1-FACTORIZING REGULAR GRAPHS OF HIGH DEGREE - AN IMPROVED BOUND

A.G. CHETWYND
Department of Mathematics, University of Lancaster, Bailrigg,
Lancaster LA 1 4YL, U.K.

A.J.W. HILTON
Department of Mathematics, University of Reading, P.O. Box 220, Whiteknights,
Reading RG6 2AX, U.K.

We showed earlier that a regular simple graph of even order satisfying $d(G) \geq \frac{5}{2} |V(G)|$ was the union of edge-disjoint 1-factors. Here we improve this to regular simple graphs of even order satisfying $d(G) \geq \frac{1}{2} (\sqrt{7} - 1) |V(G)|$.

1. Introduction

The graphs we shall consider will be simple, that is they will have no multiple edge or loops. An edge-colouring of a graph is a map $\Phi: E(G) \to \mathcal{C}$, where \mathcal{C} is a set of colours and $E(G)$ is the set of edges of G, such that no two incident edges receive the same colour. The chromatic index $\chi'(G)$ of G is the least value of $|\mathcal{C}|$ for which an edge-colouring of G exists. A well-known theorem of Vizing [7] states that

$$\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1,$$

where $\Delta(G)$ is the maximum degree of G. Graphs for which $\Delta(G) = \chi'(G)$ are said to be Class 1, and otherwise they are Class 2. A regular Class 1 graph is often called 1-factorizable, as it is the union of edge disjoint 1-factors.

For a regular graph G, let us denote the common degree of the vertices by $d(G)$. A well-known conjecture which may be due to G.A. Dirac (he told one of us that it was 'going around' in the early 1950s) is as follows.

Conjecture 1. A regular graph of even order satisfying

$$d(G) \geq \frac{1}{2} |V(G)|$$

is 1-factorizable.

The present authors took the first significant step towards solving this conjecture by proving it with the more restrictive bound $d(G) \geq \frac{5}{2} |V(G)|$ in [1]; they actually proved it with $d(G) \geq 0.849 |V(G)|$. Here we improve this to
A. G. Chetwynd, A. J. W. Hilton

\[d(G) \geq \frac{\delta}{6} |V(G)|; \] in fact again we prove a slightly stronger bound, namely
\[d(G) \geq 0.823 |V(G)|. \]

In a regular graph \(G \) of even order on vertices \(v_1, \ldots, v_{2n} \), let \(\tilde{p}_{ij} = \tilde{p}_{ij}(G) \) be
the number of paths in \(\tilde{G} \), the complement of \(G \), of length 2 which join \(v_i \) and \(v_j \), and let \(\tilde{p} = \tilde{p}(G) = \max_{i,j} \tilde{p}_{ij} \). Clearly \(\tilde{p} \leq d(\tilde{G}) = |V(\tilde{G})| - d(G) - 1. \)

First we prove the following result.

Theorem 1. Let \(G \) be a regular graph of even order satisfying
\[d(G) > \frac{\delta}{6} |V(G)| - \frac{1}{2} \tilde{p} - \frac{1}{6}. \]

Then \(G \) is 1-factorizable.

By proving an easy bound on \(\tilde{p} \) we obtain the following corollary. (Note that \(\frac{\delta}{6} = 0.833 \) and \(\frac{1}{2}(\sqrt{7} - 1) \approx 0.823 \).)

Theorem 2. Let \(G \) be a regular graph of even order satisfying
\[d(G) > \frac{1}{2}(\sqrt{7} - 1) |V(G)|. \]

Then \(G \) is 1-factorizable.

For the case when \(\tilde{p} = |V(G)| - d(G) - 1 \), Theorem 1 reduces to Theorem 3.

Theorem 3. Let \(G \) be a regular graph of even order containing two vertices which, in \(\tilde{G} \), are joined by \(|V(G)| - d(G) - 1 \) paths of length 2. Furthermore, let
\[d(G) > \frac{3}{4} |V(G)| + \frac{1}{4}. \]

Then \(G \) is 1-factorizable.

Let \(G_\Delta \) be the subgraph of a graph \(G \) induced by the vertices of degree \(\Delta = \Delta(G) \). We call \(G_\Delta \) the core of \(G \). A very useful result, due to Fournier [5], is that if \(G_\Delta \) is a forest, then \(G \) is Class 1. As a preliminary to our proof of Theorem 1, we extend Fournier’s theorem. A general discussion of the possibilities for extending Fournier’s theorem was provided by Hoffman and Rodger in [6]; see also [2] and [3].

