
2 k+iχ with k and χ real, and eliminating a(1)

z̄ =
(a(1)

z )∗ using Eq. (45), one finds that Eq. (44) simplifies to

∂z∂z̄k = −σ

4

(
1 − ek). (46)

This is the standard gauge invariant Taubes equation for abelian
vortices on a general surface. On the hyperbolic plane, where σ
satisfies Liouville’s equation, Eq. (46) itself reduces to Liouville’s
equation, as first shown by Witten [4], and its solutions have been
completely worked out in terms of Blaschke product functions. The
solutions are hyperbolic vortices and multi-vortices, that also arise
from spherically symmetric self-dual Yang–Mills fields (i.e. instan-
tons) in SU(2) gauge theory on R4.

Note that these abelian vortices embedded in S(U (N) × Ũ (N))

gauge theory do not have full unit winding in the U (1) subgroup
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of the gauge group, and they have SU(N) parts. So they are truly
non-abelian. This situation is quite analogous to the non-abelian
vortices in U (N) gauge theories [1–3].

It is clear that our construction can be extended to an arbi-
trary choice of embedding of the Witten solutions into diagonal
elements of the U (N) group, and this leads to all possible non-
abelian vortex solutions which are restricted to lie in the diagonal
U (1)N subgroup.
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