2. Preliminary results

For a vertex \(v \) in a graph \(G \), let \(d^*(v) \) denote the number of vertices of \(G \) of maximum degree to which \(v \) is adjacent. The following lemma was proved in [1].
Lemma 1. For a graph G, let $e \in E(G)$ be incident with $w \in V(G)$. Let $d^*(w) \leq 1$. Then

$$\Delta(G - e) = \Delta(G) \Rightarrow \chi'(G - e) = \chi'(G)$$
and
$$\Delta(G - w) = \Delta(G) \Rightarrow \chi'(G - w) = \chi'(G).$$

The next lemma is a well-known result of Dirac [4].

Lemma 2. Let G be a graph whose minimum degree $\delta(G)$ satisfies

$$\delta(G) \geq \frac{1}{2} |V(G)|.$$

Then G possesses a Hamiltonian circuit.

3. Extensions of Fournier's theorem

We first prove the following theorem. Define a proper tree to be a tree with at least one edge.

Theorem 4. Let the connected components of G_Δ be $G_\Delta(1), \ldots, G_\Delta(r)$. For each $i \in \{1, \ldots, r\}$ assume that $G_\Delta(i)$ consists of disjoint proper trees $T_{i1}, \ldots, T_{is(i)}$ which are rooted on a graph H_i, where, for each $j \in \{1, \ldots, s(i)\}$, $H_i \cap T_{ij}$ is a single vertex v_{ij} (the root vertex), and such that $G_\Delta(i) \setminus V(T_{i1} \cup \cdots \cup T_{is(i)})$ contains no edges. Then G is Class 1.

The type of graph permitted for a $G_\Delta(i)$ is illustrated in Fig. 1.

In the particular special case when each T_{ij} is a single edge, Theorem 4 was used (without being explicitly stated) in [1].

Proof of Theorem 4. We first colour all the edges of $G \setminus E(G_\Delta)$ with $\Delta(G)$ colours. Since the only vertices of degree $\Delta(G)$ in this graph are non-adjacent, it follows from Fournier's theorem that this is possible. For each i we colour all the edges of H_i using Vizing's fan argument; we first colour the edges of the subgraph of H_i induced by $v_{i1}, \ldots, v_{is(i)}$, using vertices in $\{v_{i1}, \ldots, v_{is(i)}\}$ as pivots, and then we colour the remaining edges of H_i, using the vertices of $V(H_i) \setminus \{v_{i1}, \ldots, v_{is(i)}\}$ as pivots. Finally we colour the edges of each T_{ij} as follows. We may order the edges e_1, \ldots, e_t of a tree T_u so that e_1 is incident with v_{ij}, and, for $1 \leq k \leq t$, the edges e_1, \ldots, e_k induce a subtree. We then colour e_1, \ldots, e_t in that order using Vizing's fan argument, always choosing as pivot the vertex of e_k which is non-adjacent to any of the vertices of e_1, \ldots, e_{k-1}. □
Next we show that Theorem 4 can be extended.

Theorem 5. Let G_Δ be the edge-disjoint union of two graphs B and R_Δ having the following properties.

(i) If $R_\Delta(1), \ldots, R_\Delta(r)$ are the connected components of R_Δ, then for each $i \in \{1, \ldots, r\}$, $R_\Delta(i)$ consists of disjoint proper trees $T_{i1}, \ldots, T_{is(i)}$ which are rooted on a graph H_i, where, for each $j \in \{1, \ldots, s(i)\}$, $H_i \cap T_{ij}$ is a single vertex v_{ij} (the root vertex), and such that $R_\Delta(i) \setminus V(T_{i1} \cup \cdots \cup T_{is(i)})$ contains no edges.

(ii) The graph B is bipartite and has the property that the set of all proper trees T_{ij} can be written in an order T_{i1}, \ldots, T_{ip} such that the edges of B join vertices of $V(T_k) \setminus \{v_k\}$ to vertices v_1 with $k < l$, where v_k and v_l denote the root vertices of T_k and T_l respectively.

Then G is Class 1.

In the theorem above, the hypotheses on R_Δ are the same as the ones on G_Δ in Theorem 4. The graph B and the trees T_1, \ldots, T_p are illustrated in Fig. 2 in the
Fig. 2. The graphs B together with trees T_1, \ldots, T_p in the case when T_1, \ldots, T_p each consists of one edge, and $p = 5$.

case where each T_k consists of a single edge (this is, incidentally, the special case we shall use in the proof of Theorem 1).

Proof of Theorem 5. Adapting the proof of Theorem 4, first we colour the edges of $G \setminus E(G_a)$. Then we colour the edges of H_1, \ldots, H_r. Then we colour the edges of B, using Vizing’s fan argument with the vertices on the trees T_1, \ldots, T_p as pivots. Finally we colour the edges of the trees as before, but colour them strictly in the order T_1, \ldots, T_p. □

4. The proof of Theorem 1

Let G be a regular graph of order $2n$ and degree

$$d = d(G) \geq \frac{5}{6} |V(G)| - \frac{1}{3} \bar{d} - \frac{1}{6}.$$

Let $w, v^* \in V(G)$ be such that the number of paths of length two between w and v^* in \tilde{G} is \bar{d}. Let W be the set of vertices of maximum degree in G. Then $G - w$ has $2n - 1$ vertices, $|W| = 2n - d - 1$ of them having degree d, and the remaining d of them having degree $d - 1$. The vertex v^* is non-adjacent to \bar{d} of the vertices of W. Thus $d^*(v^*) = |W| - \bar{d}$ or $|W| - \bar{d} - 1$.

Let X be a set of $|W| - \bar{d} - 1$ vertices of $V(G - w)$ which are non-adjacent to v^*; as there are in $G - w$ at least $|W| - 1$ vertices non-adjacent to v^*, such a set X does exist. Let $s = |X| = |W| - \bar{d} - 1$. Let $q = |(X \cup W) \setminus \{v^*\}| \leq (|W| - \bar{d} - 1) + |W| = 2|W| - \bar{d} - 1 = 4n - 2d - \bar{d} - 3$.

Now consider the subgraph H of $G - w$ induced by $(X \cup W) \setminus \{v^*\}$. Let M_0 be a set of edges of H forming a maximal matching, and let $m = |M_0|$. Let

$$(X \cup M) \setminus \{v^*\} = L \cup R,$$

where $L \cap R = \emptyset$, $|L| = m$, and where each edge of M_0 joins a vertex of L to a
vertex of R. Let $L^* = L \cup \{v^*\}$ and let H^* be the subgraph of $G - \{w\}$ induced by $L^* \cup R$. Let the elements of L^* be denoted by l_1, \ldots, l_{m+1}, where $l_{m+1} = v^*$, and let the elements of R be denoted by $r_t, r_{t+1}, \ldots, r_m$, where $t = 2m - q + 1$ (so t may be negative). Suppose that

$$M_0 = \{l_1r_1, \ldots, l_mr_m\}.$$

Let E^+ consist of all edges of H^*, except those of the form l_ir_j, where $i \leq j$, and those with both endvertices in R.

We now observe that E^+ is contained in the union of q edge-disjoint matchings of the complete graph on $V(H^*)$, M_1^+, \ldots, M_q^+, where M_i^+ is defined as follows:

- $M_i^+ = \{l_1r_{i-1}, l_2r_{i-2}, \ldots, l_mr_{m-i}, l_{m+1}r_{m+1-i}\}$, if $1 \leq i \leq 1 - t$;
- $M_i^+ = \{l_1l_{i+t-1}, l_2l_{i+t-2}, \ldots, l_{(i+t-1)/2}l_{(i+t-1)/2} + 1\}$
 $\cup \{l_{i+t}r_{i+t+1}r_{i+t+2}, \ldots, l_mr_{m-i}, l_{m+1}r_{m+1-i}\}$, if $2 - t \leq i \leq m + 1 - t$;
- $M_i^+ = \{l_{i-m+t-1}l_{i-m}, l_{i-m+1}l_{m+1}, \ldots, l_{(i+t-1)/2}l_{(i+t-1)/2} + 1\}$, if $m + 2 - t \leq i \leq q$.

Notice that $\bigcup_{i=1}^{q} M_i^+$ contains all the edges of the complete graph on the vertices of $V(H^*)$ except for the edges of M_0, the edges with both endvertices in R, and the edges which join $l_i \in L$ to $r_j \in R$ with $i < j$. Finally we notice that

$$|M_i^+| \leq \frac{1}{2}(q + 2 - i) \quad (1 \leq i \leq q).$$

The matchings M_i^+ ($1 \leq i \leq q$) are illustrated in Fig. 3.
Let W_s be a set of s elements of W which are adjacent to v^*. (Recall that there are either s or $s + 1$ such elements.) Let the vertices of X be x_1, \ldots, x_s and the vertices of W_s be w_1, \ldots, w_s. If an edge xw is in M_0 with $x \in X$ and $w \in W_s$, we may suppose that $x \in R$ and $w \in L$. We may moreover suppose that $l_1, \ldots, l_m, r_1, \ldots, r_m, x_1, \ldots, x_s, w_1, \ldots, w_s$ are labelled so that, for $1 \leq j \leq s - 1$, x_j comes before w_j in the list $(r_m, \ldots, r_1, l_1, \ldots, l_m)$. (In fact, except in the case when each edge of M_0 joins either two vertices of X or two vertices of W_s, we could suppose that x_i comes before w_i also.)

We now construct matchings M_i^* ($1 \leq i \leq q + 1$) by slightly modifying the M_i^+. If x_i comes before w_i, define $M_i^* = M_i^+ (1 \leq i \leq q)$ and $M_{q+1}^* = \phi$. If x_i comes after w_i, then we may suppose that $v^*w_i \in MG$ for some i. If x_0 is not incident with any edge in M_i^+, then define $M_i^* = M_i^+ (1 \leq i \leq q)$ and $M_{q+1}^* = \phi$. If there is an edge in M_i^+ incident with x_0, say e_{i_0}, then define $M_i^* = M_i^+ (i \in \{1, \ldots, q\} \setminus \{i_0\})$, $M_i^* = M_i^0 \setminus \{e_{i_0}\}$ and $M_{q+1}^* = \{e_{i_0}\}$.

Note that

$$|M_k^*| \leq \frac{1}{2}(q + 3 - k) \quad (1 \leq k \leq q + 1).$$

A near 1-factor F of $G - w$ is a set of $\frac{1}{2}((V(G - w)) - 1)$ independent edges of $G - w$. We say that the vertex which is not incident with any edge of F is "missed" by F. We choose $q + 1$ edge-disjoint near 1-factors F_1, \ldots, F_{q+1} of $G - w$ such that

$$E^+ \cap (M_1^* \cup \cdots \cup M_k^*) \subseteq F_1 \cup \cdots \cup F_k \quad (1 \leq k \leq q + 1),$$

$$M_0 \cap (F_1 \cup \cdots \cup F_{q+1}) = \emptyset$$

and furthermore,

if $v^*w_i \in M_k^*$ for some $i \in \{1, \ldots, s\}$, then $v^*w_i \in F_k$ and F_k misses x_i,

and

if $v^*w_i \notin M_k$ for all $i \in \{1, \ldots, s\}$, then F_k misses v^*.

To choose F_k ($1 \leq k \leq q + 1$), suppose that F_1, \ldots, F_{k-1} have been chosen already. Let

$$M_k = (E^+ \cap M_k^*) \setminus (F_1 \cup \cdots \cup F_{k-1} \cup M_0).$$

Then

$$|M_k^*| \leq \frac{1}{2}(q + 3 - k) \quad (1 \leq k \leq q + 1).$$

Consider

$$G_{k-1} = (G - w) \setminus (F_1 \cup \cdots \cup F_{k-1} \cup M_0).$$

We choose F_k to be a near 1-factor of G_{k-1} containing M_k and missing x_i if $v^*w_i \in M_k$ for some $i \in \{1, \ldots, s\}$, or missing v^* if $v^*w_i \notin M_k$ for all $i \in \{1, \ldots, s\}$.

Let $V(M_k)$ denote the set of vertices of G which are incident with the edges of M_k, and define $G_{k-1}^* = G_{k-1} \setminus V(M_k)$. To see that we can choose F_k in the way described, we apply Lemma 2 (Dirac's theorem) to show that G_{k-1}^* has a
Hamiltonian circuit. We have
\[\delta(G^*_{k-1}) \geq (d - 1) - \{(k - 1) + 1\} - |V(M_k)| = d - k - 1 - |V(M_k)|. \]
Also
\begin{align*}
\frac{1}{2} |V(G^*_{k-1})| &= \frac{1}{2}(|V(G_{k-1})| - |V(M_k)|) \\
&= \frac{1}{2}(2n - 1 - |V(M_k)|) \\
&= n - \frac{1}{2} - \frac{1}{2} |V(M_k)|.
\end{align*}
Therefore
\begin{align*}
\delta(G^*_{k-1}) - \frac{1}{2} |V(G^*_{k-1})| &\geq d - k - 1 - |V(M_k)| - n + \frac{1}{2} + \frac{1}{2} |V(M_k)| \\
&= d - n - k - \frac{1}{2} - \frac{1}{2} |V(M_k)| \\
&\geq d - n - k - \frac{1}{2} - \frac{1}{2}(q + 3 - k) \\
&= d - n - \frac{1}{2}q - \frac{1}{2}k - 2 \\
&\geq d - n - q - \frac{3}{2} \\
&\geq d - n - (4n - 2d - \tilde{p} - 3) - \frac{3}{2} \\
&= 3d - 5n + \tilde{p} + \frac{1}{2} \\
&\geq 0,
\end{align*}
since \(d \geq \frac{5}{8}(2n) - \frac{1}{2}\tilde{p} - \frac{1}{6}. \) Therefore by Lemma 2, \(G^*_{k-1} \) does have a Hamiltonian circuit. It follows that \(G_{k-1} \) contains a near 1-factor \(F_k \) which contains \(M_k \) and misses \(x_i \) if \(v^*w_i \in M^*_k \) for some \(i \in \{1, \ldots, s\} \), or misses \(v^* \) if \(v^*w_i \notin M^*_k \) for all \(i \in \{1, \ldots, s\} \). It is easy now to check that \(F_k \) has all the various properties required of it.

Let \(J = \{i: F_i \text{ misses } v^*\} \). The graph \(((G - w) \setminus (F_1 \cup \cdots \cup F_{q+1})) \setminus \{v^*\} \) has core of the form of Theorem 5, with each tree \(T_j \) just consisting of a single edge. Therefore \(((G - w) \setminus (F_1 \cup \cdots \cup F_{q+1})) \setminus \{v^*\} \) is Class 1. The graph
\begin{align*}
(((G - w) \setminus (F_1 \cup \cdots \cup F_{q+1})) \setminus \{v^*\}) \cup \{F_i: i \in J\} \\
= ((G - w) \setminus \{F_i: i \in \{1, \ldots, q + 1\} \setminus J\}) \setminus \{v^*\}
\end{align*}
is therefore Class 1. By Lemma 1, it now follows that
\((G - w) \setminus \{F_i: i \in \{1, \ldots, q + 1\} \setminus J\} \) is Class 1. It therefore follows that \(G - w \) is Class 1. In any edge-colouring of \(G - w \) with \(d(G) \) colours, it is easy to see by counting that each colour is missing from exactly one vertex. Therefore an edge-colouring of \(G - w \) can be extended to an edgicolouring of \(G \). Thus \(G \) is Class 1.

This completes the proof of Theorem 1. \(\square \)

5. The proof of Theorem 2

The argument in the last section improved our result from \(\frac{9}{8} |V(G)| \) to \(\frac{5}{8} |V(G)| \), an improvement of \(\frac{9}{8} - \frac{5}{8} \approx 0.024 \). In this section we use a counting argument to improve our bound further by about 0.01.
First we give a bound on \bar{p}.

Lemma 3.

$$\bar{p} \geq \frac{(2n - d - 1)(2n - d - 2)}{2n - 1}.$$

Proof. Each vertex in \tilde{G} is the centre of \tilde{G} of \(\binom{2n - d - 1}{2}\) paths of length 2. There are therefore altogether $2n \binom{2n - d - 1}{2}$ paths of length two in \tilde{G}. Therefore the average number of paths of length two joining an arbitrary pair of vertices is

$$2n \binom{2n - d - 1}{2} \geq \frac{(2n - d - 1)(2n - d - 2)}{2n - 1}.$$

Clearly \bar{p} is greater than or equal to this average number. This proves Lemma 3. □

Proof of Theorem 2. From Theorem 1 and Lemma 3, it follows that if

$$d(G) \geq \left(\frac{1}{2}\right)(2n) - \left(\frac{1}{3}\right) \frac{(2n - d - 1)(2n - d - 2)}{2n - 1} - \frac{1}{6},$$

then G is Class 1. After multiplying out and simplifying, the inequality becomes

$$d^2 + 2nd - (6n^2 - \frac{3}{2}) \geq 0,$$

so that

$$d \geq -n + \sqrt{7n^2 - \frac{3}{2}}.$$

suffices. Therefore G is 1-factorizable if

$$d \geq \frac{1}{2}(\sqrt{7} - 1)|V(G)|.$$

This proves Theorem 2. □

6. The proof of Theorem 3

If we substitute $\bar{p} = |V(G)| - d(G) - 1$ into the inequality $d(G) \geq \frac{5}{6} |V(G)| - \frac{1}{2}\bar{p} - \frac{1}{6}$, we obtain the inequality $d(G) \geq \frac{3}{4} |V(G)| + \frac{1}{4}$. □

Acknowledgement

The authors would like to thank the referee for suggesting various improvements to the text, and, in particular, for spotting a rather serious blemish.
References